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O n  the  G r o w t h  o f  S t o c h a s t i c  I n t e g r a l s *  

DANIEL W .  STROOCK 

Introduction 

Let fl(t) be a d-dimensional Brownian motion and suppose that ~r(t, co) is a 
bounded, measurable, real d x d-matrix valued function which is independent of 
future increments of ft. Then, following It6 [3], we know how to define the sto- 
chastic integral t 

~(t) = S•(s) d/~(s); 
O 

and, following McKean [5], we can derive the bound 

P( sup I~(t)l>e)N2d exp[-e2/2d�89 AT] 1, (1) 
O<=t~T 

where [a*(t, 0)12 2 
A = s u p  sup 

0~Rd 0_<,_<r 1012 
CO 

Furthermore, if d--1, then, once. again following McKean, we can construct a 
one-dimensional Brownian motion B(t) such that 

~(t)= B ( j cr2 (s) ds) . (2) 

T 

From equation (2), we see that if T' = sup ~ cr 2 (s, co) ds, then 
co 0 

P( sup [~(t)l>e)__<P( sup IB(t)[__>0. (3) 
O<_t<_T O<t<_T' 

The inequality in (3) leads to a much sharper estimate than that provided by (1) 
(see [2], p. 288, for a derivation of the exact analytic expression for the right side 
of (3)). In particular, (3)tells us that when d = l ,  P(oSUPrl~(t)[>O<l for all 

positive T and e. Moreover, both (1) and (3) suggest that the rate at which I~(t)] 
grows is governed by the largest eigenvalue of a a*. The purpose of this note is to 
point out that it is not so much the upper eigenvalue of ~ ~* as the ratio 

(Tr~r*) I~1 

which determines whether P( sup [~(t)l > 0  is always less than unity. 
O < t < r  

* Results obtained at the Courant  Institute of Mathematical  Sciences, New York University. 
Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, 
United States Air Force, under Contract  No. AF-49 (638)- 1719. 

1 A derivation of this estimate is given on p. 22 of I-5]. 
2 We use a* to denote the transpose of tr. 
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Notation and Elementary Facts 

The notation is the same as that used in [-6], namely: (2=C([,0, ~),R~), 
x (t, co)= x~ (co) is the position of the trajectory co ~(2 at time t, if)l t = ~3 [x,,: 0 < u < t], 
and 9J~= ~3 Ix.: u_>0]. A mapping q of [,0, ~ )  • g2 into a measurable space is said 
to be non-anticipating if it is ~3Eo ' . ) •  9X-measurable and if q(t) is 9Xt-measurable 
for all t > 0. I fP  is a probability measure on ((2, 9X), then q is called a P-martingale 
if it is a complex-valued non-anticipating function satisfying 

E1"[,tl(t2)lg.0~tl]=tl(tl) (a.s., P) 

for each 0<t l<_t  2. A P-Brownian motion is a continuous Ra-valued non-anti- 
cipating function fi such that 

[ 
exp i_@, f l ( t ) - f l (O)) -  

is a P-martingale for all OER e. If 0 is a bounded Re-valued non-anticipating 
function and fl is a P-Brownian motion, then 

[j , ] exp (O(s), dfl(s)) - � 89  ~ [0(s)l 2 ds 
0 

is a P-martingale, where the stochastic integral 

i (O(s), d~(s)) 
0 

is defined in the sense of It6 (cf. [-3] or [-5]). Finally, if ~ is a continuous, real-valued, 
non-anticipating function such that 

[ ] ;~ [, c~(s) ds exp 2(~(t V to ) -~ ( to ) ) -~ - -  
to 

is a P-martingale for all 2 sR, where ~ is a bounded, non-negative, non-anticipating 
function, then (after enlarging the sample space) we can construct a one-dimensional 
Brownian motion B such that 

(!)  ~(t)-  ~(t0) = B ~(s) ds (a. s., P). 
t 

For the detail of this construction see p. 29 of [5]. 

The Main Result 
Let fi(t) be a P-Brownian motion and let a be a bounded d x d-matrix valued 

non-anticipating function. Set 
t 

~(t) = ~ o(s) dfl(s) 
0 

and 
p(~)=P(  sup Ir 

O<=t~T 

24 Z. Wahrscheinlichkeitstheorie verw. Geb,, Bd. 18 
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Theorem. If  (Tr a ~r* (s, co)) I~ (s, co) l 
sup < oe, 
,>_o I~*(s, co) ~(s, co)l 

fo 

then p(T, ~)< 1 for all positive T and ~. 

Proof. Suppose there exists T O > 0  and eo > 0 such that P(To, Co) equals one. Let 

z = inf{t > 0 :  I~(t)[> eo/2 } 
and 

z'=inf{t>z: ][~(t)l-I~(z)[[ > Co/4}. 

Then 0 < z _ < z ' <  T o (a.s., P). Clearly we may assume, without loss of generality, 
that a ( s )=0  for I~(s)l>__2eo. 

