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Asymptotic Properties of Stationary Point Processes 
with Generalized Clusters 

D. J. DALEY 

In Memoriam ROLLO DAVIDSON 

1. Introduction 

Lewis (1971) has extended the notion of a generalized branching Poisson 
process or cluster point process (Bartlett, 1963; Lewis, 1964) to a generalized 
branching renewal process and obtained some asymptotic results for these 
processes, suggesting that some of the asymptotic results of Lewis (1969) which 
extend to branching renewal processes should also extend to branching stationary 
point processes. The object of this paper is to establish some analogous asymptotic 
results for a further generalization which encompasses Bartlett-Lewis and Neyman- 
Scott cluster processes and also the process with one ancillary variable in Vere- 
Jones (1970) and the Discussion thereon. 

It is hoped that the generality of the model and the methods used in the proofs 
indicate the pertinent features in the structure of the process that lead to the 
asymptotic properties established. Apart from assumptions concerning finiteness, 
the most important of these features are the ergodicity of the primary point process, 
the independence of different clusters, and their independence of the primary 
process. 

2. Notation and Preliminary Results 

Underlying our observed point process N(.) is a primary point process N* (.) 
of which a typical sample realization consists of the points {@(j=0,  ___ 1 . . . .  ) say. 
Each point tj is the origin of a subsidiary point process nj(.). The processes {nj(.)} 
are assumed to be mutually independent realizations of the generic subsidiary 
point process n(.) defined on the Borel subsets of the real line R with n(R)< oo 
almost surely (a.s.), and 

m~(x)=E(n(--oo, x]), m2(x)=E(n2(-oo, x]), 
( i) 

m 1 = ml(oo), m 2 = m2 (~)  < 00. 

The complete point process N(.) is then defined for any bounded Borel set A by 

N(A) = S nj(A -- ti). (2) 
a l l j  

Perusal of the results below will show that they hold equally well if n(.), 
instead of being a point process (i. e., a random integer-valued set function) is 
simply a non-negative random measure satisfying the finiteness conditions at (1). 
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Presumably it is also true that the non-negativity can also be weakened so that 
n(.) and N(.) may be signed random measures, but such a generalization involves 
further work which would be a digression in this paper. 

The simplest stationarity assumption to make concerning N*(.) is that for 
bounded Borel sets A s, A 2 . . . .  , non-negative integers il, i 2 . . . .  , positive integral r 
and real y, the probability measure pr {. } for N* (.) satisfies 

pr {N* (A,) = is, ..., N* (A~) = i,} = pr {N* (A 1 -b y) = i s . . . .  , N* (A r + y) = i~}. (3) 

Then N*(.) is a stationary point process, and it follows easily that, assuming N(A) 
is finite for bounded Borel sets A, N(.) is stationary also. When 

ff = E(N* (0, 1] )<  ~ ,  (4) 

it is known (e.g. Slivnyak, 1962, 1966) that there is associated with pr {. } a unique 
probability measure pro {. } for a point process No* (.) (in general, non-stationary) 
whose sample paths {t)} satisfy . . -< t '  1 < t; = 0  < t[ <. . . ,  and pr o {. } is such that 
the sequence {T~} = {@1-t}} of non-negative random variables is a stationary 
random sequence, i.e., for any integers satisfying - oe < i I < . . .  < i~ < oo, non- 
negative x 1, x 2 . . . . .  positive integral r and j < il, 

pro {t ' i ,- t}<xl,  ..., t'ir-t}<xr}=pro{t'i,_j<xl ..... t'i _;<xr}. (5) 

It is equally natural to replace the stationary process N*(.) and {tj} in (2) by 
N*(.) and {t}} to give 

No(A ) = ~, nj(A-  tS). (6) 
all j 

(In more picturesque language, the process N*(.) is associated with arbitrary 
time sampling or asynchronous counting, while No* (.) arises from using arbitrary 
events or taking synchronous counts.) 

