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R~sum~. Beaucoup de probldmes lids au couplage de processeurs conduisent 
/t des 6quations fonctionnelles. En gdndral, les fonctions inconnues 
reprdsentent les fonctions gdndratrices d'un processus stationaire. Nous 
6tudions ici un probldme particulier, mais la mdthode proposde est applica- 
ble ~t des cas trds gdndraux de marches aldatoires ~t deux dimensions. 

Summary. Many problems arising from the coupling of processors require 
the solution of functional equations. Generally, the unknown functions are 
the generating functions for a stationary distribution of the studied process. 
In this paper, a particular problem is addressed but results lead to a 
computationally reasonable solution which applies to very general two 
dimensional random walks. 

Introduction 

Many problems arising from the coupling of processors [or, dualistically speak- 
ing, from the sharing of one resource by several classes of customers] require the 
solution of functional equations. Generally, the unknown functions are the 
generating functions for a stationary distribution of the studied process. In this 
paper we considera particular problem but the results offer a computationally 
reasonable solution which applies to very general two-dimensional random 
walks. 

In the first five sections we describe the problem of coupling and show that 
the generating function F(x,y) [for the joint distribution of the Markov process 
associated with the number of jobs in both queues] can be continued as a 
meromorphic function to the whole complex plane. We do not need a un- 
iformizing parameter as in Flatto and MacKean [2] or in Malyshev [5]. 

Section VI is devoted to a processor - sharing strategy where only the top 
jobs in each queue share the processor. This strategy was introduced without 
analysis by Coffman and Mitrani [1]; it has been shown to be "complete" in the 
sense that every achievable vector of average response times can be obtained by 
such processor sharing (Mitrani and Hine [8]). We reduce the problem to a 
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Dirichlet problem and obtain closed formulas which include elliptic functions of 
the third kind. 

Section VII treats a more general case, equivalent to a Riemann-Hilbert 
problem. Again, closed formulas are obtained. 

In Sect. VIII, we give conditions under which the preceding procedures are 
efficient. 

I. Problem Formulation and Assumptions 

Let us consider two parallel M/M~1 queues with infinite capacities under the 
following assumptions. 

a) The arrivals form two independent Poisson processes with parameters 
21,22. 

b) The service times are distributed exponentially with instantaneous service 
rates $1 and S 2 depending on the system state in the following manner: 

i) S 1 =#1 if both queues are busy, 
$2 = # 2  

ii) $1=#* if queue 2 is empty, 
iii) S 2 =#* if queue 1 is empty. 

c) The service discipline is FIFO (first in-first out) in each queue. 
Let pt(m, n) be the probability that, at time t, there are m jobs in queue 1 and 

n jobs in queue 2. 
p(m,n)=limpt(m,n ) will be referred to as the stationary probability of the 

state (m, n). We study the behaviour of the system at the steady state by means of 
the generating function F(x, y) (see below). 

From now on the terms "stability" or "ergodicity" will be used to mean 
"there exists a stationary distribution". 

The Kolmogeroff forward equations for the p(m, n) are the following 

(21 +22 +#1 + #2) P( m, n)=21 p(m - 1, n) +21 p(m, n - 1) 

+#ap(m+l,n)+#zp(rn, n+l), m,n>O, (1.1a) 

(,tl + ,~2 + #*) p(O, n) = ,~ p(O, n -  1) 

+#1p(1, n)+#*p(O,n+l), m=0, n>0,  (1.1b) 

(21 + 2z + #7) p(m, O) = 21 p(m- 1, O) 
+#lp(m+l,0)+#zp(m, 1), m>0,  n=0 ,  (1.1c) 

(21+22)P(O,O)=#*p(1, O)+#*p(O, 1), r e= n = 0 .  (1.1d) 

We introduce the generating functions. 

F(x,y)= ~ ~ p(m,n)xmy" 
m=0 n=O 

which are analytic with respect to x and y whenever Ix], [Yl < 1. 
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A straightforward but tedious computat ion yields 
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T(x, y) F(x, y) = F(O, y) a(x, y) + F(x, O) b (x, y) + F(O, O) c (x, y) (1.2) 

where: 

a(x,y) % f # a ( 1 - 1 ) + q ( 1 - 1 - ] ,  
\ y! 

=/ ' /2  1-- + p  1-- , 

y ! 

T(x,y) deJ ~ t ( 1 - - x ) + # 1 ( l - - 1 ) + 2 2 ( 1 - - Y ) + # 2  (1--~),  

P=#1 -#*,  

q = # 2  --#2" 

Lemma 1.1. The existence of F(x, y) satisfying the functional equation (1.2) with 

[p(m, n)[ < ov (space L1) is equivalent to stability. Moreover if F(x, y) exists, it 
re, n = 0  

is unique up to a constant multiplier which can be suitably chosen so that all 
coefficients in the power series expansion are positive and sum to 1. In that case 
F(x, y) is the generating function for a stationary distribution. 

Proof. See Malyshev [51. 
A glance at relation (1.2) does not give much information concerning F(x, y). 
However, a further investigation shows that the right side vanishes whenever 

T(x,y)=O, provided [xJ ,  [yl=<l. 

To obtain additional relations between F(x,0) and F(0,y), it is necessary to 
examine carefully the algebraic curve C defined by 

R(x, y) = x y. T(x, y) = 0 (1.3) 

in the whole complex plane which we do in the next section. 

II. R(x, y)  = 0 

R(x, y) is a polynomial  of third degree w.r.t, x and y and of second degree w.r.t. 
each variable x or y. 

The curve C has genus 1 and can be identified with the Riemann surface 
C over either of the extended x or y planes (more precisely, the algebraic extension 
of the field of rational functions of x, as defined by R(x,y)=O). 
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These assertions are well known (see for example Fuchs [3]) and will not be 
discussed further. 

For curves of genus 1, the introduction of a uniformizing parameter requires 
elliptic functions and reduces the tractability of the computation if we try to 
construct the analytic continuation of the functions F(x,O) and F(0, y) (for an 
example concerning a curve of genus 0 (see Flatto and Mac Kean [2]). 

