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1. Introduction 

Let (Wt) be the Wiener process. Then it is well known that for Lipschitz continuous 
f, g, the stochastic differential equation of K. It6 

t 

(1.1) Xt=Xo + S f(s, Xs)dW,+ i g(s, Xslds 
0 0 

has a unique solution which is a Markov process with continuous paths. Moreover 
if f and g in (1.1) satisfy f(t,x)=f(x), g(t,x)=g(x) (i.e., they are autonomous) 
then X is a time homogeneous strong Markov  process (cf., e.g. [10]). Kunita 
and Watanabe [14], Dol6ans-Dade [7], and Meyer [7, 16] have developed a 
martingale integral which includes It6's integral for the Wiener process. C. Do- 
ldans-Dade [9] and the author [17, 18] have shown that unique solutions exist 
for equations of the form 

t 

(1.2) Xt=Xo+Sf(s,X~_)dZs+ig(s,X,_)dAs 
0 0 

where f and g are (say) jointly continuous and Lipschitz in the space variable, 
and Z and A are semimartingales. In this paper we will be interested in the cases 
where Z is a Markov process and a semimartingale, and A, is an additive func- 
tional of Z. This allows one to consider models in which the (random) driving 
term is not white noise but, for example, only has stationary, independent incre- 
ments (and so may have jumps), or is simply a Markov (e.g., Hunt) process. In 
this paper we determine the nature of the Markov properties which solutions of 
(1.2) have. 

If Z=(Y2, ~,, ~tt, Or, pz, Z,) is a Hunt process [2, p. 45], in order for Equa- 
tions (1.2) to be meaningful, Z must be a P~ semimartingale. If Z is a P= semi- 
martingale for every z, then a priori it may have a different decomposition for 
every z. In Section 3 we give a sufficient condition for Z to have a decomposition 
which holds for all P~ simultaneously. We call such a process a universal semi- 
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martingale. We show that if a universal semimartingale satisfies an additional 
condition then it remains a universal semimartingale after a change of time. 

In Section 4 we prove several technical lemmas involving properties of solu- 
tions of equations of the form (1.2) as well as lemmas that arise from the Markov 
framework: the uncountable family of measures (W), zslR. We show that the 
solution X of (1.2) is independent of z. 

In Section 5 we show that if A t = t and Z has independent increments and is 
a semimartingale then the solution X of (1.2) is strong Markov. Theorem (5.3) 
treats the cases in which Z either has independent increments alone or is a L6vy 
process. This result extends a classical result of It6. Theorem (5.8) shows that if 
Z is merely assumed to be a Markov process then the vector process (X, Z) 
will be Markov, though X in (1.2) need not be Markov. Perhaps the most inter- 
esting situation is that treated in Theorem (5.9) which considers the case where 
Z is a Hunt process and f and g are autonomous. Then the vector process (X, Z) 
is a time-homogeneous strong Markov process with transition semigroup 
Pt h (x, z) = E x'~ [h (X~, Zt) ]. 

One can define a shift operator for the vector process (X, Z) of Theorem (5.9) 
and if one assumes the additive functional (As) in (1.2) is quasi-left-continuous 
then the process (X, Z) is a Hunt  process. In Section 6 we calculate explicitly a 
L6vy system of (X, Z) in terms of the coefficients f ,  g, the jumps of (At), and a 
L6vy system of Z. 

I wish to thank R.K. Getoor for suggesting this investigation, and J, Jacod, M.J. Sharpe and 
R. L. Wolpert for several helpful suggestions. 

2 .  P r e l i m i n a r i e s  

Although we assume that the reader is familiar with the stochastic integral for 
local martingales given in Kunita and Watanabe [14], Dol6ans-Dade [7], and 
Meyer [7, 16], we restate here some of the important definitions in this develop- 
ment. Let (~2, g ,  4 ,  P) be a probability space where the filtration ( 4 )  is complete 
and right continuous. A right continuous adapted process M t with left limits 
and M o =0  is a local martingale if there exist stopping times T" increasing to oe 
such that M T" is a uniformly integrable martingale for each n. The stopping 
times (T") are said to reduce M. We let ~U be the class of processes V which are 
adapted, Vo = 0, and which have right continuous paths of bounded variation 
on compact intervals. We denote the total variation of a path between 0 and t 

t 

by IV(co)It= ~ IdV~(co)L. A process Yis said to be a semimartingale (for a measure P) 
0 

if it can be decomposed Y~ = Yo + Mt + Vt where M is a local martingale and V6 V. 
The above decomposition is not unique. However, there exists at most one de- 
composition in which the process V~U is previsible [5] (also denoted "pre- 
dictable"). Such a decomposition is called canonical, and semimartingales which 
have a canonical decomposition are called special (see [16, p. 310] for their 
properties). If a local martingale M is locally square integrable, there exists a 

2 ( M , M ) ,  is unique increasing previsible process ( M , M ) t e •  such that M t - 
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a local martingale and has value 0 at t=0.  The process (M, N )  is defined by 
polarization. 

Equality of processes will mean indistinguishability relative to a measure. 
The letter Z will be reserved for Markov processes, and generally our notation 
is that of Blumenthal and Getoor [2]. If Z = ( ~ ,  ~, ~,~, pz, Ot ' Z, ) is a Hunt pro- 
cess, equality of processes will mean indistinguishability for every measure P~. 
All of our Markov processes have state space IR, and ~,  ~*  denote, respectively, 
the Borel sets and the universally measurable sets on 1R. We use the notation of 
Dellacherie for stochastic intervals: lIT, S)) = {(t, co): T(co) < t < S (~o)}. For a pro- 
cess Y we let Yt_(co)=lim Y~(~o), and we denote AYt(co)= Yt(co)- Y~_(co). 

