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1. Introduction 

Let X1 ,  . . . ,  X n  be one-dimensional, independent, identically distributed 
chance variables, to be observed by the statistician, with unknown density func- 
tion /(.). That  is, /(.) belongs to some class of densities containing more than one 
clement. Let  A be any point; we shall find an estimator (more properly, a sequence 
of estimators) {~n (X1 . . . .  , Xn) ,  n ~ 1, 2, ...} o f / (A)  under varying assumptions 
on / ( . )  in the neighborhood of A. That  is, for each n q~n(Xi . . . . .  Xn)  is a Borel- 
measurable function of its arguments and, we hope, has a high probabil i ty of 
being close t o / ( A ) .  

Let  Sn > 0 be a function of n to be discussed shortly. Let V @n) be the class 
of estimators of ](A) which, for n = 1, 2 . . . . .  are functions only of those X 's  
which lie in the interval (A --  en, A ~ en). Up to the end of the argument  in 
(2.10) we shall make the following two assumptions on the adinissiblc class of 
estimators : 

Assumption I. All the estimators to be considered are in the class V (en). 

Assumption II. The function en is n -~, ~ > 0. 

These assumptions are a limitation on the class of estimators considered and 
should certainly be removed or substantially weakened. ~qevertheless, the estima- 
tors we shall obtain will be bet ter  than  estimators hitherto given in the literature. 
Subject to our assumptions we will discuss the optimal value of ~. After (2.11) 
we will violate our own Assumption I by making use of observations outside of 
the interval (A --  Sn, A ~- Sn) in order to cope with the problem of estimating 
K(sn);  see, also Remark  1 of Section 2 below. 

In  what  follows we shall consider three cases (problems), i.e., three different 
sets of assumptions about  the total i ty of possible/.  Other cases, involving higher 
derivatives, can be treated similarly; the general method will be apparent.  In  each 
case we will assume tha t  the statistician knows only that  ] is a member  of a certain 
class of densities, respectively W1, W2, and Wa. We now proceed to describe these 
classes. 

Each class will consist of all densities which satisfy certain boundedness con- 
ditions near A. We begin by describing the class W2. Any density g in Wu satisfies 
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bo th  the  following conditions: 
! 

(1.1) al ~ g(A) ~ a 1 

(1.2) in the in terval  I ~- (A - -  h, A ~- h) 

the  second der ivat ive g"(.) exists, I g"(A) I < az, and, for all y in I ,  

- - A ( y  
g(y) = g(A) ~- (y -- A)g ' (A)  -~ ~ ) 2 ~ - g " ( A )  

~- g(Y) IY - -  A] 2+a, 

where 0 < a < 1 and I g(Y)J <= as. 
I n  the above h, a, a l ,  a l ,  az,  and  a4 are posit ive constants  which determine 

a class Wz; different constants  determine a different class. However ,  it is not 
necessary/or the statistician to know these constants, and the  es t imators  to be ob- 
ta ined will not  depend on them.  I t  is sufficient for the stat is t ician to know t h a t  ] 
belongs to  some class W2. The  same remarks  app ly  to the classes W1 and Wa to  

z 

be described now. As before, h, a, a l ,  a 1, a2, aa and a4 are some posit ive constants .  
The class W1 is to  consist of  all densities which satisfy the following conditions : 

Any  densi ty  g satisfies (1.1) and  

(1.3) in the in terval  I = (A - -  h, A ~- h) 

the  first der ivat ive  g'(.) exists, and, for all y in I ,  

g(y) =- g(A) ~- (y -- A )g'(A) ~- ~(y) ] y -- A ]l+a 

where I g (Y) ] < a4 and 0 < a < 1. 
The class Ws is to consist of  all densities which satisfy the  following conditions: 