Solving R(x, y)= 0 for y, we have 

y(x) = 22+/12 + A ( x ) - T - ~ ~  + A(x)) 2 - 4  2 z #2 
2 22 (2.1) 

where 

A(x)=2.1(1-x)+#l ( 1 - 1 ) .  (2.2) 

We obtain two distinct branches which give a two sheeted covering over the x 
plane. 

Lemma 2.1. The algebraic function y(x) defined by R(x, y) has four real branch 
points xl ,x2,x3,x 4 with O<Xl <X2<l <x3<x4. 

Proof From (2.1), it follows that branch points are the zero's of the discriminant 

A(x) = [Z 2 +#2 + A(x)] 2 - 4  2 2 #2 

This can be written 

A(x)  + = o 

or  

2.1 x2 +lal =(Z +k)x 

where 

(2.3) 

X=2.1 +22 +#1 +#z ,  

Obviously, the roots of (2.3) are real and positive. Moreover 21 + / q  <X+k. It 

follows that i lies between these roots. As k takes two values +2 f ~ 2  and 

-21/#222,  A(x) vanishes for x--xl ,x2,x3,x 4 with x 1 < x 2 < l  < x  3 < x  4. 
Verifying that 

x ( S ) = Z x + # l + S -  21/~+1+ # 1+ S) 2-4  2 l #t 
22.1 

is a decreasing function of S for S > 0, yields 

2, +/~1 + (1/#222 + 1~2)2-  ~)~1 +#1 + (V~-2 +]/g2)2)2 - 4 2.1 ,ul 
xl 221 
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"~1-[-1/1-I-(]~-22- ]~-2)2- ~-tt-1/1 + ( ~ 2  - 1/-~2)2)2 - 4 Z1 #1 
X2-- 2)L1 
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(2.4) 
1/1 

X3 ~I X2 

1/1 
X4 --]~1 Xl " 

The Lemma2.1 is obviously valid for the branch points Yl,Y2,Y3,Y~ of the 
function x(y). 

Lemma2.2. The equation R(x,y)=O has one root y(x)=h(x) which is an analytic 
algebraic function of x in the whole complex plane cut along the two segments 
Ix I x2] and Ix 3 x~]. 

Moreover [h(x)[ < 1 /f]x[ = 1 

Similar propositions apply to x(y): i.e. there exists k(y) such that 

(k(y), y) = O, 

Ik(y)l < 1 i f  lyJ = l ,  

Ik(Y)[ <= ]/~I V Y. 

Proof The first part of the lemma results from the general theory of polynomials 
of two complex variables (Fuchs [3]). 

The second assertion is proved by using Rouch6's theorem as follows: 

R(x, y) = 0 is equivalent to 

Yx [22 q-1/z-l-)~l(1-x)+1/1 (1-1x)]=[)o2y2 +1/2]x. 

When 

[xl=l ,  122+1/z+A(x)r>22+1/2, 

x + l ,  

A(x) given by (2.2). 
Hence on the circle lYl = 1 we have 

I x Y I[ A2 -}- 1/2 -}- A(X)I = 1~2 -~- 1/2 -}- A (x)J > 22 + #2 => Ix1122 y2 q_ ,u21" 

We deduce that R(x,y)=O with IxJ= l, xq= 1 has exactly one root h(x) inside 
the unit circle. 

x = l  yields \ .2 Y ] ( 1 - y ) = 0  

and h(1) =min  (1,~222) �9 
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Observing that e ( y ) = ~ 2  is a conformal map (automorphism) of the Rie- 

mann surface onto itself [R(x, c~(y))= R(x, y)], we deduce that the second root of 

/'/2 /'/2 R(x,y)=O is 22h(x). Moreover, when x~[xlx2]w[x3x4], h(x) a n d ~  are 

complex conjugate (from Lemma 2.1) with a common modules equal to ~]/~2. 

The curve H =  {h(x), Ixl--1} is simple and closed. 
The region inside the circle Ixl = 1 cut along the real axis from x 1 to x 2 is 

mapped by h(x) onto the ring shaped region between the curve H and the circle 

[yh = ~]~. 

The last assertion of the lemma is derived from the "maximum modulus 
principle" (Fuchs [3], pp. 201-203 since 

i) h(x)=h ( #~llx)=O if x=oo, 

ii) h(x) is analytic of x m the whole complex plane cut along 
Ix1 x23 u Ix3 x~]. 

Thus, the maximum modulus of h(x) can be reached only on the boundary 
Ix1 x23 ~ [xa x,d. 

But Ih(x)l =1/-~ 2 if xe[x 1 x23 w [x 3 x43. 

, =  z, we get 2 2 ( 1 - y ) + # 2  1-7 ,  = 2 2 + # 2  

Replacing z by 1, this expression is unaffected. 
Z 

Therefore h(x) is the root corresponding to Izl<l and it follows at once 

Ih(x)l = I/ ,~2" 
The proof of Lemma 2.2 is thus terminated. 

Lemma 2.3. 

x if Ixl<l/-~ 
k(h(x))= = I/ 21 

[ 2 - ~  if Ixl> 

y if lYl-- l/ 

h(k(y)) = > 1 / ~ .  
/~2 if lyl 

t~2 Y [/ "~2 

(2.5) 
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The proof is easy using the arguments of Lemma 2.2. 
It is important to note the strict inequalities in (2.5): for example k(h(x)) 

/'1 if Ix] because on the circle of radius Ixl= there are two 
22 x l/ 21 

5 conjugate roots k and k =  , but k is reached from inside. 

Thereby proof is concluded. 

III. The Analytic Continuation of F(x, O) and F(O, y) 

Convention. To avoid repetitions, we introduce the notations: 

C(R) = {z I modulus(z) = R}, 

B(R) = {z I modulus(z) < R}, 

B(R) = {z I modulus (z) > R}. 

In Sect. II, we have defined two curves 

H = {h(z)/lzl = 1}, 

K = { k ( ~ ) / I z l  = ~}. 

which are simple, closed and lie inside C(1). Similarly, let H' and K' be the 

#2 curves obtained from H and K under the mappings (automorphisms) z-~22 z 
and z ~  / ' 1  respectively, i.e.' 