S ~ t  
8 < t  

3. Universal Semimartingales 

Throughout  this section we will assume Z=(f2,  ~ ~ ,  Zt, 0t, pz) is a Hunt pro- 
cess with state space IR [2, p. 45]. We let ~ ~  s<=t) and ~ #  is the com- 
pletion of the N ~ under P#, where # is a finite measure on N, the Borel sets of IR. 
We l e t ~ =  (~ ~# .  

#finite 

(3.1) Definition. Let X be a process on f2. Then 
(i) X is a complete semimartingale if X is a U semimartingale for every z. 

(ii) X is a universal semimartingale if it is a complete semimartingale, and if 
there is a decomposition 

X~= Xo + M~ + V~ 

where M is a local martingale for every pz, and V t ~ .  

(iii) X is a universally reducible semimartingale if it is a universal semimar- 
tingale and if there exist stopping times (T") tending to o9 which in a universal 
decomposition reduce the local martingale term for every P=. 

Suppose that X is a complete semimartingale. Define 

(3.2) Jr= ~ AX~l{lax,l>l}, 
s<=t 

(3.3) Yt=Xt-J t  . 

Then I7,, has bounded jumps, so the process ( ~ A Ys2) �89 is locally integrable, 
O<s<t  

and Yis hence a special semimartingale for every U [16, p. 3101. For a given P~ 
let 

(3.4) Y~= Yo + MT + B~ 

be its canonical decomposition, where M{ is a P~ local martingale, and B ~ e U  
and is previsible. 

(3.5) Definition. Let X be a process on f2 which is a complete semimartingale. 
Let J, be as in (3.2), and Y~ as in (3.3). X is said to satisfy the stopping condition 
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if there exists a sequence of stopping times (T") tending to Go which does not 
depend on z, and is such that for every z, E~(IBqrn)< oo, where B = is given in (3.4). 

We now establish a useful lemma, which is an adaptation to our situation 
of one due to Dol6ans-Dade [9]. We will need a notion of previsibility on the 
space (f2, o~, ~ ,  p=), and results due to Sharpe [19]. We let 'A ~ =PU--evanescent 
processes (i.e., YeA/v if P~{3t: Yt4=0}=0). Let A / '=~A/v  be the evanescent 
processes. Let ~, the previsible a-algebra, be the a-algebra on N+x O generated 
by AVand the family of processes Y adapted to ~ and such that t-+ Yt(co) is left 
continuous with right limits. If ~"  denotes the previsible a-algebra on IR+ x f2 
relative to (Q, ~ " ,  Gu, P") for some finite #, then clearly NN ~N" .  

(3.6) Lemma. Let M be a universally reducible local martingale for all pz, and 
fl >0. Then M can be decomposed into M = N+B,  where N is a local martingale 
for all pz and Be~.  There exists a null set A (i.e., P"(A)=0 for all z) such that 
IdNsl<fi for all seN+, off A. 

Proof Following the technique of Dol6ans-Dade, we define stopping times 
(S,J by: 

S 1 =inf{t:  IAM, I >B} 

S,=inf{t :  t>S ,_ l ,  14M, I>/~}. 

Let C , = ~ A M s ,  l{t>=s,}, and let T k be stopping times increasing to oo which uni- 
n 

versally reduce M. Let R k = T k A S k. Then C, ̂  R~ is of integrable variation for all 
P~. By the results of Sharpe [19], we know there exists a process Cke~  such that 
dk is the dual previsible projection (also known as the "compensator") for each 
system ,(f2, o~,, ~"t, P"~,. Thus C ,~R--Ct  k is a local martingale for each P~. By 
the uniqueness of the dual previsible projection, one can define C on [0,  oo)) by 

= 0  k on K0, R~]I. 

Moreover since the filtration (o~) comes from a Hunt process, d has continuous 
paths a.s. P", each #. Then the local martingale N + M - C + C  satisfies 

[AGJ < IAM~ - A C~l + {A g; s( 

={AM~--AC~I 
<F. 

Taking B = C -  0 completes the proof. 

(3.7) Theorem. A complete semimartingale X satisfies the stopping condition if 
and only if it is universally reducible. 

Proof Necessity. Suppose X satisfies the stopping condition. Let J, be as in (3.2) 
and Yt be as in (3.3). Since X is a complete semimartingale it has "cadlag" paths 
(continue ~t droite, limites/~ gauche), and so J te~.  We wish to show Y, is uni- 
versal. Choose K' large, let R=inf{ t :  IY,[ > K'}, and let K = K ' +  1. Then JYfl <K.  
Let (T') be the stopping times tending to oo such that E~(B},)<oo, where 
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B~= i IdA~[, and Y~=Yo+M[+A~ is the canonical decomposition. Let S=S" 
o 

= R A T  ", so that S" tends to oo, and M[^ s is a local martingale such that 
E~([M[^sl)< oo. Let Y be implicitly stopped at S. Then for G~b ~ ,  we have 

~ [ ~  (~, ̂  ~ - Ys ~ v ) ]  = E~ [ ~  ( A ~  ~ - A~ ̂  ~) ] ,  

where the stopping times U k tending to oo reduce Mr^ s. Taking limits as k ~  co 
yields 

EZ[G(Y~ - Y~)] = E~[G(A{- A~)]. 