Any  densi ty  g satisfies (1.1) and 

(1.4) in the  in terval  I = (A - -  hi A -~ h) 

the third der ivat ive  g'"(.)  exists, [g"(A) ] < a2, l g'"(A)l < a3, and,  for all y in I ,  

g(y) .= g(A) -~ (y -- A)g ' (A)  ~- (y - A)2 g"(A)  
2 

§ (Yzg~8-g'"( + Y(Y)lY - A ]a+~, 

where ]~(y)[ < a4 and 0 < a < 1. 
We  shall find it  convenient  to employ  the no ta t ion  now to  be described. The 

s t a t emen t  ~o = O(ns) is to mean  t h a t  ]~pn-s I is bounded  above uniformly in 
(positive integral) n and  all g in wha tever  W~ is relevant .  The s t a t ement  ~ = o (n s) 
is to mean  t h a t  yJn -s -> 0 as n -+ r uni formly  for all g in the  re levant  W. The  
s t a t emen t  ~p = K2(n s) is to  mean  t h a t  ]~0n-s I is bounded  above and below b y  
posit ive numbers ,  un i formly  in n and g in W. Finally,  Or ,  or ,  and  Y2v are to mean  
t h a t  O, o, and  Y2, respectively,  hold with a probabi l i ty  which can be chosen 
arbi t rar i ly  close to one. 

The symbol  P { } will always mean  the  probabi l i ty  of  the relation in braces, 
when  / is the  common  densi ty  of  the X's .  Of course, 1 m a y  be any  densi ty  in the 
class under  consideration. Consequently,  an inequal i ty  like P {R1} > P {Rz} will 
mean  t h a t  the  probabi l i ty  of  R1 is greater  than  t h a t  of R2 no m a t t e r  wha t  ] (in 
the appropr ia te  class) m a y  be. 
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2. The Case W~ 

In  the interval I = (A -- h, A + h) write /(x) = / ( A )  [1 + k(x  -- A)] and 

8 n  

K ( s n ) = S k ( y ) d y ,  for n such tha t  n - ~ < h .  
- - S n  

Suppose first tha t  K(sn) is known to the statistician. Let  Y 1 , . . . ,  YN be those 
among X1, . . . ,  Xn  which lie in the interval (A -- sn, A -]- en). The joint prob- 
ability function of N at  m and probabili ty density function of Yl . . . .  , Ym at  
yl . . . .  , Ym is 

n! 
!(n-- m)~ [!(A) (2en + K(en))]m • 

(2.1) 
n m m / ( A )  (1 • [1 - - / ( A )  (2 en + K(en))] - ~ I  ~ + k(y, -- A)) 

i = 1 "  " ( 2 e n + K ( s n ) )  

From this we obtain the maximum likelihood es t imator /n  of ] (A) (the value of 
/ (A)  maximizing (2.1)) to be 

^ N 
(2.2) /n - -  ~(2s~ + K(s~))" 

Obviously E / n  = [(A) and 

(2.3) a2(/n) ----- E(/'n - - / ( A ) )  2 ---- /(A)[1 -- (2~n + K(s,~))/(A)] 
n ( 2 e n  + K ( e n ) )  - -  - -  f2 (nx-1)  " 

Assume temporari ly tha t  z < 1/2; it will turn out that  anyhow z should be _< 1/5. 
One verifies easily tha t  the distribution of 

(2.4) (/~ - / (A) )  [~ (7~)] -1 

approaches the normal distribution with mean zero and variance one. By E s s n ~ ' s  
theorem (e.g., [1]) for third moments it follows tha t  the approach to this normal 
distribution is uniform in the argument of the limiting distribution and in the 

densities of W~. The normalizing factor [(~(/n)] -1 is s (n(1-~)le), and the chance 

variable N = ~9~(nl-a). I t  follows from Theorem 3.1 of [2] (see also [3]) tha t  ~n 
is asymptotical ly efficient in the sense that  it satisfies (3.8) of [2] for all competing 
estimators which satisfy (3.7) of [2] and Assumptions I and I I  of the present 
paper. Thus, if Tn is any such competing estimator we have, for any r ~ 0, 

lim P { - - r n (  ~-1)I2 < ]'n -- I(A) < r n  (~-1)I2} 
(2.5) 

_>_ lim sup P { - - r n  (~-1)/2 < Tn -- ](A) < ~'7t(~-1)/2}. 

We now intend to cope with the problem created by the fact tha t  K(sn) is 
unknown. Since / is in W2 we have that,  for - - h  < y < h, 

(2.6) k(y) = k l y  + k2y ~ + O(y 2+a) 

and k2 =- 0(1). Hence 

(2.7) K (sn) : ( 2 ~  + o( l ) )  s~n . 