22z 

H ' -  /22 
.~2 H '  

K ' -  /*1 
21K" 

F 
H' and K' are also simple, closed and lie outside C(1). [The point z=  1 on the 

( positive real axis belongs to H' (resp. K') iff 7 1 resp. 

Sect. II.] 

We shall use throughout this paper the functions h(x) and k(y) introduced in 
II. 

Theorem 3.1. 1) F(x,O) [resp. F(0, y)] can be continued as a meromorphic function 
to the whole complex plane cut along the real axis from x 3 to x 4 [resp. from Y3 to 

Y4]. 
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2) The poles of F(x,O) [resp. F(0, y)] are the zeros (if any) of #2 ( 1 - ~ 1  

+P(1 -1 )  [resp .# l (1-+)+q(1-~)]outs ideC(1) .  
\ w t ~ ) l  

Proof. All the information known about F(x,O) and F(O,y) is that they are 
analytic for Ixl, lyl < 1. 

We define two regions R x and Ry as follows: Ry is the region which lies 
between the curves C(1) and/4. Rx is 

the region / between the curves C(1) and K if ~ >  1 

/ B(1) if ~ <  1 

First of all we establish the 

Lemma 3.1. All the couples (x, y) which are solutions of the system 

R(x, y) = 0 
Ix] < 1 (3.1) 

lyl<l 

have the form (x,h(x)) or (k(y),y) where x~R~ and y~Ry. 

( # ' > 1 ]  When The demonstration follows at once from Sect. II assuming 2~- i" 

bt2> 1 there is a bijection between R~ and Ry. More precisely, 
22 

Rx_~h Ry and Ry k > Rx" 

When ~ <  1 there is a bijection between D x and Dy, 

[Dx is the domain between the curves C(1) an(~) K 
where #2 

Dy is the domain between the curves C and H. 

#1< 1, ~ <  1 is rejected: otherwise, as soon as both queues are Remark. The case 2l 

busy, the queue lengths remain unbounded with positive probabilities (1 #1 
21 

and 1-~22 respectively)(Cohen [4]). 

We are in a position to demonstrate Theorem 3.1. 
Applying the notation of Sect. I, system (3.1) entails 

I F(O, y) a(x, y)+ F(x, O) b(x, y)+ F(O, O) c(x, y)= 0 ] (3.2) 
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In (3.2) either x=k(y) or y=h(x). 
We continue the function F(x, 0) to B(1). 
Two cases must be distinguished. 

/z2 
i) ~2<1. 

Then ]h(x)f < V ~ 2 <  1 V x. 

F(O, h(x), a(x, h(x)) and c(x, h(x)) are analytic in B(1) cut along Ix 3 x4]. 
The relation (3.2) entails the same property for the product F(x, 0). b(x, h(x)). 

It follows that F(x,O) can be continued as a meromorphic function to B(1) 

- [ x 3 x J ,  the poles of which are the roots (if any) of b(x,h(x))=O in B(1) 
-- IX  3 X4]. 

ii) ~22> 1. 

Let ~4I' denote the region inside the curve K', that is 

[x l> l ,  

Ih(x)l > 1. 

Note that x 3 and x 4 are interior points of X' .  

In B(1)-~f" ,  Ih(x)l <= 1: the same argument as in i) holds and the product 
F(x,O). b(x, h(x)) is analytic. 

The analytic continuation of F(x, 0) to X ' - [ - x  3 x4] is made according to the 
following procedure: 

~) In (3.2), we use the fact that F(x, 0) is analytic in B(1) to continue F(0, h(x)) 
to C(1 ) - [x  1 x2] as in the foregoing lines. 

/3) On account of the automorphism z~-~ 2/~, we know that 
& 

,tl 
Ix3  X 4] = 

/1~ [x2 x~]" 

Hence, F(0, h(x)) is continued as a meromorphic function to ~ ' - [ x  3 x4]. 
7) We use (3.2) again and fl to obtain the analytic continuation of F(x, 0): the 

product F(x, 0). b(x, h(x)) is analytic everywhere in the complex plane cut along 
[x3 x~]. 

In B(1), the poles of F(x, 0) coincide with the zeros of b(x, h(x)). 
Same conclusions can be drawn for F(O,y) and the proof of theorem3.1 is 

terminated. 
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IV. A Simplification of the Relation (3.2) 

We try to reduce (3.2) to an homogeneous equation (i.e. without right member). 
An elementary computat ion shows that when pq-#a#2+O, the transfor- 

mation (translation) 

P(q-#2) F(O, y)-  F(O, O) + U(y) 
P q - - # l # 2  

F(x,O)= q(P-PO F(O,O)+G(x) 
P q - - # t # 2  

(4.0) 

yields the system 

R(x,y)=O, Ix[, lYl~l 
H(y) a(x, y) + G(x) b(x, y) = O. (4.1) 

Moreover, 
~2 nT e(O, O) 

H(O) = 
[~l #2 --P q 

#1 ~* F(0, 0) (4.2) 
G(O) = 

# l # 2 - - P q  

Section III gives the analytic continuations of G(x) and H(y). 
When Pq=#l#2, the preceding transformation is not valid. However, re- 

membering that: 

P = # I - # *  and q=]A2--#~  , 

pq-I~/~2=0 can be rewritten as 

/~t + # r  1, 

or  

P; = r #* 0 -< r _< 1, provided that/Zx,* #2" ~= 0. (4.3) 
, 2 - - ( 1 - 0 , ~  - - 

If #7 = #* = 0, (4.1) yields the system 

R(x,y)=O, Ixl, [y[=<l, 
F(O,x)+F(y,O)=F(O,O), (x, y ) ,  (1, 1), 

which clearly has no admissible solution due to 
+ F(0, y) > F(0, 0). 