We conclude that z--* E = [G (A t -A~)] is N* measurable, for G ~b ~,~. A monotone 
c o  

class argument shows that z~E~S  HsdA ~ is M* measurable for any bounded 
previsible integrand H. o 

We now use again the results of Sharpe [19]. We will show the existence of 
a process A E ~  r~ U which is the dual previsible projection of A~ for each system 
(~, ~ , ~ t  z, U). Since the proofs of these results are omitted in [19], we will 
provide those details which are needed here. Let G e b ~  ~ and H '=G|  J 
= G(co)~<~) Then by Sharpe [19] there exists a process Ht=  SH~' such that H~ [0, tl" 
is previsible and P"-indistinguishable from H', for all #. Let ~~176162 
s=>O, f e ~ }  and o~o* =~{f(Z~);  s>O, f ~ * } .  We define a kernel Q~ on goo  by 

cO 

z / _ /  z - -  z z z z Q~(G)=,W(G| t), where p (C) -E  ~C~dA s. Then Q~<P, and Q, 
o 

is a finite kernel, since Y (and hence A:) is stopped at S. Since ~oo is separable, 
we may use Doob's lemma [15, p. 154] and conclude that there exists A~(z, co) 
E N * |  ~176 such that Qt(dco)=A'dz, co)P=(dco) as (signed) measures on ~,~oo. 
Since Zo~Soo~ *, we have A~(co)=A't(Zo(co),co)e~,~~ and A't(co)=A~(z, co ) 
a.s. P=, for all z. 

If Geb~,  then given z we can find G~<G<G2, such that G~eb~ ~176 and 
E ~ (G 2 - G 1) = 0. This allows us to show that E ~ (A' t G) = #= (G | lt0, ,j) for G e b 5 .  
Define 

At(co ) = lim A'~ (co) 

as s decreases to t through Q. By the right continuity of each At, we have At(co ) 
=A~(co) a.s. P~, each z. For each z, A~ is P~ indistinguishable from A~; hence 

~=M~+A~=M~+A, 

and Y~-A,=M~ implies M{ does not depend on z. Because the canonical de- 
composition is unique, we can define A~ on ]]-0, ~))  by defining it on each sto- 
chastic interval [[0, S~. We let A t be equal on [[0, S]] to the process we obtain 
for [[0, S]]. 

Sufficiency. Suppose X is universally reducible. Let 

X,=Xo+M,+V, 

be a universally reducible decomposition. Then by Lemma (3.6) we can write 
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X t = X o + N t + C~ + V, where N and C are complete local martingales such that 
IAN, I<I and C~'~. Let J,=yAXsl{tzxsl>__l> and 

S~t 

Y,=xo+N+(c , -4 ) .  

Then Yt has bounded jumps and so is special for every P=, and 1A(C-J)tr 
< I Artl + I ANI-<_ 2. Thus C -  a is universally locally of integrable variation, which 
completes the proof. 

We call a change of time a family ('c0~=> o of stopping times of the filtration 
(a~t), such that for each coef2 the function ~.(c0) is right continuous, non-decreasing, 
and finite. Kazamaki 1-13-1 has shown that semimartingales are preserved under 
changes of time. If X t is a universal semimartingale and (%) is a change of time, 
then X~t is a complete semimartingale, but it is not clear that it is still universal. 
We do have however the following: 

(3,8) Theorem. I f  X is a universally reducible semimartingale, and zt is a change 
of time, then (X~,) is a universally reducible semimartingale for the system (f2, ~,  ~ ) .  

Proof. Let X , = X o + M , + B  t be a universal decomposition and let (T') be stop- 
ping times increasing to Go which universally reduce the local martingale M, 
Let Jr, = X~,, ~,~ = J~, etc. Then 

2,= "2o + ~4, + ~,. 

It is easy to see that since Be~/r, so also ~s~/r. Thus it suffices to show that aT/,, 
which is a complete semimartingale, is also a universally reducible semimartingale. 
Let 

8~t 

Then Je~,,  since ~/ is a complete semimartingale. Denote 

M,~176 
J [ =  ~ A]fIsn l{la~r~l__>l} �9 

S~t 

It is easy to see that -~/t" is a uniformly integrable g t  martingale. Let 

& =inf{s: [z~{ > 1} 

s~+~---inf{s: s>Sk; IA~21> 1}. 

Then S k are ~ stopping times which increase to oe and satisfy E=(IJ"ls~)<oc 
for every z. Thus J" is universally of locally integrable variation. Let 

T" =inf{u: %> T'}.  

It is easy to check that 7"" is an ~ stopping time. Let 

&=&-J,. 

Then N has bounded jumps and so is a special semimartingale for every P~. 
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Note that/f/t=)~/7 on {t<T"}, so Jr"=Jt on {t< T"}. Moreover since 

A n A A n 

M~ A ~'- - Mt + (M~, - M~,) l~t_> ~-~, 

we have 
- -  A n ~ j ~ / n  

(3.9) ~^~.=]~/ ,"-J ,"  I ( ,<~- . /+[ ( ) f / f , -M~. . ) - (M?, -  ~._) 1A] l{t>~,~ } 

where A --= { ]M~c , -Mf . ]  = 1}. Then 

(3.10) ^ ~"  ^ ~"  [(M~. - Mr.) - (M~. - Mr._)  1 a [ 

= [ ( M f . _ -  r  ) 1A[ 
~ n  

<= IAM~.. I+ 1. 

Rewrite (3.9) as 

Then JF is universally locally integrable, so (3.10) implies that F,_." is universally 

locall_y inte~grable. Hence using Sharpe's results [19] we know Ft ' eN c ~  exists 

and Ft"-Ft" is a local martingale for every pu. Hence 

(3.11) ~ ~ ~. = ( ; / ,"  + ; , ' -  ~")  + ~ "  

is a semimartingale and the decomposition (3.11) is the canonical one. By the 
uniqueness of the canonical decomposition, the decomposition (3.11) on [[0, T"]] 
agrees with the analogous one on [[0, T"+~]] for any m>0  when the latter is 
restricted to [[0, T"]]. We thus achieve a decomposition on [[0, ~)). Hence 
is a universal semimartingale, so _~/=~r+y is one also, and so J? is a universal 
semimartingale, and the result is established. 