In (2) and (6) it is envisaged that the primary point process concerned (i. e., 
N*(.) or No*(.)) evolves over the whole time axis. Lewis (1969, 1971) also studies a 
transient process in which the primary point process is confined to the non-nega- 
tive time axis; it may then be sensible on practical grounds to assume also that 
n ( ( - ~ ,  ~ ) ) =  n([0, ~))  a.s., but our analysis holds without making this assump- 
tion. The functions N(.) and/~o(.) defined by 

~;(x)= ~ nj((-t3, x-t jJ),  (7) 
tje(0,x] 

No(x) = Z n j ( ( - - t ' j , x - - t ) ] )  (8) 
w xl 

suffice for our discussion of transient processes: a more general function could be 
defined by 

Z n (A-tj) 
tj~A 

The asymptotic behaviour we discuss concerns the behaviour as x --+ oo of the 
random variables N(x) and No (x) at (7) and (8), and the random variables N(x) 
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and No(x ) obtained by taking A =(0, x] in (2) and (6) and writing 1 

N(x)  = N((0, x]), N O (x) = N O ((0, x]).  (9) 

For  technical convenience we assume that  the pr imary process is orderly, that  
is, pr {. } and pr o {. } satisfy 

pr {m* (0, x] > 1} = o(x) (x].O), (10) 

P r o { N * ( - x , x ] > l } = o ( 1 )  (x,LO). (11) 

It is then a consequence of Koro lyook ' s  theorem that the intensity parameter  # 
at (4) satisfies 

2 = lim pr {N* (0, x] > O}/x =/~, (12) 
x$0 

and as Ryll-Nardzewski  (1961) showed, 

~ = Eo (t}+ 1 - t}) = 2 -1. (13) 

We assume that  the pr imary processes N* (.) and No* (.) are ergodic in the sense that  

pr {X* (0, x)/x - .  2(x ~ oo)} = 1, (14) 

pr o {t}/j --* c~(j ~ o9)} = 1. (15) 
The expectation funa ion  

U(x) = E o (No* (0, x ] ) =  E o (No* (x)) (16) 

will appear  in the discussion of both  N(x)  and N o (x), for when (as in this paper) 
pr o {. } is determined by pr {. } as above, and N* (.) is orderly, 

x 

V * ( x ) = v a r ( N * ( x ) ) = 2  S [l  + 2 U ( y ) - 2 2  y] dy.  (17) 
0 

Always, U(x) ~ 2 'x  (x ~ oo) for some constant  2' > 2  (see Lemma 9 of Daley, 1971), 
and when also the s tat ionary process N* (.) is ergodic as at (14), 2 ' =  2 (Lemma 10, 
op. cit.), i.e., 

U ( x ) / x  - ,  2, (x-~ oo). (18) 

Kaplan  (1955) showed that  U(.) also has something of a Blackwell-type renewal 
theorem property,  namely 

sup (U (y + x) - U(y)) N 2 U(x) + 1. (19) 
y > 0  

In the proofs of the theorems we use decomposi t ions of the r andom variables 
2q(x) etc. as in 

~ ( x )  = N + (x) - N -  (x), No (x) = No + (~) - N o  (x) ,  (20) 
where 

N + ( x ) =  y nj(R), & ( x ) =  ~ nj(R), (21) 
tie(O, xl t[ie(O, xl 

N (x) = fi[ (x) + N = (x) = N + (x) + N = (x) - N -  (x) (22) 

1 N(-) and No(.) can now denote either a set function (like N(A)) or a point function (like N(x)). 
It should be clear from the context which meaning is intended. Similarly, we shall use N*(x), N~(x), 
later. 
5* 
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where 
N= (x)= ~ nj((- tj, x - tj]), (23) 

t d e R  ".. ( 0 ,  x] 

N O (x) = No (x) + N o (x) = No + (x) + No = (x) - S o (x). (24) 

3. F i n i t e n e s s  a n d  F i r s t  M o m e n t s  

The random variables N(x) and No(x) are a.s. finite because by assumption 
each is the sum of an a.s. finite number of finite random variables. It is not so 
trivial a matter to establish finiteness of N(x) and N O (x) (see Theorem 3 of Westcott, 
1971). Certainly they will be finite when the first moments are finite because the 
sums at (2) and (6) are sums of non-negative random variables, and we content 
ourselves with these weaker statements. 