Using (4.3), (3.2) takes the following form: 

R(x,y)=O, Ixl__<l, l y l< l  

[ ,*  ( 1 - 1 ) - p  * (1-))][r162 

(1_1) (1_ (;_1) 

the fact that F(x,O) 

(4.4) 
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Following the remark in Sect. III, it will be assumed from now on #1 >41- 
Section III reveals that a stepping stone towards the solutions of the original 

problem is the study of the roots of the equation hi(x)=0. More precisely, we 
F - - -  

require only the roots inside C #(]/~-L) for reasons given in Sects. VI and VII. It 

seems convenient to introduce the following notations (valid until the end of the 
paper), 

=p  1 1 

al(x)=q ( l - h ~ ) + # l  ( 1 - 1 )  

a2(y)=q (1 1 1 

Up to a change of the parameters, the conclusions drawn for b~(x)=0 will hold 
for a2(y)=0. 

The term "root"  or "zero" will always design a number different from 1. 

Lemma 5.1. Excluding the trivial root x =  1, ba(x)=O has at most two roots inside 
. / ~ _  

C I~(l/~]). Moreover, these roots (if any)are real, positive and belong to the set 
x r  " - l ~  

[0 'xl]u[  x2 g ,tlj' 

Proof i) b l (x)=0 together (1.4) entails 

cp(x) "~ ~(~2 +p) x2 -x[u* u2 +(,L +,~2 + ~*)p] + p ~  =o (5.2) 

The first part of the lemma says that q~(x)=0 has two real roots. This is 
proved in Appendix A. 

To show that these roots are positive, we substract bl(x)=O from (1.4) and 
obtain 

21(1-x)+#* (1-1)+22(1-h(x))=O: 

x < 0  would lead to h(x)> 1: this is impossible. Hence, any root is positive. 
From Sect. II it is obvious that a root x cannot belong to the cut [x t x2] by 

checking h(x) is a complex number and bl(x) does not vanish in this case. 
The proof of Lemma 5.1 is concluded. ./77-. 

now the assumption (valid in the whole Sect.V) [xl < g ] / ~  when We make 
the range of variation is not explicitly stated. V *'~1 
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The following system of notations will also be used: 

clbl(x) _ p__~ / ~  h'(x) 

d x  x 2 h2(x) 

"~1 #1 
X 2 dh(x~)=h,(x)= 

dx 
#a ,2 2 h2(x) 

)~l x - # i  dtP(x) 
~ ( x )  = 

~2 -- *~2 h (x )  ; d x  

Thus, bi(x) can be rewritten at our convenience 

,~ 1 (/~2 - 22 h(x)) +,~2(21 x - #1) h'(x) 
1-#2 -- ~2 h(x)-] 2 

(5.3) 

bt(x)= ( 1 - 1 )  [p+#2 7'(x)]. (5.4) 

Two cases are now investigated 

1. p < 0  

yields 

dbl(x) < 0  
dx 

for xe [0 ,x [ lvJ  x 2, 

1. a #z>=)Lz 

Then ~(x) < 0. 

. o n c e  , ,+ , , e  aod tUe e is no root in 

1. b #2<22 

Then b 1 ( 1 ) = # 2 - 2 2 < 0 .  
This implies: , / - - .  
�9 there is a root (and only one)in C #(V~- l)  if bl(x2)>0, 

,y .t- 
Moreover, this root belongs to Ix2, lJ u - -  

, there is no root in C /l(]/~k I if bl(x2)<0. 
\V ,tl! 

2. p > 0  

2.a /z2>2 2 

for x E [0, x 1~] t,.-) [,x 2, ~ 1 1  ] 

yields 

d~P(x) > 0  
dx 

(5.3) 

(5.:3) 
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i) If bl(x2)>O then 

one root in [ x 2 , ] / ~  I 
I/ "r 

no root in x 2, 

one root in [0,xl]  

no root in [0, xl]  

if bl {]/-fiT~ > tl/ f o 

if  b l (Xl)  < 0  

if bl(xl) >0. 

ii) If b l (x2)<0 then b l (x l )<0  (see Appendix B): we deduce there is only one 

root in [0, xl]  and no other root in C #(]/~1 t .  
\ v ~ l ]  

2.b #2 < 1~2 

As in 2 a, d ~ ( x ) > 0  for xe[0,  xl].  Thus, there is one root in [0,xl]  iff bl(xl)<O. 
�9 " dx yields 

h ' (x)<0 for x~ x2, �9 

When x increases from x 2 to ]/-&l h(x) decreases from # ] ~  to Yz [Y2 is the 
second branch point of k(y)] V 21' 

~U(x)>0 for xe [x  2, 1] 

[ >0  for xe  1, #i . 

This implies: 

, There is one root in [ 1 , ~ ] i f b  1 P(~-~)>0. 

�9 There is no root in C # ( V ~ ) - [ 0 , X l ]  if b 1 # ( V ~ ) < 0 .  

Similar conclusions can be drawn for aZ(y) as follows: 

- When #2 > 22, it suffices to change the name of the parameters. 
- When #2 <)+2, let us set 

a2(y)=(1-~)[q+#tq~(y)],  where r de-f 22Y-#2  
#1-21 k(y) ' 

qS(y) increases [] ~22, 1]. on IV )~2 
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i) q<O:a2(y) decreaseson [Y2,~22]. 

There is no root on L~' [/~J if q + ~ l ~ ( 1 ) < 0 '  

If q + #1 @(1) > 0, then 

in [ ] / ~ , 1 ]  i f a  2 >0  

 oot there is one [#2 ] ~ 2 ]  a 2 #(]~z2) 

in [2~z, [ / ~22] if <0  
ii) q>0:  

�9 no root in [#2,1],  
1_22 

�9 one root in [y2,#~22] iffaZ(yz)>O, 

�9 one root in [0,y~] iffa2(yl)<0.  

G. Fayolle and R. Iasnogorodski 

VI. The Case p q = gl/~2 : Determination of F(x, 0) and F(0, y) 
by Solving a Dirichlet Problem for a Circle 

From now on, let Sm(Z ) and Re(Z ) denote respectively the imaginary and the real 
part of the complex number z. 

From Sect. I, we know that 
JmF(O,y)=O for yE[ylY2], since the power series expansion of F(O,y) has 

positive coefficients. 
Hence, by using system (4.4) and Sect. III, it follows: 

Jm(1-~)F(x,O)=J,, for Ix] = 1 ~ .  (6.1) 

-~0-~)+~ ~(h~) 
1 1 

~f ~ t ~  ha~ oo zero in ~ ~ ( ~ ) ,  we reduce ~he problem to that o~ ~iodiog a 
x r  " - j - -  

function anal,tic continuous o n e  and s tisf ing 
, I  - I - -  �9 r - I - -  

the boundary condition (6.1). This is a particular of a Dirichlet problem for a 
circle. 