(3.12) Example. Suppose the Hunt process Z of this section is actually a L6vy 
process; that is, a process with stationary, independent increments. Let Jt and 
Y~ be as given in (3.2) and (3.3) respectively. Then Y, is again a L6vy process and 
Y~ has finite mean. We have 

z ,  = z o + [ ~ -  U ~  (~)] + [Jr + U ~  (V,)] 

where for each P= the first term in brackets is a martingale and the second term 
is in ~, since the function t~EZ~ is a.s. (W) an affine function. Thus a L6vy 
process is a universally reducible semimartingale, a fact pointed out, for example, 
in Dol6ans-Dade and Meyer [7]. 

Let C t be a continuous additive functional [2, p. 148] of the L6vy process Z 
such that if 

z r =inf{s: C s > t} 

then z r < oe for each t. The process (zt) is a change of time. We denote 
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Then X, is a strong Markov process [2, p. 212], where all of the obvious objects 
are time-changed. Since Z is universally reducible, by Theorem (3.8) X is a uni- 
versally reducible semimartingale. 

4. The Markov Framework 

Let Z=(f21,~ , ,~ t t ,  Zt ,  Or, pz) be a Hunt process with state space IR. We let 
~ ~  = a(Z~; s < t) and ~ "  is the completion of ~ ~  under P". Let ~ = ~ " ,  where 
the intersection is over all finite/~ on ~,  the Borel sets of IR. In order to allow 
more general initial conditions, we will need to consider a larger space. Define 

(4.1) f2 = IRx [21 

px. = = ex x P~ 

where ~x is point mass at x. Let m=(x,  col) denote a point in f2 and define 

(4.2) Xo(co)=x, when co=(x, col). 

We let (~, = (~ fq~, where the intersection is over all finite v on N | N. We assume 
N = V  ~t. The process Z is defined on f21, and we extend it to (2 by Z(m) 

t 

=Z(col) l~a(x ). By an additive functional of Z we will mean an adapted process 
A on f21 which has right continuous paths of bounded variation such that Ao = 0, 
and such that A satisfies for all s, t 

At+s= At + As o 0 t 

with equality meaning P= indistinguishability. We extend A to f2 by At(o~ ) = A , (o l )  
when co=(x, col). 

The process Z extended to ~ is still a Hunt  process, and the a-fields fft are 
right continuous. Z is a semimartingale on f21 for P= if and only if it is a semi- 
martingale on (2 for P*" ~ for all x. Throughout  this section Z will be a Hunt process 
and X o will be the random variable described in (4.2). 

Suppose the Hunt  process Z is a complete semimartingale (i.e., Z is a semi- 
martingale for every P~" ~). Let f and g map IR+ x IR to IR and satisfy for all t~ IR+ 
and x, yelP,: 

(4.3) (i) If(t ,  x) - f ( t ,  Y)L + ]g(t, x ) -  g(t, y)J < K  Jx -y ] ,  
(ii) f and g are left continuous in t with finite right limits. 

Then it is known [9, 17, 18] that a unique solution exists for each P~'= of 

(4.4) XT'==Xo+ [.f(s, X2"9)dZ,+ g(s, XZ'_*)dA, 
0 0 

which, a priori, depends on P~" ~. The process (At) in (4.4) can be taken to be any 
complete semimartingale, but we will only be interested here in the case where 
A~ is an additive functional of Z. 
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Dol6ans-Dade [8] has shown that if Yis a complete semimartingale (for the 
family PX' 0 and H is a locally bounded previsible integrand, then there exists 

a version of i HsdY~ which does not depend on px,~. We will use a similar tech- 
# 

0 

nique to show that X; ~'z in (4.4) does not depend on PX'~. We first establish a 
useful result. 

(4.5) Lemma. Let 0 ~ = Wo, and 

(4.6) t h"+l = Wo+ Sf~(s, q~_) dY~ ~ "  
i=1 0 

where yi  are P-semimartingales, and each fi satisfies (4.3). Let W~ be a solution of 

i = i  0 

Then rl~ ~ Wt in probability. 

Proof We only treat the case m=  1. Suppose first that Yis a VS semimartingale; 
that is, Y~ = Yo + M~ + Bt, with M locally square integrable, and B previsible and 
locally of square integrable total variation (see [17, 18]). Then it follows from the 
proof of Theorem (3.1) in [18] that t / ~ W t  in probability. 

If Y has bounded jumps it is special (cf. [16]). Let Y~=Zo+Mt+B t be its 
canonical decomposition. Select a t and e>0, and choose /~ so large that 
P{S<=t} <e, where 

S=inf{s:  [BI~=>#}. 

Then S is previsible. Let (S,) announce S, and choose v so large that P {T< t} <e, 
where 

T=S. Ainf{t: IMsl>=v}. 

Then y r  is very special. We have 

P{lt/~- W,] >6} < P({It/7^ w-  W~  ̂TI > 3 } c~ {T>=t})+P(T<t) 
_-<P{InL ~- w,̂  ~I>~} +~. 

Thus t/~--+ W t in probability when Y has bounded jumps. 
For arbitrary Y, let R=inf{s: IAY~[__>2}, where 2 is chosen so 'large that 

P{R<t}<~. Let V~=~R=Y~I{~<m+YR l{s__>m SO that V is a semimartingale 
with bounded jumps. Let y~ = Wo, and 

t 

"+~ Wo+~f(s,~7_)av~ 
0 
t 

Ut= Wo + S f (s  , U,_)dV~. 
0 

It is easy to check that 7~' = r/~ and U t = W t on [[0, R)). We have 



48 P. Protter 

P{[~7 - W~[ > ~} ~ P({IY7 - U~] > (5} ~ {R ~ t}) + P(R < t) 

and !irnP{]3,7-U~[>6}=O, since V=Y R has bounded jumps. This completes 

the proof of the lemma. 

