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1. Introduction, Definitions, and Summary 

I.I. Definitions and Notations 

L e t  { ~ j } j > l  be a sequence of independent random variables such that ej 
assumes values 1,2, . . . , j  with equal probabilities. {Wj}j~ 1 is a sequence of 
random variables with values in ]0, 1[. 

We define recursively an increasing sequence, {/.},>=1, of finite random 
subsets of [0, 1]: F 1 ={0, 1} and, if .Xl, x 2 . . . . .  Xn+ 1 are the elements of F, enu- 
merated in increasing order, we get F,+~ by adding up to F, the point 

x~ +(x~.+l-x~.) W.. 

The complement o f / .  in [0,1] consists in n intervals, {ln, j}l<=j<_n, numbered 
from left to right. 

Let #, denote the measure on [0, 1], the density of which with respect to the 
Lebesgue measure is the random function 

n -1 ~ [I,,j[ 111.,.J. 
l~j<=n 

(If I is a Borel set in [0, 1], III denotes its Lebesgue measure and 11 its indicator 
function.) If x belongs to [0,1[, l , (x)  is the interval among {I,,~}j>=a that 
contains x. (To make this definition precise, we have to replace each I,, j by the 
corresponding interval semi-closed to the left.) 

1.2. Results 

Proposition 1. Almost surely t 1. converges to a probability I~ in the weak-star sense. 
Furthermore, almost surely # is continuous and its support is the adherence in 
VO, 1] of the set of nonisolated points of U F~. 

n> i 

0044-3719/79/0047/0289/$01.80 



290 J. Peyri~re 

Proposition 2. Almost surely we have log n #(In(x))/log log n =0(1)for  # - almost 
every x. 

Proposition 3. I f  Wj's are mutually independent, independent of e's and equidis- 
tributed with a random variable W,, then, almost surely for g-almost every x, 

lim [log [I,(x)ll/log n =E [log W(1 - W)]. 
n ~ o o  

Theorem. Hypotheses are the same as in Proposition 3. Almost surely there exists 
a Borel set carrying 12, the Hausdorff dimension of which is D - - -  1/E [log W(1 
- W)]. On the other hand, every Borel set of dimension <D is almost surely of 12 - 
measure O. 

1.3. Historical Background 

The construction discussed in this paper is due to Voss [ l l ] ,  who introduced it 
as a variant of the stochastic model of turbulent intermittency due to Mandel- 
brot [8, 9]. The original motivation for this variant was that it is much easier to 
study on the computer. Simulations had suggested that the distribution of mass 
in the present model tends very rapidly to a limit involving singular measures. 
Mandelbrot brought the problem to my attention, together with a wealth of 
properties and conjectures suggested by simulation, intuition, or physics, and we 
had a number of stimulating discussions about it. 

Various other random sets and measures considered elsewhere in the litera- 
ture bear various degrees of resemblance to the present one. One example is the 
above-mentioned model by Mandelbrot [8, 9] which has been studied further by 
Kahane and Peyri~re [4]. A construction in Dubins and Freedman [2] and 
Kinney and Pitcher [6] also converges to almost surely singular measures. On 
the other hand, the construction in Kakutani [5], while bearing a superficial 
resemblance to the present one, leads to a very different result, namely equidis- 
tributed points on [0, 1] ; see also Adler and Flatto [1], Lootgieter [7] and Van 
Zwet [10]. 

1.4. This paper is organized as follows. Proposition 1 is proved in Section 2, 
propositions 2 and 3 in Section 3, and the Theorem in Section 4. Section 5 
contains some comments. 

I wish to thank the referee for his careful criticism of the original paper and suggestions for its 
improvement. 

2. Convergence of the Sequence {/zn} n > 1 

2.1. Lemma. Let a and b be two integers such that O<<_b<-a, and let F be a subset 
of {1,2 . . . .  ,a} with cardinality b. Then, almost surely, as n tends to infinity, 

12n ( U I~, j), tends to a limit Z(a" r). Furthermore, Z(a" F) is independent of {@ 1 =<j<a 
jEF 
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and its law has - F(a) t b- ~ ( 1 -  t) ~- b-1 as density with respect to Lebesgue's 
r(b)  r ( a -  b) 

measure on [0, 1]. 

This lemma follows easily from the results on Polya urn scheme [3 3. 