T h e o r e m  1. When the primary point process N*(.) is orderly and has finite 
mean, and m 1 < (30, 

pr {N(A) < oo } = 1 = pr o {N o (A) < oo } (25) 

for every bounded Borel set A. 
Proof Since each nj(.) is non-negative, N(A)<N(O, x] =N(x)  when A _~(0, x], 

and similarly for No (.). The modifications needed when A c~ ( - 0% 0) :# ~ are easily 
made. Recalling that 

O<=ma(x)Tml<oo ( -  oo <xToo),  

we have, finite or infinite, using E(N*(u,u + du])= ~ du, 
- - u + x  

E(N(x))= ~E(n(-u,-u+x])2du= ~2du ~ dmi(y) 
- = - ~ - "  (26)  

co - - y + x  

= ~ dml(Y) ~ 2du=2mlx 
- -o0 --  Y 

and hence the first part of (25). Similarly, since Eo(N*(u, u+du])=ldU(u)] for 
u + 0 ,  

oo 

Eo(No(x))=E(n(O, x ] )+  I [E(n(-u, - u +  x])+ E(n(u, u +x] ) ]  dU (u) 
0 

oo / - u + x  u + x  \ 

=ml(x)--ml(O)-l- ~dU(u)( -~u dml(Y)-~- ! M i n i ( Y ) )  

o (27) 
0 x 

= ~ [ U ( x - y ) -  U ( - y ) ]  dml(y)+ J [U(x-y)+ 1 + U(y)] dml(y) 
- -o9  0 

oo 

+ ~ [ U ( y ) -  U(y-x)] dma(y) 
x 

which by Kaplan's result (19) and the finiteness of ml is finite. 

T h e o r e m  2. Under the conditions of Theorem 1, 

E(n(x))=2m 1 x~Eo(No(x))~E(N(x))~Eo (~ro (x)) (x--+ oo). (28) 
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Proof. We have shown the equality in (28) at (26). Use (27) to get an expression 
for Eo(No(x))/x and note from (18) that (for example) [ U ( x - y ) - U ( - y ) ] / x - ~ 2  
(x ~ oo). Then by the dominated convergence theorem, 

0 co 

Eo(No(x))/x ~ ~ Z dml(Y)-]- ~ ~ dml(y)-I-O=)Lm 1, 
--co 0 

proving the next part of (28). The rest of (28) follows from similar dominated con- 
vergence theorem arguments based on 

x m i n ( x , x - - y )  

0 - x  max(O,-y)  (29) 
co 

S (x-lY!) + am (y), 
- ~  - co  

x 

Eo(No(x))= ~ E(n(-u,  - u + x ] ) d U ( u )  
o (30) 

0 

= u ( - y ) ]  dm (y)+ dm (y). 
- - x  0 

Notice that N+(x) and N~-(x) defined at (21) have 

E ( N  + (x ) )  = E ( m  1 N *  (x) )  = ,~ m 1 x ,  (31) 

Eo(N~-(x))=Eo(m~ N*(x))=m I U(x)~2m~ x (x---+ oo), (32) 

so from (20) we have the 

Corollary. E(N-(x))=o(x)=Eo(No(x) ) (x-+oo). (33) 

4. Asymptotic Distributions 
Lewis (1969, 1971) made extensive use of the type of decomposition at (20) 

and (22). When coupled with the results of the corollary it suggests that the asymp- 
totic behaviour as x -~  ~ of b?(x) (or No(x)) should be similar to that of N+(x) 
(or N?-(x)). For simplicity below we assume that m 2 = E(n 2 (R))< ~ ; i t  should be 
possible when m 2 -- ~ to prove analogous results with another limit law in place 
of the normal. 

When m 2 < ~ ,  either m 2 =m~ and nj(R)=m 1 a.s., or we can set 

a = ( m z - m 2 ) ~ > 0 ,  Xr=  nj(R)-m I r a r  ~ (34) 

(r = 1, 2 . . . .  ) with X r asymptotically (r-~ or) normally distributed. Write 

(x) - Z m 1 x = a (N* (x)) & XN.(~) + m 1 (N* (x)-- 2 x) -- N-(x)  
(35) 

=~x+r /x+~ x (say), 

and recall from the ergodicity assumption at (14) that [N* (x)/2 x]~--* 1 a.s. (X ~ or). 
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then 

Theorem 3. Let 0 -2 = var (n (R)), 0 < a < oo. 