(4.7) Theorem. Let f ,  g satisfy condition (4.3). Then there is a version of the solu- 
tion X t  '~ in (4.4) which does not depend on px, z. 

Proof. Dol6ans-Dade [8] has shown that if previsible H is locally bounded and 
Y is a complete semimartingale, then there exists a version of the stochastic 

t 

integral ~ H~ d Y~ which does not depend on W 'z. Induction shows that (r/7),__> o 
0 

do not depend on (x, z). Moreover t /7~Xf  in W-probability for every P". We 
now use the technique of Mokobodzki ("rapid" filters [5, p. 45]). Assuming the 
continuum hypothesis, Mokobodzki has shown the existence of a rapid filter 

on N such that if one denotes 

X~ = lim inf t/7 

then for each P", XtEf#" t and Xt=Xt" a.s. (P"). Thus Xt~fr c We define X~ as above 
for rationals and let 

X t = l i m X  ~ 

for seQ, s>t. Since Xt" has right continuous paths, X, and Xf are P" indistin- 
guishable for each p. Since for each n ~?t does not depend on (x, z), we deduce X t 
does not depend on (x, z). This completes the proof. 

The next theorem makes use of Meyer's result on the local character of 
stochastic integrals 1-16, p. 3083 to reveal an intuitively pleasing dependence of 
the solution on the (random) initial value. 

(4.8) Theorem. Let (f2, ~,  P) be a complete probability space with a filtration 
(~)  satisfying the "usual conditions" [5, p. 183]. Let yi, l < i < k  be semimartin- 
gales, ]10/=0, and H, K be finite ~,~o-measurable random variables. Let V, W re- 
spectively solve 

k t 

V,=H+ v _)dYZ 
i = 1 0  

i = 1 0  

where fl satisfy conditions (4.3), 1 <i<k.  Let A =  {H=K}.  Then a.s. on A, t ~  Vt(~ ) 
and t ~ W~(og) agree. 

Proof. Let o o I? t = H, #t = K, and 

i '  
r/7 +1 = H +  ~fi(s, tl~_)dYj, 

i = 1 0  i '  
I f,(s, #7_) dYZ 

i = 1 0  
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By the local character of the stochastic integral [16, p. 308] and a standard in- 
duction argument, t~t/~' agrees with t~p7  a.s. on A. Since t/~' and #7 tend respec- 
tively in probability to V t and W t by Lemma (4.5), we have V t = W t a.s. on A. Since 
V~ and W~ have right continuous paths, the result follows. 

We are now in a position to record some trivial but useful relationships among 
the measures pz and px, ~. Let Z be the Hunt process and X o the random variable 
described at the beginning of this section. Let Xt x and X t respectively solve 

t t 

(4.9) X { = x +  ~f(s, X~_) dZs+ ~ g(s, XX) dA~, 
0 0 

t t 

(4.10) X t = X o + y f ( s ,  Xs_)dZs+yg(s ,X~_)dA ~ 
0 0 

where f and g satisfy (4.3), Z is a Hunt process and a complete semimartingale 
and A~YC. 

(4.11) Proposition. Let (X[) and (Xt) be as in (4.9) and (4.10). Let H~bo~, and 
/4(0)) = H(col) lia(x), where co = (x, col). Then 

(i) X, and Xt x are P~'Z indistinguishable for all z. 

(ii) For any f s b ~ J |  E~'~[f(Xt,/4)] =EZ[f(X[,/4)].  
(iii) E x' ~ [~ I~,] - -  E = [u I~,] 1 ~ .  

Proof. Part (i) is an application of Theorem (4.8). (No problems are caused by 
the lack of completeness of each f#,; results are to be interpreted as "up to evanes- 
cence"). Part (ii) follows from part (i) and a monotone class argument, and part (iii) 
is clear, given part (ii). 

5. Markov Solutions 

A diffusion D t can be defined as a strong Markov process with continuous paths. 
If one requires conditions on the conditioned increments so that they are ap- 
proximately Gaussian, then one can express D t as the solution of an It6 type 
stochastic differential equation 

t 

(5.1) Dt=Do+~f(s ,D~)dW~+ig(s ,  Ds)ds 
0 0 

where W t is the Wiener process. (See Gihman and Skorhod [10, p. 70].) 
If one considers a model in which the continuity of the paths is not essential, 

one can consider Markov processes other than Brownian motion, and random 
measures, as differentials. Let f, g satisfy conditions (4.3), Z be (say) a Hunt pro- 
cess which is a complete semimartingale relative to W 'z (see Sections 3 and 4 for 
definitions) and A t an additive functional of Z. Let X o be as in (4.2), and let X t 
solve 

t 

(5.2) X, = X o + ~ f(s, X~_) dZ~ + i g (s, X~_) dA~. 
0 0 

Then one might hope that X t would be a Markov process. This is not true in general, 
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as simple examples show. (Use a Markov chain, so that X, becomes the solution 
of a difference equation, and extend to continuous time.) 

Processes with independent increments need not be semimartingales. Indeed, 
as is pointed out in [16, p. 298], if Z t has independent increments, 

Yt=Zt - ~ AZs l(l~z~l->l}, 
S<=t 

then Z is a semimartingale if and only if the function t~E[Y t ]  is of bounded 
variation. Using the notation established at the beginning of Section 4, we Obtain 
the following extension of It6's classical result: 

(5.3) Theorem. Let Z have independent increments, Z o = 0  , and be a semimartin- 
gale. Let f and g satisfy conditions (4.3). Let X o be as in (4.2) and let X t be a solution 
of 

t t 

(5.4) X t = X  o + ~f(s, Xs_ ) dZs+ ~ g(s, Xs) ds. 
o o 

Then X, is a strong Markov process. 
I f  Z is a Ldvy process and f and g are autonomous (i.e., f( t ,  x)=f(x) ,  g(t, x) 

--g(x)), then X t is a (time-homogeneous) strong Markov process, with its transition 
semigroup given by 

Pt h (x) = E x" o [h (Xt) ] . 