Now let t/(t)= ]~(t)l 2. Then, by It6's formula (cf. p. 32 of [5]), 

t t 

r/(t) = 2 J" (a*(s) ~(s), dfi(s)) + ~ Tr a a*(s) ds. 
o o 

Take 

and 

Tr a a* (t) 
b (t)-- 3Elr >_.~o/4 2 l a* (t) ~ (t)l ~* (t) ~ (t) 

0(t) = 2 2 a* (t) ~(t) + b(t). 
Then we see that  

exp 2( t / ( t ) -  3Elr Traa*(s) ds)-22e~ ]a*(s)~(s)] 2 ds 
o o 

is a Q-martingale for all 2eR,  where 

and 

dO.L~, -R( t ) ,  t>=O, 
dP[~ 

Hence, if co ---, Qo, is a regular conditional probability distribution of Q given 9J~ 
(cf. [6]), then for Q-almost every co 

t v ~(ro) 

exp 2(rl(tvz(co))-~l(Z(co))- S 3r162 Tr aa*(s)ds) 
~(co) 

~2 t v ~(~o) ] 

2 S I~*(s)~(s)l 2ds 

is a Q~-matingale. In particular, 

Q("C' ~_~ T0]~fJ~z) ~__ Q~o (z(cosup<=Toltl(t)--tl(72(co))[~= -- 3l~'6) 

r t/ (t) - t/ (r (co)) - ds > 3e~ ] =Q~, ( sup f ~1r Traa*(s) =~-~-] 
\ ~ ( o ) < t <  ~(m) 

<1 
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since 
r/(t) - ~/(z (co))- f 3s162 =< ~o/4 Tr a a* (s) ds 

z(co) 

is distributed under Q~, like a one-dimensional Brownian motion run with the 
clock 

4 i ]a*(s) ~(s)l 2 ds. 
0 

This proves that Q (z' < To) < 1. But P and Q are equivalent on 9)/%, and therefore 
P(z' < To) < 1, which is a contradiction. Q.E.D. 

Remark. The preceding theorem shows that if a -  l(s, co) exists and is uniformly 
bounded, then p(T, e) < 1 for all T, e > 0. 

An Example. We will now give an example which shows that the conditions 
given in our theorem are in some sense necessary. Assume d>  1 and let 6(x) be an 
infinitely differentiable, non-negative definite, symmetric d x d-matrix valued 
extention of the function a (x) which is defined on I xl >___ �89 by 

(~iJ(x)=(~ij XiXj 
r x l 2  " 

Take x ~ = (1, 0 . . . . .  0) and 
t 

r176 ~g(~Is))d/~is), t>0, 
0 

where/~ is a P-Brownian motion. Then, by It6's formula, 

I~(t) l 2 = Ix ~ + 2 i ('~ (~(s)) ~(s), d/~(s)) + ( d -  1) t 
0 

= Ix~ + ( d -  1) t, 

since ~ (x) x = 0 for I xl > �89 Thus if r (t) = ~(t) - x ~ and a (s) = ~7 (~ (s)), then 
t 

r ~ a(s) dfl(s) 
0 

and for each e>O, p(T, e)= 1 for large enough T 

A Property of  Stochastic Differentials 
The preceeding example displays an interesting property of stochastic differen- 

tials. At first sight one might expect that the process ~(t) should live on the sphere 
S~-l([x~ However, as we have just seen, ~(t) feels a "centrifugal drift" which 
pushes it off the sphere. The origin of this "drift" is, of course, the fact that d~(s) 
is not a true differential in that "(dfli(s))2=ds ''. In [7] it is shown that if a(x) is a 
smooth d x d-matrix valued function and if 

t 

~(tl=x+ j'G(~(~))d/~(s), t____0, 
0 

then the process ~(t) experiences a drift 1/2(or' a)(x), where 

(~'~),(x)= Y~ ~xk 
j , k = l  

24* 
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(A similar drift term arises naturally in the work of Fichera [1] (also see [4]) on 
degenerate elliptic boundary value problems.) 

For the above example 
( d -  1)x ]x[>X. 

(~'~)(x)=- ~'x'2 , 

If we now let 
t t 

~(t)=x~ + ~ 6(~(sl)dfl(sl+�89 (6'ff)(~(sl)ds, t>O, 
0 0 

we obtain a process which does live on Sd-l(]x~ In fact, an application of It6's 
formula shows that 

t 

I~(tll 2 = Ix~ 2 + 2 i (~(~ (s)) ~(s), dfl(s)) +�89 t (e' ff)(~(s)) ds 
o o 

t 

+ �89 ~ Tr 0 -2 (~(S)) ds 
0 

=lx~ 
Moreover, as K. It6 pointed out to me, the process ~(t) is Brownian motion on 
Sa-l([x~ That is, the generator of ~(t) is the Laplace-Beltrami operator on 
Sa-l(ix~ Finally, it is easy to show that ~(t) doesn't escape from balls in a finite 
time. To see this, observe that 

' , ( d - l )  
l~(t)-x~ 2 ~o (O(~(s))(~(s)-x~ [ - ~  }o (x~ ~(s)) ds. 

Since ~(t) is always on Sa-l(lx~ for each 0 < ~ < 1  there is a 6 > 0  such that 
t (s)-x o] whenever [~(s)-x~ Thus, by an argument 

like the one used to prove our theorem, we can show that 

P( sup I ~ ( t ) - x ~  
O<_t<_T 

for all T, e > 0. 
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