(i) I f  
lira sup var (N* (x))/x1-~< oo 

x ~ C O  

(ii) I f  

for some 6 > O, 

�89 E ( N -  (x))/x---~ 0 (x --> oo), 

lim pr {/~ (x) - 2 m 1 x < a (2 x) ~ u} = �9 (u) = (2 ~)-  ~- i e -  t2/2 dt. 
- - c O  

lim sup var (N* (x))/x < oo, 
X ~ C O  

lim pr {N* (x) - 2 x _-__ x } u} = F(u) 
X ~  cO 

(36) 

(37) 

(38) 

(39) 

(40) 

for all points of  continuity o fF( . )  where F( . )  is a distribution function on R, and (37) 
is satisfied, then 

CO 

lim p r { ~ l ( x ) - 2 m a  x<~r (2x)  1 u} =(2re) - i  ~ F ( a 2 } ( u - v ) / m l )  e -v2/2 dr.  (41) 
x ~  CO 

- - C O  

(iii) I f  for some 6 > 0 

lim pr {N* (x) - 2 x < x ~u +~) u} = F(u) 
X ~  CO 

(42) 

for all points of continuity o fF( . )  where F (.) is a distribution function on R, and 

then 

lim E ( N -  (x))/x ~ ~1 + ~) = O, 
X ~  CO 

lim pr {_N(x) - 2 m 1 x < x ~ ~1 + ~) u} = F (u/ml) 
X ~ o O  

(43) 

(44) 

for all points of  continuity o fF( . ) .  

Proof  We make  use of Slutsky's theorem (e.g.p. 254 of Cramer,  1946) applied 
to appropr ia te  normalizat ions of ~ + q~ + (~. 

(i) The random variable N - ( x )  is non-negative so (37) implies that ( J x ~ =  
N - ( x ) / x  ~ P , 0 (x ~ oo). (Here and below, P , denotes convergence in probabil-  
ity.) Eq. (36) implies that tlx/x -~ p , 0  (x-~  oo). Now (N*(x) /2x)  ~ .... ,1 ( x ~ o o ) ,  
so by Slutsky's theorem ( ~ r ( x ) - 2  m 1 x) /a(2x)  ~ has the same limit law as XN,(~). 
But N* (x)/[2 x] .... ~ 1 and 32, is the standardized sum o f r  independent  identically 
distributed random variables with finite positive variance, so by a result of Ans- 
combe (1952) XN,(x) has limit law ~b(.) as at (38). 

(ii) As in (i), (~/x ~ P , 0 (x -+ ~ ) .  Then the limit law (if any) o f ( N ( x ) -  2 m a x)/x ~ 
coincides with that  of ({~ + tl~)/x ~. Let ~b x (.) denote  the characteristic function of 
(U* ( x ) -  2 x) /x  ~ and set 

GO 

(t) = ) i m  G ( t )  = e 't" dV(u). 
- - o o  

Note  that with ~9 (t) = E(e i t~,(R)- ml)), 

(~ (t/x~)) x ~ e-t2 ~/2 (x --+ oo3. (45) 
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Then 
�9 �89 E(exp{zt(~+rlx)/X }) 

= E E exp ~it ~ (nj(R)-  ml)/x}~ exp {it ml(N* (x) -  2 x)/x4}[N * (x 
I j = l  ) 

= e (exp {N* (x) log ~ (t/x ~) + i t ml(N* (x) - 2 x)/x~}) 
$ • = (~ (t/x~)) z ~ E (exp {i [ tm I - i x ~ log ~ (t/x~)] (N ( x ) -  2 x)/x ~ }) 

= (0 (t/xr z ~ O~ (t m, - i x ~ log r (t /xr 

Now by (45) for every fixed t, h (x)= - i x  ~ log r (t/x ~) -* 0 (x-+ oo) and 

[ r  + h ( x ) ) - r  = Ih(x)!" [r +Oh(x)) I 
for some ,9 with 1,91< 1. Moreover, 