2.2. Consequence: Almost surely lim sup lim #m(In, j )=O. 
n~oo l < j < n  m ~ m  

2.3. Proof of  Proposition 1. Lemma 2.1 allows us almost surely to define an 

increasing function, g, on ~) F,: g(x)= lira /~m([0, X[). By 2.2, almost surely, 

inf(g(x); x > 0)= 0, sup (g(x);x  < 1)= 1 and, for every y in ] 0, 1[, sup (g(x); x < y) 
=inf(g(x); x >y). So g has a continuous non-decreasing extension to [0, 13 whose 
derivative is easily shown to be the weak-star limit of the sequence {p,},e 1. 

If some assumptions are made on the sequence {Wj}j~I, precisions on the 
support of # are obtained. The following lemma gives conditions insuring that 
the support is [0, 1]. 

2.4. Lemma. Hypotheses are the same as in Proposition 3. Set 

a = sup {[1 - E ( W '  + (1 - W)t)3/t}. 
t > l  

Then almost surely sup n ~ sup [I,, j] is finite. 
n>_ l l <=j<=n 

2.5. Proof Let t be a real number such that E [ W t + ( 1 -  Wy 3 is finite. Set ~o(t) 
= I - E [ W t + ( 1 - W ) t 3  . First it will be shown that n ~~ ~ IIn, j.] ~ has an a.s. 
finite limit as n tends to infinity. We have ~ _-<i_-<, 

SO 

]I.+a.j] '= ~ l I . , y - r I  . . . .  I~+lI.+~,J+JI.+,,~n+ll ~ 
l < j < n + i  l < j < n  

E( ~ II,+l,j.lt lel . . . . .  e ,_ l ,  W 1 . . . . .  W._ 0 
l__<j=<n+l 

= Y~ I I ~  ....  ( ( 1 - w ' . - ( 1 - w . y ) t ~  .. . .  , ~ . _ 1 , w l  . . . .  , 
l<~ j<n  

= [  Z ]I.,jIt](1--~~ 
I < j < n  

w._13 

Therefore ( ~ [/,,sl ~) 1~ (1-~~ -1 is a positive martingale. On the other 
hand, z <j<=n 1 <=j<n 

n'~ lq  (1-~o(t ) / j )= l-[ (l+(1/J))~~162176 
1 < j < n  1 < j < n  

tends to a finite non-zero limit. This proves the above assertion. 
If t>0 ,  we get sup(n (~~176 sup II,,j[)<oo a.s. The lemma then follows from 

n k l  l<=j<n 

the fact that cp(t)/t actually assumes the value o: on 31, +oo[  (E(W'+(1 - Wy) is 
a decreasing function of t). 

Similarly, almost surely, inf (n ~' inf II,,jl)>0, where o-'= inf(cp(t)/t). 
n>=l l<j<=n t < 0  
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3. Study of the Limit Measure 

3.1. Let (f2, d ,  P) be the probability space on which are defined variables W~ and 
ej ( j>  1). We endow f2 x [0, 1] with the a-field ~ product of d by the Borel sets 
of [0, 1] and we define on it a probability Q in the following way. 

Q(A) =Ee( ~ 1 A dls ). 

So Q-almost surely exactly means P-almost surely #-almost everywhere. 

3.2. Proof of Proposition 2. Set M,(x)=#(1,(x)), The sequence, {M,},=> 1, is 
clearly non-increasing. Using Lemma 2.1, one gets 

1 

Q(2"M2.>2Logn)=2"(2"-l) ~ t(1 - t )  2" 2dt 
21 - n  Logn 

= (1 + (2" - 1) 21-" Log n)(1 - 21-" Log n)  2 " -  1 = 0 (n- 2 Log n). 

Borel-Cantelli lemma and the decrease of M, show that Q-a.s., 
lim sup Log rim,/Log Log Log n < 1. 

n~oo 

Similarly, if c~ > 1/2, one has 
2 - n .  

Q(2"Mzo<n-~)=2"(2"-l) ~ t(1-t)z"-2dt 
0 

= 1 - ( 1  +(2" - 1) 2-"n-~)(1 - 2 - " n  -=) 2-- a = O(n- 2~). 

Borel-Cantelli lemma and the 
lim infLog nMjLog Log n > - ~. 

n~oo 

3.3. Proof of Proposition 3. Set L, = 

decrease of M, show that Q-a.s. 

II,,jl 1i , , .  
l < j < .  