Suppose we have an estimator k2 of k2, and let 

(2.8) k ( ~ n )  : 2~'2 3 en 
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and 

(2.9) 

Define 

(2.10) 

Then we have  

L. WEISS and J. WOr,~OWlTZ: 

/^~= N 
n(2sn -}- ff~(en)) " 

Dn = K (sn) - K (sn) = [ 2  (k~. --  ~cz) + o(1)] en z. 

(2.11) ]n" --/ 'n -~ ~--ND" [2 en + K (en)] -1 [2 en + K(en) -- Dn] -1 

To obtain  kz we proceed as follows: Le t  J ---- (A - -  n -a ,  A + n-a) ,  0 < / 3  < 1/5 
~o be determined later. Le t  Z1 . . . . .  ZM(~) be those of X1, . . . ,  Xn which fall into 
the  in terval  J .  

Define 

and 

Qn- 

M(n) 
s IZ~ - AI 
1 

M(n) 

(2.13) 

Hence  

(2.14) 

and 

(2.~5) 

Therefore 

(2.16) 

and 

(2.17) 

Then  

(2.18) 

and  

(2.19) 

A 
(2.12) k2 = 12n2~(n # Qn - �89 �9 

The conditional densi ty  a t  the  point  x -~ y + A of the in terval  J is 

1 + kly + k2y 2 -{- o(1)y 2 
2n-t~ + ~k2n-3~ + o (n-3~)" 

~-~ ( k2 n_~ ~ ) E I Z i - - A [ - ~  ~ -  1 + ~  +o(n-2a) 

%-2~ 
E(Z~ - - A ) ~  = ~ - - ( 1  + O(n-2~)) 

n-a ( l  q - ~ n - 2 ~  + o ( n - 2 # ) ) +  Qp(n-(l+~)/2) Q~ = -~--  

7c2 = lc2 + f2p(n -(1-5~)/2) + o(1). 

D~t : ~Qp (n  - (112 - 5fl]2 + 3 a) ~_ 0 (7t -30t ) 

A A 
In - -  ]~t ~--- ~Qio ( n - (112-5f l ]2§  a)) _~_ Op (n -2~)  . 

I f  we chose ~ = ~ and /3 = then  

(2 .20)  ]^n - -  /An = O p  (;q,--13120) ~_ 0~0 (~--2/5) 

while 

(2.21) In ---- ](A) + O~(n -2/5) 



(2.26) 

(2.27) 

and 

(2.28) 
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Thus in is as efficient as In when ~ = 1/5 and fl = 1/10. (Actually when ~ = 1/5, 
fi can take any value in a suitable interval.) In  this case, for any competing esti- 
mator Tn such as has been described earlier, we have, from (2.5), 

lira P { - - rn-2 /5<fn- - /  (A )<rn-2/5} >l imsu  p P { - - rn  -2/5 < Tn--]  (A )< rn-2/5}, 
(2.22) 

and the left member is positive by (2.20) and (2.21). I t  is remarkable that  (2.22) 

is true, although the estimator Tn may be explicitly a function of K (en), while [n, 
of course, is not. 

We turn now to the problem of how to choose the g with which/~ is to be 

computed. Suppose first tha t  Tn is computed with an ~ > 1/5. Then, by (2.3) 
and (2.19), we have 

Tn = [(A) + Qp(n(~-l)/2), 

so that,  by (2.20) and (2.21), this choice of ~ is worse than that  of ~ = 1/5. Sup- 
pose now that  ~ = 1/5 -- d, 0 < d < 1/5. In order to perform a finer computa- 
tion we replace the density (2.13) by 

1 -~ kl y A- k2 y2 _~ 0 (y2+a) 
2n-~ -{- ~ k2n-8~ -~- 0 (n-~(3+a)) " 

The last term of the right member of (2.17) is to be replaced by 0 (n-aS), and that  
in (2.19) by 

(2.23) Op(n -afl-2u) -~- Op(n -(2+a)a) = Op(n -afl+2d-2/5) -~- Op(n-2/5-a]5+2d+ad). 