- If bl(x) has a zero in B (]/ ;f i l t ,  say x o, we have still a Dirichlet problem for 
the function (x-  Xo) F(x, 0). \ ]/ 21 ! 
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bl(x) has no root in B #(]/~Zt; F(x, C)is determined from Provided that 
7 ~  \ v , % !  

(6.1), in B []/#l~ up to a constant, by Schwarz's formula (Muskhelishvili [6], 
Sect. 41) ~[/ 2~] '  

( V •  ) ~ elP+z i ) u ( p ) ~ d p + D ,  [z l<l  F z, 0 = ~  _ _ 

where D is a real constant and 

- 1 1 " 

x_l  /~l ip W i t h  - , 

- )" 1 sin p H(p) u(p) = 
Ep* (#* - #*) H2 (P)  + ( # *  - -  # *  + 21  + 2 2 )  H ( p )  - # * ]  (1 - ~) 

where 

(]/~leiP t 
H(p)=h \1/21 ] 

=22 + #2 + +1/;22t 2 + / Z S  + 
222 

and e=2~ +#1 - 21/21 #1 cosp. 
Note that H(p) is real. From (6.3), 

function of p. This implies 

(6.2) 

(6.3) 

we deduce easily that u(p) is an odd 

F ( ] / ~ z , o ) _ l i  zsinpu(p)dp ~-F(0,0) 
-To o l +ze-2zcosp Izr<l (6.4) 

expression of F /1 I/~L#[V~, ~ Z, 0) \ in terms of elliptic functions of the third kind is The 

given in Appendix C. 

1) If Pz>=22' we have seen in Sect'V that b1(x) has n~ zer~ in ,/Z-, , #(~)" 

case, a2(y)has no zeros in B #,]/~ZJ and In that 
\V ,t2! 

( ~ ) 1 i z sin0v(0)d0 F 0, z = -  o l+z2--2zcosO ~-F(0,0) [z[<l  (6.5) 

- 22 sin 0 K(O) 
v(o)= Epl (~ - ~ )  K~(O)+(~ 1 -~* +; .  +29 K(0)- ~?] , , , ( 6 . 6 )  
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where 

K ( O ) = k ( - ~ d  ~ 

221 

and 3 = 2 2 + # z - 2 ~ C o s 0 .  
Note that K(O) is real. 

2) If #2<22, b~(x) may have a zero on Ix2, 1] which is equivalent to 

"aZ(y) may have a zero on [22 [/ 22 ] 

But Eq. (4.4) and Sect. III entail that the system is ergodic iff 

aZ(y)=~O in C(1). (6.7) 

Indeed, (6.5) determines F(0, y) in B # ( ] /~ )  and the same formula (6.5) holds for 

/~2<y< 1 iff (6.7) is satisfied. 
\V ,~2/ 

The Ergodicity Condition (6.7) 

From Sect.V we deduce immediately thar (6.7) is satisfied iff q+#~q~(1)<0, 
which yields: 

q + u l x ~ _ ~  <0 

l - p * - p *  >0 , 

or, using #1 =~#~ and #2--(1-~)/~*, 

where p* de__f 21 ae_f 22 /~, and p~ #,  (6.8) 

F(0,0) is easily obtained from (1.2): it is sufficient to couple x and y by the 

relation #* ( 1 - 1 )  =#* ( 1 - ~ )  and to write F(1, 1)= 1. 

It follows F(0, 0) = 1 * * - P l  - P 2  and (6.8) yields F(0,0)>0. 
Using Little's formula, the mean waiting times W 1 and W 2 in queue 1 and 

queue 2 can be readily obtained from (6.4), (6.5) and (1.2). 

aef 1 d 
W 1 - 21 dxF(X'Y)l x=y=l' 

W~ ~ej- ----1 d F(x,y)lx=y=l" 
22 dy 
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It is also possible to verify that Kleinrock's conservation law (Kleinrock [,91) 
is satisfied, that is: 

1 [ 2 1  2 2 \ P~W*+P~W~=l-p*-p* ~ ~ 

This tedious computat ion will not be done there. 

VII. The Case p q 4=/1~/12: Determination of F(x, 0) and F(0, y) 
by Solving an Homogeneous Riemann-Hilbert Problem for a Circle 

In that section we use intensively the procedure given in Muskhelishvili [,6], 
Chapter 5, Sects. 39~40. 

Theorem 7.1. Our problem is a particular case of a famous general problem due to 
Riemann and first studied by Hilbert. 

This problem is as follows: 

Let S + be a finite or infinite region, bounded by a single simple contour L. It  is 
required: to find a function f2(z)=u +iv,  holomorphic in S + and continuous in S + 
+ L, satisfying the boundary condition 

~e EU(z)' (2(z)] = V(z) on L, (7.1) 

where U(z), V(z) are continuous functions given on L. Then homogeneous problem 
is obtained by putting 

V(z ) -O in (7.1). 

Demonstration. 

Lemma 7.1. 

[z - k ( ~ ) l "  [,z - k(fl~)y ~ d(~) < 1 ~  G(z)= [z_71]i3 , Izl V ; .  (7.2) 

where i2, j = 1, 2, 3 takes the values 0 or 1 and 

i) 7, is the eventual zero of b'(x) in [1 , [ ' / /~ ' l ;  

ii) a2,f12 are the eventual zeros of a2(y) in [-0,yl] ~['Y2, 13; 

iii) d(z)is analytic in B []/~h ~ 
" \ [ /  ,)~1 ] " 

Proof of Lemma 7.1. Proof of i). Applying the notations of Sect. V, the second 
Eq. of (4.1) becomes 

H(h (x)) a 1 (x) + b l(x) G(x) = 0, (7.3) 

where G(x)is meromorphic  for xG [ l , ] / ~ Z ] .  
L V XlJ 



342 G. Fayolle and R. Iasnogorodski 

SectionV shows that, in C #(]/~)-C(1); bl(x) has at most one zero (#1)  
denoted here by ]21- \ v a i l  

Moreover it can be seen that al(x) and bl(x) have no common zero (4= 1). 
Hence, ]21 is a pole of G(x) if H(h(]20)4=O. But, h(]20e[y 2, 1]. It suffices to show 
that H(y)4= 0 for Y elY2, 1], which is a consequence of equation (4.2) as follows: 

* if #1 #z >P q, then H(0)> 0: H(y), y e [0, 1] has a power series expansion with 
real positive coefficients and this, in turn, implies H(y)>0 for ye[0,  1]. 