3.3.1. Lemma. The random variables {L,+JL,},>=I (defined on (~2x [0, 1],~,~,Q) 
are idependent. Moreover, Q (L, + 1/L, <= t) = [P(W < t) + P(1 - W < t)]/(n + 1) when 
0 < t < l .  

Proof. Let ~,  be the smallest sub a-field of ~ with respect to which the 
following X's are measurable: 

l < j < n  

where each Xj is measurable with respect to a(el,  . . . ,e,  1, W1 . . . . .  147_ 1). 
L, is measurable with respect to ft,. 
Let us compute EO(1A(L,+I/L,)IJ~,) when A is a Borel subset of [0, 1[. So if 

X is a bounded ~',-measurable function, we have 

E o [X1A(L,+ ,/L,)] = Ep(X~#(I,+ A,~) 1A(W,) + X~p(I,,+ 1 , e n +  A) 1A(1 - -  Wn)). 

Using Lemma 2.1, we get 

E a [X1A(L . + ALL,)] = (1/(n + 1)) E [1A(W) + 1A(1 -- W)] Ep(X,,) 

-- (1/(n + 1)) E [1A(W ) + 1a(1 -- W)] EQ(X). 
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Therefore,  

EQ [ I~(L,  + ~/L,)I ~ ]  = E [1 A (W) + 1A (1 - W)]/(n + 1) 

and 

E o [ l a ( L , +  1/L,)IL,,..., L,I =E [1A(W ) + 1A(1 -- W)]/(n + 1). 

This proves the lemma. 

3.3.2. Lemma.  ~ Q(L,,+~/L,,<I/n)<21og2-E[logW(1-W)]. 
n=>l 

Proof If 0 < t < l ,  we have, by 3.3.1, 

Q (L.. l/L. < t) = (1/(,1 + 1)) E [1[o ' eL(W) + 1[o ' t[(1 - W)J, 

E Q (L~ + ~/L. < 1/n) 

= E l  ~ (1/(n + 1)) 1[o ' (I/,)~(W) + ~ (1/(n + 1)) lto ' ll/,)[(1 - W)] 
n > l  n ~ l  

< E [log ((l /W) + 1) + log ((1/(1 - W)) + 1)] 

< 2 log 2 + E [log ( l /W(1 - W))]. 

3.3.3. Lemma.  

EQ [(log sup (L, + ILL,, 1/n))2J/[log (n + 1)] 2 < 2E [log (l /W(1 - W))]. 
n=>l 

Proof If 0 < t < 1, by L e m m a  3.3.1, we have 

E o [log 2 sup (L, + l/L,, l/n)] 

= (1/(n + 1)) E [log 2 sup (W,, l /n)] + (1/(n + 1)) E [log z sup (1 - W, l/n)]. 

But 

(1/(n + 1) log 2 (n + 1)) log 2 sup (W,, l/n) 
n=>l 

= ~ (log 2 W / ( n + l ) l o g  2 ( n + l ) )  
n>(1/W) 

+ ~ (log2n/(n+l)log2(n+l))<=210g(1/W), 
l <_n<_(1/W) 

the second term is handled in the same way. 

3.3.4. End of the Proof of Proposition 3. Suppose first E( log  W(1 - W)) > - m. By 
Lemmas  3.3.1 and 3.3.3 and the law of large numbers,  

(1/log (n + 1)) ~ {log sup (Ls+ t/L j, l / j ) -  EQ [log sup (Ls+ 1/Ls, l/j)]} 
l<=j~n 

tends to zero Q-a.s. By lemma 3.3.2, Q-a.s. beyond a certain rank, L,+I/L,> 1/n, 
and by L e m m a  3.3.1, 

E e [log sup (L.+ l/L,,, l/n)] 

= (1/(n + 1)) E [log sup (W,, l/n) + log sup (1 - W, l/n)]. 
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Proposition 3 follows easily from these facts. 
Suppose now E(log W ( 1 -  W ) ) = -  oc. By the law 

Lemma 3.3.1, we have, Q-a.s., 

lim [ ~ ~ l I o~,_k](logLs+l-logLs)]/l~ 
n ~ c ~  l < k < _ l  l < j < = n  

= ~ ( P ( W < e - k ) + p ( 1 - W < e - k ) )  �9 
1 < k  <~l 

But 

[P(W < e-k) + p(1--  W <=e-k)l 
l <_k~ l  

= E {inf(/, [log I/W]) + inf(l, [log (1/(1 - W)])} 

tends to + 0o when l tends to + ~ .  On the other hand, 

- ~ ( logLs+~-logLs)> ~ ~ l~_~,_kj(logLs+l-logLs),  
1 <=j<n 1 < k < l  1 <-_j<=n 

of large numbers and 

so log Lfflog n tends to - o %  Q-a.s. 