We want to maintain, for any r > 0, the validity of 

lira P { - - r n  (~-1)/2 < ]~ - - / ( A )  < rn  (~-1)/2} 
(2.24) 

= lira P { - - r n  (~-1)/2 < "[n~/(A)  < rn(~-l)/2}, 

because then, from (2.5), 

lim P { - - r n  (~-1)/2 < in -- [(A) < rn (~-1)]2} >= 
(2.25) 

> lira sup P {-- rn (~-1)/2 < Tn - - / (A )  < rn(a-1)/2}, 

and, by (2.3) and (2.24), the left member of (2.25) is positive. Here Tn is any 
competing estimator such as has been described earlier, and, in the definition of 
T , ,  the statistician may even assume that  K@n) is known to him. 

In order for (2.24) to hold it  follows from (2.3), (2.19), and (2.23) that  we 
must have 

2fla 
d <  5 

2a 
d ~  5(5 -4- 2a) ' 

The inequality (2.28) can always be achieved by proper choice of fl, and it is 
(2.26) and (2.27) which require attention. We consider two possibilities: 
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A) The realistic situation is that  the statistician does not know a at all. In 
that  case he will choose d = 0(~ = 1/5) in order to be certain tha t  (2.26) and 
(2.27) hold. Then (2.22) obtains. 

B) The statistician knows a and chooses d and fi so as to satisfy (2.26)-- (2.28). 
The result (2.25) is improved because ~ is smaller. 

We have assumed that  0 < a < 1. This seems entirely reasonable and natural. 
However, if a > 1 the reader will verify very easily that  then the only change 
required in the above argument is that  (2.26) be replaced by 

d < 2 ~ _ .  

R e m a r k  1. Since fl < g it follows that,  to estimate K(en), we have employed 
observations outside of the interval (A --  n-% A ~- n -~) and violated our own 
Assumption I. I t  seems quite certain tha t  we have not made full use of all the 
observations in (A -- n-g, A -~ n-g). Indeed, fl was not even uniquely determined. 
I t  seems clear to us that  it must be possible to improve our method. On behalf of 
the latter it must be said that  it works and, where comparison is possible, usually 
gives better results than hitherto given methods. (See, for example, Remarks 2, 3, 
and 4 below.) Most papers in the literature ignore the question of efficiency. 
Consistent estimators are easy to give. 

R e m a r k  2. The estimator most commonly given in the literature is 

N 
f n - -  2hen" 

When comparing f~ with 3~ we must bear in mind that  s might show up to better 

advantage at different values of ~ from those best for/n" To avoid confusion, we 
write ~ instead of ~ when referring to fn. In  the present remark we will always 
assume that  / is in class W2. 

I t  is easily shown that  fn is asymptotically normal with mean 

n - 2 ~  ( 2  

and standard deviation 

]/~-~) (I + o n-(l (1)]. 

For a given positive r, denote 

P[- - rn  -u/5 < fn --/(A) < rn -2/5] 

by pn(/,  ~, r). 
We will compare the estimatorfn with the estimator/n computed using g = 1/5 

and fi = 1/10. From (2.20), we know tha t /~  is asymptotically normal, with mean 

and standard deviation ] / f - ~ )  n -215 • [1 -~ o (1)]. Denote /(A) 

P[--rn-~15 < in - -  ](A) < rn -~15] 

by qn(], r). 
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The following facts are now easily shown:  

r 

l imqn( / ,  r) - -  1/2- ~ 

I f  g > 1/5, lira Pn(/, ~, r) = 0. I f  ~ = 1/5, lim Pn(/, ~, r) exists and is less than  

L(/, r) unless k2 = O, when it is equal to L(/, r). I f  

~ < 1 / 5  and t : 2 . 0 ,  l impn( / ,~ , r )=O.  
n - - +  c:~ 

Since k2 is not  known, and the est imator fn makes no a t t empt  to estimate it, 

fn in mos t  si tuations is inferior to/^s 

3. The Case IV, 

We will t ry  to use the a rgument  and notat ion of  Section 2 as much as possible 

and indicate chiefly the necessary changes. This case is very  simple. We define /n 

as fn, and j~  a n d / n  are defined exact ly as in Section 2. The changes in this case 
are in the est imation of  K(~n) and in the choice of  g. As before, (2.3) and (2.5) 
hold. 2qow we have 

(3.1) /~(y) ---- kly  q- O(yl+a). 

I-Ience 

(3.2) K(sn) 2+~ =0(~ ) 

and 

(3.3) A - =O(~ ). 