. i f # l # z < p q  , then p < 0  and q < 0 :  in that case bl(x)4=0, xe[1 , /~] /~]  and ]21 
does not exist. L [ /~1/ 

The proof of i) is terminated. 

Proof of ii). We use again system (4.1) to derive 

H (y) a 2 (y) + G(k (y) ) b2 (y) = 0 (7.4) 

H(y) must be analytic in B(1): thus the zeros of a2(y) in C(1) are zeros of G(k(y)). 
Observing that a2(y) has no negative roots (see Sect.V), point ii) follows 

readily. 
Finally, using i) and ii), formula (7.2) holds and the proof of Lemma 7.1 is 

concluded. Now, we are in a position to demonstrate Theorem 7.1 as in Sect. VI, 
JmH(y )=0  for Y~[Yl,Y2], since H(y) is analytic in B(1) and its power series 
expansion has positive coefficients. 

Hence, upon setting 

~.j/ , b l ( z )  [z-k(~ (7 .5)  
tz~ = a ~  (z  - ]21) '5 

we obtain u - -  

NeiU(z)d(z)=O for ]z] = V ~ .  (7.6) 

The boundary condition (7.6) is a particular case of (7.1), putting V(z)-O. 
This terminates the proof of Theorem 7.1. 
From [6] formula (40-10) - Sect. 40, G(z) is given by: 

G(z) =D e r(=) for [z[ < ] f f ~  (7.7) 

where D is a constant, non zero, and: 

1 log [t-z J(t)] dt (7.8) 
F(z)=2i  ~ S t - z  

where c ~(]/~T~ ~) 

i U(t) 
J(t) = - -  

i U(t) 



Two Coupled Processors: The Reduction to a Riemann-Hilbert Problem 343 

and 

Iv(t) 1 

o r  

Z = l { - a r g  U(t)] c (~/~], (7.9) 
W2U 

denoting by arg(z) the function "argument of z". 

L e m m a  7.2. 
1 b 1 (x) 

Z = 2 [Np. sgn(#2 - 22) - N~] + ~- arg a2 ( x ) ~  (7.10) 

[denoting by sgn(x) the function "sign of x" with sgn(0)=0] 

where [ 1,1//#2 ] 
�9 Np is the number of zeros of a2(y) on [ 1/ -22j, 

�9 N. is the number of zeros ofbl(x) on [O, xa]w[x2,1], 

�9 arg [ a l ( x ) j ~  is the variation of the argument of a~x) along the "contour" 

[x~, x2], starti~g,-from x~ above [x~ x2], going to x z and coming back to x I below 
[x~x2]. 
Demonstration. Using formulas (7.5), (7.9) and the principle of the argument 
(Fuchs [3]), we obtain: 

1 1 
Z = -~-  arg [U3c (~/~/~_~) = 2 ( l -  N~) +~- arg [ U]x~_~ 

, ] ,  
, 7 - - ,  

ai e  ioo o .  

where , /7.-. 
i) N~=number of zeros of b ' (x ) in  C #(]/~L) _ number of zeros of b ' (x ) in  

1, /#~ , [ 1/ :1 
N~--number of zeros of hi(x) in [0, 1]. 

ii) l = l 1 - 12, with 

/1 =number  of zeros of al(x)in C ( 1 / # ~ ,  

12 =number  of zeros of a2(y) in [0, 1] [l 2 is due to ~2 and fi2 in formula (7.5)]. 

Using the mapping h(x), [ - 1 / / ~ - ~ , ~ ] # 1  #1 h~)Z+ [L_ 1/ )~ '  1/ ~ ]  1//#~-~ ]/~/~2] [there is a 

bijection between the two intervals], we can express l 1 as the number of zeros of 

a20 ,) in - 7-, - -  . From Sect.V we deduce 
A 2 
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Np if #2 > 22 

l = - Np if #2 < "~2 
0 if #2 =/~2 . 

In 7.5, k(~2)  , k(fl2) and 71 are real numbers outside [Xx, x2]: Hence 

arg [_[z - k(cq)] il [z - k(fl2)] 12] = 0 
[ Z - - ~ I ]  Z3 JX~X~ 

1 1 [bl(x)] 
and we h a v e -  arg [ U ] ~  = 7  arg 

rc -" [ a l (x ) . l~"  
The proof of Lemma 7.2 is concluded 

L e m m a  7.3. 

1 bl(x) [ bl(xl) bl(x2)] 
- a r g  1 =Sgn(#a#2-Pq) . (7.11) rc a ( x ) ~  [sgn d-i~l)  - sgn al(x2) l 

Demonstration. h ( X l ) = -  #l/~- 2 and h ( x 2 ) = ~  2 are real. When x reaches 

]x l ,x2[  from above, h(x) has a negative imaginary part [referring to the 

mapping x--.h(x), [ x l , x 2 ] ~  C #(1/~] and the upper part of [xl,x2] corre- 
\v ,~2/ u - -  

sponds to the inferior half circle of radius ~1/~ g~2. Then it is easy to derive 

b1(x) 
sgnJmal(x  ) = s g n [ # l # 2 - P q ]  for xe[xl,x2],  which yields (7.11). The Lem- 

ma 7.3 is proved. 

1_ [arg b~(x) 1 = [ 
k al(x)]~5~_~ sgn(pq--#l#2 ) sgn 

r markin t ata ,.,=a2(- 

bl(xz) ] + s g n b l ( x 0 ]  

(7.12) 

Lemma7.4. 1) For Z N--2, the homogeneous Riemann-Hilbert problem has no 
solutions different from zero. 