Ir m 1 +,9 h(x)) I < [var (N* (x) /xr  ~ 

which by (39) is uniformly bounded as x -* oo. So 

lim ~ ( t m  1 + h(x))= lim ~)~(tml)=O(tm O, 

implying that 
lim E (exp {it(ix + tlx)/X~}) = e- ~ z ~/2 @ (tm 0 . 

x ~ c o  

Written in terms of distribution functions we recover (41)�9 

(iii) As in the proof of (38), r ~1+~) P ,0, and now ~ / x  r P , 0. The 
result (43) follows from Slutsky's theorem. 

Remarks. Since 

x x 

E(N-(x))= S E(n(R ' . . ( -u ,  - u +x])) 2 du= 2 ~ [m 1 - -ml (x - -u)+ml( -u)]  du, 
0 0 

the conditions at (37) and (43) relate to the rate of convergence to zero of ma(-u) 
and m 1 -m l (u  ) as u ~ oo. These conditions are obviously satisfied when 

oo 

lim E (N-(x))= S [ml - ml (u) + m 1(-  u)] d u  < oo. 
x ~ o o  0 

(46) 

We have stated the conditions on N-(x)  as these are usually easier to verify (e.g. 
by (46)) than the property of convergence in probability actually needed in the 
proof. 

The second moment conditions at (36) and (39) are also stronger than need be. 
The properties actually used were that (N* (x ) -2  x)/x ~. p , 0 and the uniform 
boundedness as x ~ oo of E (] N* (x) - 2 x [/x~). 

Observe that case (i) of the theorem is a special case of (ii) (viz., by taking F(u) = 0 
o r l a s u <  or >0). 

The theorem is equally true for No(x ) on replacing N*(.) by N~*(.), etc. The 
only difference to be noted is that in the remark above concerning E(N-(x)), we 
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should have instead 

~c 

E (N o (x)) = ~ [m I - m 1 (x - u) q- m 1 ( - u)] d U(u) 
0 

0 

=[m 1 - ml(x ) + m1(- x)] U(x) + ~ U( - y) dml(y ) 
- x  

x 

+ ~ [u(x)-  m(x-y)] dml(y). 
0 

Then by (19) and (18) it follows that convergence of E(N-(x))/x ~ for any given 
7 > 0 implies that lim sup E (No (x))/x ~ < ~ ,  and in particular convergence to zero 

x ~ c o  

implies that the lim sup = 0. 

Asymptotic distributions for N(x) and No(x ) follow from the theorem by using 
the decompositions at (22) and (24). We find easily that E(N=(x))=E(N-(x)), so 
the assumptions sufficient for the conclusions about ~r(.) suffice also for N(.). 
A little more algebra shows that 

- x o o  

E(Nj(x))= ~ [ U ( x - y ) -  U(-y ) ]  dm,(y)+ ~ [U(y) -  U(y-x)] dml(y ) 
- c a )  x 

0 

+ ~ [ U ( x - y ) -  U(x)] dml(y)+ ~[1 + U(y)] dml(y), 
- - x  0 

so by (19) and (18) it follows as above that convergence to zero of E(No(x))/x ~ for 
any given 7 > 0 implies that E (N~ (x))/x ~ also converges to zero. Thus, 

Corollary. Under any of the conditions of the theorem, all or none of N (x), N o (x), 
N(x), ~r o (x) have the same limiting distribution with a given pair of norming functions. 

Similar techniques can be used to deduce the asymptotic joint distribution of 
N*(.) and (say) N(.). For example, under the conditions of part (ii) of the theorem, 
it is not difficult to show that as x ~ o% 

pr{N(x) -2m 1 x<=a(2x) ~ u, N * ( x ) - 2 x <  x ~ v} ~ f q~(u-m 1 y/(a 2~)) dV(y). (47) 
- -  o o  

5. Second Moment Properties 
In the statistical analysis of a stationary point process N*(.) much interest 

centres on there being a finite limit as x ~ ~ of var(N* (x))/x (see Cox and Lewis, 
1966, Section 4.5). In the case of the stationary cluster process N(.) we have the 
following result. 