Proof Let T be a stopping time, and dFT=a{ZT+, - -Zr ;  U>0}. Then aft T is a 
a-algebra on ~1 and j f r  is independent of ~T under pO (cf. [3]). Let ~~ s )=x ;  
define X(x, t, s) and for s > t inductively define ~/"(x, s) by 

(5.5) X ( x , t , s ) = x + S f ( u , X ( x , t , u - ) ) d Z , + i g ( u , X ( x , t , u - ) ) d u  
t 

q"+ l(x, s ) = x +  ~ f(u, tl"(X, u - ) )  dZ .+ i g(u, tl"(x, u - ) )  du. 
t t 

Since q" is a semimartingale it has cadlag paths; hence (as is easy to check) 

q'+ l(x, s)= lim ~ f(ui, tl"(x, ul))(Z.,+ 1 - Z . ~ ) +  ~ g(u,, tl"(x, ui))(ui+l -uO 
~ i ~  TM U i ~  m 

where the convergence is in P~ and the limit is taken as mesh (N")--+ 0, 
where ~ "  are partitions of (t, s]. An inductive argument shows t/"e~/f t, and 
Lemma (4.5) shows X(x, t, s )eYf  ~. By the uniqueness of the solutions (see [9, 18]), 
one can show X~=X(X(x ,O,  T), T, S) for stopping times S, T with S >  T. If X t 
is the solution of (5.4), we write X t = X ( X o ,  O, t) and also X t = X ( x ,  O, t). By the 
independence of g r  and air T and using Proposition (4.11) we have for any h e b N  
and stopping times S____ T, 

(5.6) EX'~176 I~R 

= ~o Eh(X(XL T, S)) I g~3 l~ 
=j(X~) 1~ 
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where j(y) = E ~ [h (X(y, T, S))] = E y' o [h (X(Xo, T, S))], and the last equality above 
is a consequence of an elementary lemma in Gihman and Skorohod [10, p. 67]. 
We finally observe that under px, o we have 

(5.7) j(X~r ) IIR=j(Xr). 

Suppose now that f and g are autonomous, Z is a L6vy process, and X t is 
a solution of (5.4). It is well known that for a L6vy process Z, the process Zr+ s - Z T  
is identical in law to Z s (cf. [3]). It is then easy to check that X(x, T, T+ u), u > 0 
is independent of @r and is identical in law (under po) to X~', u>0.  By (5.6) and 
(5.7) we have 

U ,  o [h ( Xs) l ~r]  = j  (XT), 

but in this case we have 

j(y)= E ~ [h(X (y, T, S))] 

= E ~ [ h ( X L  0] 
= E" o [h (Xs_ r)] 

where the second equality above is due to the identification in law of X~ and 
X(x, T, T+ u). This completes the proof of Theorem (5.3). 

In Theorem (5.3) we assumed the differential Z had independent increments 
and were able to conclude the solution X of (5.4) was a strong Markov process. 
If we weaken the conditions on Z so that it is merely a strong Markov process, 
the solution need not be Markov. However, the vector process (X, Z) is a strong 
Markov process. 

(5.8) Theorem. Let Z=(~2, Jd, d/Z~,Z~,P) be a (strong) Markov process and a 
semimartingale. Let f and g satisfy conditions (4.1) and let X t be a solution of 

t t 

X~=Xo + S f(s,  Xs_) dZs+ ~ g(s, Xs_ ) ds 
0 0 

where X o ~ Jgo . Then the vector process ( X,  Z) is (strong) M arkov for ((2, J{, d/lt , P ). 

Proof Let X(x, t, s) and t/"+ l(x, s) be as given in (5.5). Then the results of Dol6ans [6] 
and an inductive argument show that (x, t, co)-+t/"(x, t, co) is jointly measurable 
for each n. Since q"(x, t, co)-+X(x, t, co) in P-probability for each x by Lemma (4.5), 
- K  v (t/" A K) converges in a(L 1,15 ~ to - K  v (X A K) for each K. An applica- 
tion of Doob's lemma [15, p. 154] yields that (x, t, co)-+X(x, t, co) is jointly 
measurable. Indeed, this yields X(x, t ,  c o ) 6 N |  ~, where N is the Borel sets 
on IR and 3W=a{Zt+u-Z,;u>=O }. By the uniqueness of the solutions, one 
easily checks that for stopping times S>=T, X s = X ( X T ,  T,S ). Let h e b ~  and 
K e b W ~. Then 

E {h(Xt) KlJCZt} =h(Xt) E {KI/dt} 

= h ( X ~ ) E { K I Z , }  

=j(X. Z O. 
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Therefore E { h ( X t ) K L ~ t } = E { h ( X t ) K t X t ,  Zt}. If Z is assumed to be strong 
Markov, the preceding holds for stopping times S, T. The theorem now follows 
by an application of the monotone class theorem. 

We now state our main result. Observe that time changed L~vy processes 
such as those described in example (3.11) satisfy the conditions imposed on the 
process Z in the following theorem. 

(5.9) Theorem. Let Z be a Hunt process and a universally reducible semimartingale. 
Let A be an additive functional of  Z. Let autonomous f and g satisfy conditions 
(4.3), X o be as given in (4.2), and let X t be the solution of  

t t 

(5.10) X t = X o +  S f ( X s _ ) d Z , +  S g ( X s _ ) d A  s. 
0 0 

Then the vector process (X, Z) is strong Markov, with transition semigroup Pt h(x, z) 
= E x, z [h(Xt, Zt)]. 