4. Proof of Theorem 

4.1. Lemma. Set u,,~=card {I,,,k; l <=m<n, l <_k<_m, I , , jClm. k, In, s=~ Im, k} and 
u,(x)=u,,,j if x~l , ,S.  Then almost surely for i~-almost every x, we have lira u~(x)/ 

n ~  oo 

log n = 2. 

Proof. Set U~= ~ u~,jlt,,s and let X be a ~-measurable  bounded function. 

We have 1 _<s__<~ 

E• [X (U. + 1 - U.)] = Ep [X~.#(I .... )3 - (2/(n + 1)) Er(X J = (2/(n + 1)) EQ (X) 

and 

Eo. [(U.+ I - U.) 2] --- Ep(#(I., ~.)) = 2/(n + 1). 

Therefore ~ (1/log (n + 1)) (U. + 1 - U. - (2/(n + 1))) converges Q-almost surely and 

the lemma is proved. 

4.2. We have, almost surely for #-almost every x, 

lira log iz(I.(x)l/log II.(x)l = - 1/E (log W(1 - W)) 
n ~ 3  

and 

lim log [I.(x)[/u.(x) =E(log W(1 - W))/2. 
n ~ o ( 3  

Then the Theorem derives from the following result, part of which is implicit in 
[6]. (Anticipating notations of the following paragraph, the theorem is obtained 
by setting fr = {l,.,s; Um, S = n} and applying Lemma 4.3.2.) 
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4.3. A way to estimate Hausdotff dimensions. 

4.3.1. The notations are particular to this section. Let us consider a sequence 
{g,},~ o of partitions of [0, 1[ in semi-open intervals such that every element I of 

g,,+ 1 is strictly contained in one, [, of g,,. We set g = [) N,, N '=  U g , ,  
n > 0  n > l  

g(I)=n if I s g , ,  

b(I) = card {J ~ ~ ' ;  J = [}, 

J~(x)=I if x~I~(~,. 

4.3.2. Lemma. Let 12 be a positive measure on [0, 11. 

a) The set E of points x~[0, 1] such that lira ]J,(x)l =0  and 
1 1 4  00  

lira sup log #(J,(x))/log IJn(x)l < 
n ~ o o  

is such that dim E < c~. 

b) I f  a set F is such that/~(F)>0 and for every x~F we have 
(i) lim inflog #(J,(x))/log ]J,(x)l > c~ 

( i i )  - 7 < lim inf(1/n) log IJ,(x)] < lira sup (1/n) log ]J,(x)t < - fl < O, 

then we have d imF>(af i+f i -7) /V.  I f  furthermore, we have limsup(1/n) 
log b(J,(x)) < 5, then dim F >  (aft - 3)/7. 

4.3.3. Proof of a). Let us observe first that Era U ( I ~ ;  p ( I )=0)  is empty. Let t 
be a positive number. Set 

F~= ~ ~ {I~r  g(I)=n and #(I)>inf( t ,  II]~)}. 
n_>_0 

F t increases as t decreases and U Ft contains E. We shall now show that for 
t > O  

every t, dim F tra E < a. 
Let e be a positive number less than t ~/~. For each x~FtraE such that 

#({x}) < e ~, choose an element I~ of N such that x~I~ and #(I~)< e ~. By definition 
of F t, ]I~l~<p(I~). Now let x 1 .. . .  ,x~ be the elements of FtraE such that 
#({xs} ) > e ~. Choose, for each j, an interval I~s of N such that xs~Ix~, [l~s I < e and 

v 

I I ~ y < l .  Then if {Jx}x~A is a sub-family of {I~}x~V~E covering EraF~ and 
j ~ l  

whose elements are mutually disjoint, one has 

suplJ~l<~ and ~, IJx]~</~([0,1D+I. 
2 ~ A  2 E A  

This proves the above claim. 