Theorem 4. I f  
var (N* (x)) ~22 x (x ~ ~ )  (48) 

for some finite c o n s t a n t  )~2 and i f  m 2 < GO, then 

var(N(x))~[m 2 22 +).(m 2 - m~)] x (x-+ ~) .  (49) 
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Before proving this result observe that it can be written as 

vat (N(x)) ~ [E (n (R))] 2 var (N* (x)) + var (n (R)) E (N* (x)) = var (N + (x)), (50) 

in which form it is consistent with the normalization used at (41) when the distribu- 
tion function F(.) there has finite second moment. 

Proof. From the definition at (2), the stationarity and orderliness of N* (.) and 
the consequent interpretation 

2 du dU(v) = pr {N* (u, u + du] = 1, N* (u + v, u + v + dv] = 1 } + o (du dr), 

E(N2(x))=,1 ~ E(n2(-u, - u + x ] ) d u  (51) 
- - 0 0  

O0 oo 

+ 2 2  i duf E(n,(-u,  - u + x ]  n 2 ( - u - v  , x - u - v ] ) d U ( v )  
- - o o  0 

where nl(. ) and H 2 ( , )  denote independent subsidiary processes. Now using the non- 
negativity of n(.) and Fubini's theorem 

5 E(n2( -u ,  - u + x ] ) d u = E  du n(dv n(dw 
- o o  

SO 

- o o  

- +  E (n 2 (R))  = m 2 ( x  --+ 00) 

by dominated convergence. Thus we have explained the term 2m 2 x in (49). For 
the rest of (51), the independence of nl(. ) and n2(. ) yields 

oo 

2). ~ du~ E(nl(--U,X--U]t'I,2(--U--O,X--H--v])dU(;.) ) 
- - o o  0 

=2, t  ~ du ~ (52) 
- - o o  0 - - u  - - u - - v  

X - b y  X - - Z  ~ X--U--Z 

- ~ o  - - y  y ( - u - z ) +  

after some interchanges (note that all integrands and measures are non-negative, 
so Fubini's theorem applies here, as above). We now use Eq.(17) and set 
V* (x) = var (N* (x)) in writing 

x - - y  

2,1 ~ [U(x-u-z)- U((-u-z)+)] du 
--y 

x + y - - z  y - - z  

= 2 2  ~ U(v)dv-22 ~ U(v+)dv 
y - - z  y--z--x 

= V * ( y - z + x ) - 2  V*(y - z )+  V * ( ( y - z - x )  +) 

y - z + x  ( y - z - x )  / 
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The other term in (52) can be treated similarly and enables us to write the second 
term in (51) in the form 

dm 1 (y) :'S dm  1 (z) { V* (y - z + x ) -  2 V* ((y - z)+)+ V* ((y - z - x)+) 
- - o r )  - c o  

- 2 ( x - l z - y l )  + + 2 2  [ ( x + y - z )  2 - 2 ( ( y - z ) + )  2 + ( ( y - z - x ) + ) 2 ] )  

= ~ dml(z ) dml(y ) {integrand as above} 
- - 0 0  z - - x  

09 co  

--2--! ~ dml(Y ) ~ dm~(z){g*(y-z- - - l -x) -2g*(y-z)+ g * ( y - z - x )  
- - 0 0  - - 0 0  

- 2 2 ( x - l y - z l )  + +222 x2}, 

where as usual V* ( -  x)= V* (x) (x > 0). The term in x 2 equals 22 m~ x 2 = (E(N(x))) 2, 
so finally we have 

0O o0 

var(N(x))=2 ~ E ( n 2 ( - u , x - u ] ) d u +  ~ dmt(y ) ~ dml(z ) { - 2 ( x - l y - z [ )  + 
- 00 - ~ - 00 (53)  

+ [ v* ( y -  z + x ) -  2 v* (y - z) + v* ( y -  z -  x)] }. 