Before proving this result, we establish some notation and a lemma. For  
fixed u, let ~/, = M t o O, for a process M. Let ~ = 0g l (~) .  Following Meyer, we 

i 

let C. Y denote the stochastic integral ~ C s d Y s for a semimartingale Y. The 
0 

following lemma is used in the proof of Theorem (5.9). 

(5.11) Lemma. Let Y be a universally reducible semimartingale. Let C be a pre- 

visible integrand which is universally locally bounded. Then C.  f '= ~'---~, for any 
f ixed u. 

Proof. Let Yt= Y o + M t + B  t be a universal decomposition and (T n) stopping 
times tending to oo such that M Tn is a W martingale for each n. Implicitly stopping 
Y at T n for some fixed n, by Lemma (3.6) we can write 

(5.12) M = N + B  

where N is a (universally) locally bounded martingale, B6~,, and N0=Bo=0 .  
Let G ~ ,  where G = H  o 0 u, H s ~ .  By stopping N if necessary we assume 
without loss of generality that N is bounded. Then 

EZ [ ( ~  - Ns) G] = EZ [EZ~ (N, - N~) H] = 0, 

consequently N is an ~ martingale. If M is a square integrable ~t  martingale 
we have 

E ~ [(~/~ ~ -  (M, n)~) G] 

= E ~ [E z~ [(M t N t - ( M ,  n ) t  ) HI] 

= E ~ [E z~ [(M s N s - (M,  n ) s  ) HI]  

= E  [ ( M ~ N s - ( M , N ) s )  G] 

and if (M,  N)t  is ~-previsible, by the uniqueness of ( - ,  . )  we can conclude 

(5.13) (f/I, J V ) t = ( M , N )  ~. 
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Let N ( ~ )  denote the previsible a-algebra for a filtration (J~). Let ~f~ = { Y~ b ~ ' (~) :  
!?sbN(~)}.  Then ~ clearly contains the left-continuous and ~ -adap ted  pro- 
cesses, and therefore a monotone class argument shows that shifting preserves 
previsibility. For a process B e ~ ,  the statement C . / ) =  ~ is merely notation. 
For N locally bounded, using (5.13) we have 

(5.14) ( C . N - C . N ,  4 . N - C . N )  

= ( 4 )  2. (_N, ]V)-2(77. (~r, C ~ ) + ( C  .~"N, C ."-~) 

=(C) 2. (N,"~)  - 2 C.  ( ~  + ( ~ )  

= ( d ) 2 " ( N , N ) - 2 4 " C ' ( N , N ) + ( C 2 ) . (  ) 

~ 0 .  

Since C.  *No - C ' ~ o  =0, (5.14) implies that C.  ~r= ~'7~. Using the decomposi- 
tion (5.12) we have 

~ ' - ~ = C .  N + C.  B = e .  N + d .  B = e .  M 

and the lemma is proved. 

Proof  of  Theorem (5.9). We define X(x ,  t, s) and inductively define #"(x, t, s) by 
#o (x, t, s) = x and for s > t, 

(5.15) #"+l(x, t, s ) = x +  i f (#"(x ,  t, u - ) d Z , +  i g(#"(x, t, u - ) )  dA,  
t t 

s s 

X(x ,  t, s) = x + j f ( x ,  t, u - ) )  dZ ,  + ~ g(X(x, t, u - ) )  dA u. 
t t 

We also write X(x ,  t) for X(x ,  O, t) and g"(x, t) for/~"(x, 0, t). Observe that 

#1 (X, t, S) = X -~ f (X)(Z S -- Z,) + g (x)(A, - At) 

= (x + f ( x ) ( Z  s_, - Zo) + g (x)(A s_, - a o)) ~ O, 

= #1 (x, s -  t) o 0,. 

Assume #"(x, t, s )=#"(x,  s - t )  o 01. Then 

S 

fin + I (X  ' t, S) = X -~- ~ f(~"(x, (u - t) - )  d2 ._ t  + i g (/~'(x, (u - t) - ) dA._, 
t t 

S - - t  8 - - t  

= x +  S f ( ~ " ( x , u - ) ) d 2 , +  ~ g(~"(x,u-))d2u 
0 0 

= + f ( # " ( x , u - ) ) d Z , +  f g ( l~" (x ,u - ) )dA  o0, 
0 0 

where the last equality uses Lemma(5.11). Induction shows then that for all n 

(5.16) t~:'(x, t, s)=#"(x, s - t )  o 0 t. 
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We next establish the equality 

(5.17) E~{h(X(x,  t, s), Zs) l~}-=EZ~{h(X(x,  s - t ) ,  Z~_,)} 

for h s b N |  First, consider h of the form h ( x , y ) = h i ( x  ) h2(y), with h i contin- 
uous with compact support. By Lemma (4.5) and the uniform continuity of hi, 
hl(#n(x, t, s))--*hl(X(x, t, s)) in the mean. Using (5.16), we have 

E z {h a (X(x,  t, s)) h 2 (Z~) I ~ } = lim E z {h~ (#"(x, t, s) h 2 (Z~)I ~ } 
n ~ o ~  

= lira E ~ {h t (#"(x, s -  t)) h 2 (Z~_ t) ~ Ot [4} 

= lira E z~ {h 1 (fin(x, s -  t)) h 2 (Z~_ t)} 
n ~ o o  

=EZ'{hl (X(x ,  s, t)) h2 (Z~_,) } . 

A monotone class argument now yields (5.17). Note that (5.17) also holds for 
stopping times S>  T. 