4.3.4. Proof of b). Let us assume first hypotheses (i) and (ii). Let t be a positive 
integer. Set 

Ft= ~ { /ego ;  [I[<t}wQ) { l eg ' ;  II[<t and 

(/~(I)>[I[~ or {[l>e-I~ga) or II[~e-~g(I))}. 
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F t decreases as t decreases, xet@-Ft/v implies that for infinitely many n we have 

/~(Jn (x)) > IJ,(x)] ~ or [J,_ 1 (x)] > e- ~" or [J,(x)[ < e-"~, so F c~ F~ decreases to ~b when 
t decreases to zero. We fix t in order to have /~ (F~F[ )>0 .  

Set # '=p .  lv~vf and c(=(e/3+/~-7)/7.  Let x and y be such that O<x<y, and 
consider the set {I;~}z~a of maximal elements for inclusion of {I~N; lc]x,y[}. 
The set F c~(]x, y [ \  ~ I)) is empty because every element of F is by (ii) contained 

2~A 

in arbitrarily small elements of N, so p'(]x, yD = ~ #'(Ix). We want to show that 
2~A 

there exists C independent of x and y such that/~'(]x, yD < C(y-x) ~" whenever 
O<y-x<t. Observe first that/~'(I~)=0 if I~cFt; this is the case in particular if 
g(Ix)=0. Set no=inf{g(I~); 2~A and g(Ix)>0}. Let n be an integer not less than 
n 0. It results from the definition of I~'s that those Iz's such that g(Iz)=n are 
contained in at most two intervals of ~n_ x. Consider an interval Iz such that 
g(Ia)=n and IaCF~. We have Ilxl>e -~" and I[x[<e -~". The number of such 
intervals is therefore less than 2e (~--~)". Thus we have 

/s  ~ 2e(7-~"e-~"-< Ce -~p~+~-~)"~ 
t l~no 

provided f l + ~ / ~ - 7 > 0  (if this is not the case, we have nothing to prove). But 
e-~~ so #'(Ix, y[-) ~ C(y-x) (~+1~-~1~. 

Now if {J~}~ is a covering of F r162 ~ by intervals (not necessarily in ~q) such 
that IJ~[ < t, we have 

0<~(rc~v?)__< ~ ~'(s~)__< 52 IJ~l ~+~-')/ '  
2~A .~A 

This proves that dim F c~ Ft ~ > (~r - 7)/7. 
The proof of the last assertion is similar. This time we just have to set 

F~=U{leC~0; I I l<t}~{I~N';  II[<t and 

(#(I) > I/I s or Ill > e-'g~) or III _-< e-'g(~) or b(I) >= eagm)}. 

5. Comments 

5.1. In cases where assumption of equidistribution of Wjs is dropped, Lemma 
3.3.1 needs a modification: 

Q(L,+I/Ln<t)=I/(n+I)[P(Wn<t)+P(1-Wn<t)], when 0=<t<l .  

One can restate Proposition 3 as follows. If 

E [(log Wn) 2 +(log (1 - W,))2]/(n+ 1) [ log(n+ 1)] 2 < o% 
n > l  

then Q-almost surely {logLn+ 1 -  ~ ( l / ( j+ l ) )  E[logWj(1-Wj)]}/logn tends 
l<_j<n 

to zero. Then Lemma 4.3.2 allows us to make some assertions about the 
Hausdorff dimension of sets of/~-measure > 0. 
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5.2. Connection with the Construction of Dubins and Freedman. Let W 
= ( W  1, W 2) be now a random variable with value in [0, 1[ • [0, 1[. We consider 
two sequences of r.v.'s {Wj}j_> 1 and {ej}j>l, satisfying hypotheses analogous to 
those of proposition 3. We define as previously an increasing sequence {F,,}n__> 1, of 
finite random subsets of [0, 1] x [0, 1]. Projections of F~ on both coordinates 
axes give rise to two families of intervals, {I1,,i}1 <=j<:n and {I,~ j}i ~j:<n. For almost 
every sequence {@~>:1 the set (~ ~) I ,~•  is the graph of the random 

n>= 1 1 <j<=n 

increasing function considered by Dubins and Freedman [2]. (The probability 
used to perform the construction is the law of W.) 

We define the measures /1~, k =  1,2, the density of which, with respect to 
Lebesgue's measure, is n-  1 ~ k - [In, jI li~.j. Almost surely ~tk, converges to #k. 

1 <=j<=n 

/~2 is the image of ~t 1 by the Dubins-Freedman function./~ is a random measure 
resulting from the construction considered in Section 1, performed with W k 
(k : 1, 2). 
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