2) For x>O, the homogeneous Riemann-Hilbert problem has exactly x+ l 
linearly independent solutions: the general solution is given by 

O(z) = d(z)(Co z~ + e 1 z ~- 1... + c~) 

where Co,q, . . . ,c  z are constants subject to cz=Cz_ k, k=ct, 1, ...,Z but otherwise 
arbitrary 

Demonstration. See Muskhelishvili [6], Sect. 40, p. 100. 
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Theorem 7.2. 
dition (7.6) has, at most, one solution. In other words, z<=O. 

2) The system is ergodic iff Z = O, which is equivalent to 

db l (x) //2 21 --//1 "~2 
< 0 ~ / / ~ >  

dx /~= 1 /22 - -22 
if //2 > 22, dae(y) 

< 0  <=> / /~> / /1  22-/'/2")~1 
dy >=1 #a-21 

daZ(Y) #1 2 2 -  #2 21 
<0  <=>//~> if //2<22. 

dy ly=l / /1-21 

1) The homogeneous Hilbert problem satisfying the boundary con- 

(7.13) 

(7.14) 

Proof We build a table for all possible values of Z using formulas (7.10), (7.12) 
and Sect. V. It is convenient to introduce the variables Tp, Tq, Fe, Fq where 

Yp=[P+//2 7J(1) <0]  Fp-  [-p +//2 7*(1) >0] ,  

Tq-= [q+//1 (b(1) <0]  Fq==-Eq+//a ~(1)>0] ,  

qS(y) and ~V(x) have been defined in Sect. V and, in the tables "if ~ "  means "if 
is true". 

i) //2 < 22 

-2  ifFq 
Z= o ifr~ 

X=0 

f - 2 if (Fp or Fq) 

z = [  o if 5.r~ 

f o  if 5 
Z = [ - 2  ifFp 

,~= - -2  

Z =  m2  

ii) ~2--> 22 

0 

0 1 

- 2  ifFq 
Z = 0 if Tq 

1 Tq and Z = - 2  

These tables show that 

'(7.13) when //2 --~__.~2 
Z=0  iff [(7.14) when / /2<.~2 ' Then i 2 = 0  in (7.2). 
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Remarks. a) To obtain Table i), the reader will notice that certain inequalities 
cannot hold simultaneously, as for example 

a 2 # ( ~ )  > 0 or { p+#2 7t(1) >0  

b~(x2) <0  q + # l  ~b(1) > 0 

which would yield ]27 ]2* < 0. 

b) In Table ii), the values of Z do not rely on the values of N~. Moreover, the 
ergodicity condition (7.14) can be derived from (7.4) and is the same as 
condition (6.7) [Sect. VII. 

This concludes the proof of Theorem 7.2. 

Theorem7.3. Assuming (7.13) or (7.14), F(z, O) is given by 

F(z, O) _ q ]A7 ~ #1 ]15 G(Z) 1~1 
F(O,O) ]21122--Pq l-tl]22-pqG(O) ' [ z [ < . l .  (7.15) 

Where 

* F(0, 0) = []22 ~1 -- [21 ~2 "~- ]25 (]21 -- "~1)] . G(0) 
]21 ]2* G(1)' 

, G(z) is derived from (7.2) and (7.7) using 

1 A(t)dt and A(t)=arg [ -~7( t ) ]  
r(z)=G ~ t-z t-U~3" 

Proof (7.15) is implied readily by (7.8) and Theorem 7.2. F(z) can be expressed by 
means of elliptic functions of the third kind. 

The reader may verify that the "elliptic part" of the integral (7.15) vanishes 
iff p + q = 0. Then 

f(0,0) 
F(x, 0) = 1 -c~x 

F(0, 0) (7.16) 
F ( x , y ) - ( l _ c ~ x ) ( l _ ~ y ) ,  ~,//being obtained from (7.13) or (7.14). 

As can be seen, this is a product form solution. In fact, a necessary and 
sufficient condition for a product form solution in Eq. (1.2) is 

p + q = 0  i.e., [ ]2~+]22=]2~+]2" (7.17) 

Hence, ]27>]21 leads to ]2*<]22. The physical explanation is not obvious. We 
would like to call this a "power steal": one class of customers (or one processor) 
steals power from the other one. F(z) in (7.15) will not be explicitly computed. 
The complexity is equivalent to that of the previous Sect.VI. 
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VII1. Application to General Two Dimensional Random Walks [t.d.r.w.] 

The method used in Sect. VI and VII can be applied in a more general context. 
Let us assume that a t.d.r.w, has a stationary distribution with a generating 
function F(x, y) = ~Pij xi YJ satisfying 

z , J  

IPijI < oo (space L~) and the following functional equation 

R(x, v). F(x, y) = A(x, y). F(x, O) + B(x, y). F(O, y) + C(x, y) 

where A(x,y), B(x,y) and C(x,y) are known and continuous. Then the de- 
termination of F(x,y) reduces to the solution of a Riemann-Hilbert problem 
whenever the following four conditions are met (the notation is the same as 
before): 

1) The continuous function k(y) [resp. h(x)] is such that 

Jk(y)] < 1 [resp. Ih(x)[ < 1] if [yl = 1 [resp. Ixl = 1 

2) k(y) [resp. h(x)] has two branch points inside C(1), Yl and Y2 [resp. x 1 
and x2] which are the ends of a "cut"  [Yl,Y2] (resp. [x 1 x2] ). 

3) The cut [YlY2] (resp.[xl x2] ) is mapped onto a simple closed curve 
C k [resp. Ch] under the mapping y--, k(y) [resp. x ~ h(x)]. 

4) Moreover, the regions inside C(1) and Ck(res p. Ch) must have a non- 
empty intersection D k (resp. Dh) such that 

Ik(y)l < 1 [resp. [h(x)l < 1] for yeD k [resp. X@Oh]. 