The term involving V* (.) here equals coy(N* (0, x], N* ( y -  z, y -  z + x]) which 
has modulus _< V* (x) for all y and z. Thus the dominated convergence theorem 
can be applied along with (48) in asserting that 

li+m _~dml(y ) dml(z ) { - 2 ( 1 - l y - z [ / x )  + 
- - 0 0  

+ [V* ( y -  z + x) - 2 V* (y - z) + V* (y - z - x)]/2 x} 

= ~dm,(y) ~dma(z) { - 2 + � 8 9  [22 - 0 + 2 2 ]  } 
- - 0 0  - - 0 0  

= m ~ ( - 2 + 2 9 .  

The theorem is proved, ' .... 
We note that Vere-Jones (1970) has given the covariance density form of 

Eq. (53) in his Eq. (17). 
The same method as above can be used to find an expression for var(N(x)), 

but the limits of integration in the analogue even of the integrals at (52) are more 
complicated. Work of Lewis (1971) on the case where N*(.) is renewal process 
indicates that the statement for/~(x) analogous to Theorem 4 may involve con- 
ditions on the rate of convergence to zero of m 1 -ml (x  ) + m l ( - x )  (cf. Eq. (46)). 

Expressions for var(No(x)) and var(N0(x))involve joint probabilities of a 
higher order than U(.) as above (51) (cf. the discussion in Lewis, 1971 when 
N~ (.) is a renewal process with a density function). 

6, Almost Sure Convergence 
The assumption of non-negativity of the subsidiary processes hi(. ) affords a 

fairly simple proof of the following result. 
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Theorem 5. When the primary process N* (.) is ergodic and m 1 < 0(3, N(x)/x and 
N(x)/x converge almost surely to 2m 1 as x ~ oo. 

Proof It is simplest to prove first that 

lira N(x)/x=2m 1 a.s. (54) 
x ~  oo 

Observe first from (20) and the non-negativity of n(.) that 

SO 

N*(x) 

N(x)=N+(x) -N-(x )<N+(x)= ~ nj(R), 
j = l  

IN*(x) \ 
N(x)/x<( ~=i ni(R)/N*(x)) (N*(x)/(2x))2. 

J 
(55) 

With probability one, as x ~ o% the second bracket converges to 1 by the ergodicity 
assumption at (14), and since then N* (x) ~ 0% the first bracket is the sample mean 
of N* (x) independent identically distributed random variables with finite mean m 1. 
Thus the strong law of large numbers applies to show that the first bracket converges 
to m~, and hence 

lira sup N(x)/x<2m I a.s. (56) 

On the other hand, since E(n(R))=m 1 < ~ and n(.) is nonnegative, for any 
e > 0 there exists an interval ( - a ,  b] for which E (n ( - a ,  b] )> m 1 - e ,  where without 
loss of generality we can assume that a > 0, b > 0. Then taking x > a + b, 

R(x) = 

so by the earlier argument, 

F, nj(-tj ,  x-t~] 
tie(O, x] 

t j e  (a, x - -  b] 

> Z nj(-a,b],  
t~e(a,x-b] 

lim inffT(x)/x> lim inf F, nj(-a, b]/x 
x ~ o o  x ~ o o  t j E ( a , x - b l  

=2E(n(-a ,b])  a.s. 

> )~ (m I - -  ~). 

The inequalities at (56) and (57) imply (54). 

From (22), N(x)= N(x)+  N = (x) and N = (x)__> 0, so from (53) it follows that 

(57) 

lim inf N(x)/x > 2m I a.s. (58) 
x ~ c o  

But the non-negative stochastic process {N(t, t+ 1]: - ~ < t <  oo} is stationary 
with E(N(O, 1 ] )=2m 1 < oo, so by the ergodic theorem for strictly stationary 
processes, the limit 

lim g (x)/x = 
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exists almost surely for each sample function, with the random variable ~ having 
E(~)=2m 1. This result, in conjunction with (58), implies that r  a.s., and 
proves the theorem. 

If instead of N* (.) we have No* (.), the same arguments can be adapted to show 
that No(x)/x and No(x)/x--~2m 1 a.s. (x---~ oo). These arguments are simpler than 
those used by Brown and Ross (1969) to prove similar a.s. convergence properties 
for a particular cluster process, namely the output of a transient M/G/oe queue. 
Brown and Ross (1971) have also studied a cluster process with {nj(.)} not neces- 
sarily independent of N* (.). 
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