Since (2.3) holds we need tha t  

(3.4) -- (1 q- a) g < 2 

I f  the statist ician does not  know a then he should choose g = 1/3. I f  he knows 
a then he should choose 

1 
(3.5) ~ ~ 3 q- 2a" 

The smaller :~ the smaller is a(fn). 

4. The Case W 3 

We define ]n, K (Sn), k2, and/^~ as in Section 2. Wri te  

k (y) = lcl y q- lc2 y2 q_ ka ya q_ 0 (ya+a). 
Then 

2k~ a 
(4.1) K (en) = ~3-- '9n -~- O ( 84n-ka) " 

The last te rm in the parentheses in the r ight  member  of (2.14) can now be re- 
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placed b y  O(n-~(8+a)). I n  place of  (2.17) we now have  

(4.2) 22 =/c2  + ~ p  (n -(1-~)/2)  + 0 (n-~(l+~)). 

I n  place of  (2.18) we now have  
Dn -~ ~ ~ (n -1/2-5~/2 + 3~) 

(4.3) + 0 (n -~(l+a)-a~) 
- ~  0 ( % - - ( 4 + a ) a )  , 

In  place of (2.19) we now have  

1,~ - 7 .  = 9 ~  (n-< 1/2-5~/2+2~)) 
(4.4) + 01a (n -fl(l +a)-2~ 

+ Op (n-(3+~)~). 

Our choice of  ~. is the  smallest  value for which 
^ 

(4.5) l~: - l~ = o ,  (n(~-l)I2). 

The la t ter  is assured if all of  the following hold: 

(4.6) ~ > ~, 
(4.7) 5~ + 2/3 > 1 - -  2 f i a ,  

(4.8) 7g  > 1 - -  2 a ~ .  

I f  a is known then  one chooses fl and  the  convenient ly  smallest  ~ so t h a t  (4.6) 
--(4.8) are satisfied. I n  the more  realistic s i tuat ion where a is not  known a satis- 
fac tory  choice for ~ is a n u m b e r  a little larger t han  1/7, and fl such t ha t  g > fl > 1/7. 
Wri t ing g = 1/7 + ~, ~ > 0, we then  have  

(4.9) In = I(A) + 12~ (n-s/7+~ 

I n  any  case we can always choose a < 2/35 (~ < 1/5), improving  the result  for 
---- 1/5 obtained in Section 2. 

R e m a r k  3. Again we compare  the behavior  of  1̂ ~ with t h a t  of the popular  fn 
in the case W3. Any  class W3 is a subclass of  suitable W2 classes. We  have  a l ready 

~t 
seen for wha t  densities ] in W2 the  es t imator  In (computed with ~---- 1/5), is 
more efficient t han  fn ,  and t h a t  the  la t ter  is the case in mos t  situations. The  same 
conclusions therefore app ly  in the  case W3. 

l ~ e m a r k  4. I n  [4] the es t imator  fn is discussed under  conditions which are 
not  entirely explicit ly given, bu t  seem to be ve ry  close to those of case W3. The 
value g ---- 1/5 ((~ ---- 2/35) seems to be recommended.  

I n  [5] a generalization offn is discussed, bu t  there is no discussion of opt imal i ty .  
I n  [6] the prob lem of finding an es t imator  ]n (x) which minimizes the expected  

co 

value of ] [/n (x) - -  ] (x)] 2 dx was discussed. 
--oo 

5. Concluding Remarks  

I n  all of the above  we took  A to be the  center  of  the in terval  of  length 2 an ; 
this is of  course not  necessary.  Suppose the densi ty  does not  exist a t  A, but  there  
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are r igh t  and  left  densi t ies  (f ight  and  left  der iva t ives  of  the  d i s t r ibu t ion  function).  
The me thods  of  the  p resen t  pape r  are  app l icab le  to  the  e s t ima t ion  of  these den- 
si t ies;  one takes  A to be the  app rop r i a t e  end-po in t  of  the  in te rva l  whose observa-  
t ions are  employed .  The  same is t rue  i f  app rop r i a t e  der iva t ives  of  the  dens i ty  
exis t  only  f rom the  left  or  only  f rom the  r ight .  

App l i ca t ion  of the  p resen t  me thods  will yield an e s t ima to r  of  the  value  of  
mul t i -d imens iona l  dens i ty  a t  a point .  
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