Up to a conformal transformation, condition3) says that it is possible to 
reduce the general case to that of a circular region. Specifically, the four 
preceding conditions hold in the problem of t.d.r.w, studied by Malyshev [5]. It 
is worthwhile to note the possibility of solving the Hilbert problem for arcs by 
using the a rc [x  3x 4] and the analytic continuation of F(x,O) to the whole 
complex plane (see Sect. III). 

When the genus of R(x,y) is greater than 1, some of the conditions 1 to 4 
may be not satisfied. Then, the method is still valid, (an example will be given in 
a future paper) but the computations are more complex. 

Appendix A 

The equation 

f(x) de f ")c1(#2 +P) x2 - x [ # *  #z +(2a +22 +#*)P] +P #* = 0  

has two real roots. 
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Proof Let A (p) be the discriminant of f(x). Then, 

A(p) = [(21 +22 +#*)p  +#z  PT] 2 - 4  21 #7 P(#2 +P), 

so that 

A(p) = [(21 -~-22 "-}-#7) 2 - -4  21 #*7 + 2 p  #* #2(# 7 +22 -21)  +(#7 #2) 2" 

We consider now that A(p) is a polynomial of second degre w.r.t, the variable 
H. Then, 6(p) % f -  16(# 7 #2) 2 21 22 is the discriminant of A(p). Obviously cS(p) is 
negative. It follows, since p is a real variable, that A(p) is always positive. The 
proof is concluded. 

Appendix B 

When 21 ~-~#1 and 22~#2 , 

bl(x2)<0 entails bl(xO<O. 

The notation is the same as in Sect. V. 

Proof 
1 1 bl(x2)= ( - 7 2 )  [p--}-#2 ~t(x2)], 

bl(xl)= ( 1 - 1 )  [p+#2 ~(xl)]. 

It suffices to show that 7*(x1)> 7J(x2). 
Formula (2.4), Sect. II leads us to introduce the function 

21 --#1 "~-$2 --r -t-#i -1- $2) 2 --4 21 #1 
f(s)-- 2S 

Upon setting s 1 = l ~ z  + ~ 2  and s 2 = 1~22-1~22, we get 

1 
~g(x2) = ~ 2 2  f(s2), 

1 
It~(X 1) = ~ 2 2  f(sl),  

df 1 g(s) 
ds 2 s 2 q(s) 

where g(s) = s 2 [q(s) - s 2] + (#1 - 21) q(s) + (#1 - 202 and 

q(s) =If(2  1 +#1 +s2) 2 - 4 2 1  #1. 

Obviously g(s) > 0. 
Hence, f(s) is an increasing function of s for s > 0  and f(sO>f(s2). This 

terminates the proof. 
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Appendix C 

Expression of the Integral in Formula (6.3) 

Upon setting 

z2+l  
t= 

2z 
, U = COS p ,  2 = 2 1 A V ' ~ 2  - I -#1 @ # 2 ,  

z+2 ~g7~72~;~2 fl_S-21/ e2z 

it follows 

( 1 - ~ ) ~  
I(z)  = 

2~ F(O, O) 
�9 . o ) ] =  i ,ix 

kV ~ _~ ( t - u ~ d - + ~ u ~ c R ]  
(A.1) 

where 

X 
a=~- [i { #* 

- 4  # . ] - 2 g * ,  

L~ i -~] '  
1 [#* § ~ ] 

C=2L~ ] ~ / '  

R = 2 1 ~  121 �9 ]/(c~-u)(f l-u) .  

Formula (A.1) yields 

I(z) = 11 (z) + I 2 (z) (A.2) 

I i(z ) [-resp. I2(z)] is the "rational" [resp. "elliptic"] part of I(z). We proceed now 
to derive la(z ) and I2(z ). 

1) 
where 

- i [a + b cos p] sin 2 p dp 
I 1 (Z) - -  0 ( t  - -  COS p)  (~ 1 - -  COS p )  (~ 2 - -  COS p) (b 2 _ 4 21 #1 c2) 

1+62 
281 , [cq[>l, 16i1<1, i=1,2 

6 i being real numbers. [This results from Sect. V.] 
But, 

a + b c o s p  A B 1 
( t - -cosp)(~i--cosp)(~2--cosp)  t--cosp ~l--cosp 

9 2 

~2 - -  COS p 
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where 
a+bt 

A= 
( t - -  0~1) ( t - -  0t2)' 

a+be 1 
/3, =(t_~0(~2_cq), 

a+bc~ e 
B, =(t-  ~2) (~1 -~2)" 

Using Gradshteyn [7] p. 366 formula 3.613-3, we get 

7~ 
Ii(z)=( b2 --421 #a C2) [zA q-a 1 B 1 +15 2 B2] 

and, after a somewhat lengthy computation, 

2a(a,+a2)]. z 26162= [bz-~ 
Ix(Zl=bzZ4ff~-p-~ce 1 - 5 , 5  a J (1--Zal)(1--Z~52) 

2c1/~1 #1 } (1-u2)(fl-u)(c~-u) du 
2) I*(Z)=b2-421 #1 c2 -1 (t-u)(u-eO(u-a2)]/(1 +u)(1-u)(fl-u)(c~-u)" 

Repeatedly applying Gradshteyn [7], formulas 3.147-3, 3.148-3, and 3.151-3, we 
obtain 

21 - i ) 
/2(z)=K t(t-~,7~77-g~) 17[ g , (~+l)( t_l) ,  r + 

where 

4 c]/~1 # l ( f l -  1) 
�9 K =  

(b 2 - 4 21 #1 c2) 1/( c~ - 1) (fl + 1)' 

L M 
+ + N ] ,  

* H(p, n, k) is the elliptic integral of the third kind: 

sinp dx 
H(p,n,k)= 

o (1 +nx2)l/(1 -xZ)(1 -k2x  2) 

/ 2(c~- fl) 
* r =  ( e - 1 ) ( f l + l ) '  

, L _  ( l + ~ * ) ( ~ - c q )  17 (  = 2 (~1 - f l )  r) 
c q - ~  2 2-' (fl+ 1 ) (~ , -  1)' ' 

* M (1+~2) (~-%) /7 /7 r  2(~ ] 
- % - %  \2-' ( f l+ 1 ) ( % -  1) 'r I ' 

2 r �9 N= ) 
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