Let (Xt) be as given in (5.10), and fix a measure W' ~. Let X~ denote the solution 
of 

' i (5.15) x2=x+~f(X~_)dZ.+ g(XL)dA. 
0 0 

for the law W on f2a. Let h e b N |  F e b ~  ~ and k s b N .  Using Proposition (4.11) 
we have 

(5.19) E~'~[h(X~,Zs) Fk(Xo)  ] 

= E~[h(X2, Z~) F] k(x) 

= E ~ [h(X(X~, t, s), Z~) F] k(x) 

by the uniqueness of the solutions. As was shown in the proof of Theorem(5.8), 
X~ is jointly measurable in (x, t, co). A monotone class argument then yields 

(5.20) E~[h(X~, t, s), Z~) F] k(x) 

= E ~ [E ~ [h (X~, t, s), Z~)l~,~t~ f ]  k (x) 

= E ~ [E = [h (X(y, k, s), Z,)] ~t ~ ly= x~ F] k (x) 

=E~[EXf '~ th(X(Xo,  t, s), Z~)] .~] F] k ( x )  

= E ~'~ [E x',~ [h (X(Xo,  t, s), Z~)I ~f]  F k (Xo) ] . 

Together (5.19) and (5.20) establish that 

E ~' ~ [h (X~, Z~)[ (q,] = E x~' ~ [h (X(Xo,  t, s), Zs)] ~qt~ (5.2~) 

Let 

(5.22) j (y) = E" ~ [h (X(Xo, t, s), Z~)l ~7]- 

Then j(y) is also a version of E~[h(X(y,  t, s), Zs) l~] ,  and so 

(5.23) j ( y ) = E Z ' [ h ( X ( y , s - t ) , Z s _ t )  ] 

=E"Z*[h(X~_t, Zs_,)] 
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where we have used (5.17) and (4.11). Combining (5.21), (5.22), and (5.23) yields 

E ~, = [h (X~, Zs) l fr 

=E x~'z~ [h(X~_,, Zs_,) ] . 

To show that (X, Z) is strong Markov it suffices to show E x' ~ [h(Xr+s, ZT+ s)/NT] 
=EX'~[h(XT+~,ZT+s)]XT,ZT] for any stopping time T, and s>0.  The proof 
of (5.17) is valid for stopping times. For h E b ~ |  we have 

(5.24) Ex'=[h(XT+~, ZT+s)[~T} 

= E z {h (X~. +~, ZT+ s) I @T} 

=EZ{h(X(X~r, T, T+ s), ZT +~)I2T}. 

For a fixed W we know that X(x,  T, T+ s, co), the solution relative to (O, J~, ff,~, W), 
is jointly measurable; it suffices to observe that for ha, h 2 ~bN we have 

E ~ {hi (X~r) h a (X(y, T, T+ s), ZT+ ~) I ~T} 

= h~ (X~) EZ~'{h2 (X(y, s), Z~)} 

=j(s, X T, ZT) a.s., W' ~. 

This completes the proof of Theorem (5.9). 

6. The L6vy System 

In this section we assume Z = (01, ~ ~t,  Zt, Or, P~) is a Hunt process and a uni- 
versally reducible semimartingale (see w 3 for definitions). We will reserve A t 
to denote a quasileft-continuous additive functional of Z. (That is, for any sequence 
(T,) of stopping times increasing to T, AT, ~ A  T a.s.). 

Let f ,  g: IR-~IR satisfy conditions (4.3), let X 0 be as given in (4.2), and let X t 
be the solution of 

t 

(6.1) X t = X o + i f ( X s _ ) d Z s + ~ g ( X s _ ) d A s .  
0 0 

By Theorem (5.9), the process (X,Z) is a time-homogeneous strong Markov 
process with semigroup Pt h(x, z )=E  ~'z [h(X,, Zt) ], where the measures W "z are 
as given in (4.1). Since (At) is quasi-left-continuous, X t and hence (X, Z) are also 
quasi-left-continuous. 

As we have seen in w we can define O=]R• O1, ~ t ~ 1 7 4  ~ etc. Let o~60, 
where c,=(x,  co), with x~lR and coco 1. For each t61R+ we define 

(6.2) 0, (c,) = (X, (o~), 0,(c~)). 

One easily checks that for H~bfr  

(6.3) EX'Z[Ho O.]=EXu'Z"[H]. 

Equation (6.3) allows the generalization of Lemma (5.11), which in turn gives 
that for each fixed s 
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are indistinguishable as processes in t (the null sets depend on s). A "perfection 
argument" in the style of Walsh [20] shows that there exists a process 2f which 
is indistinguishable from X and for o) not in fl (with pu(fl)=0 for every probability 
/~ on ~2), 

X ~, =k~_~ o 0~(~). 

We define ~ t  ~ =o-((2(~, Zs): s < t), j r  o= ~/~ut~o ' and ~tt = 0 ~ t  u where .~t ~ 
s #finite 

denotes the completion of Yft ~ under P", with/~ a probability on B 2, the Borel 
sets of IR 2. We conclude that (X, Z) = (O, ~,, ~ ,  (X~, Zt) 2 Or, px, ~) is a Hunt process. 
For the rest of this section we will write (X~) for (Xt). 

Cinlar [4] and Jacod [11, 12] have considered processes which are similar 
in structure to the process (X, Z). Indeed, the process (X, Z) is a Markov Additive 
Process in the sense of Cinlar [4, p. 86]. To see this let F, G ~ ,  the Borel sets 
of IR. Let Qt (z, F x G) = E ~ ~ [ 1 v (Xt) 1G (Zt)]. Let X(x, t) = X(x, O, t) be the solution 
of (6.1) starting at x (which is defined rigorously by (5.15)), and one easily checks 
that X(O,t) is V indistinguishable from X ( x , t ) - x .  Thus Q t ( z ; ( F - x ) x G )  
=Pdx,  z; F x G). One can also easily check that the process (X ,Z)  is a Semi- 

direct Markov Process Product  in the sense of Jacod [11, 12]. 
A pair (K, H) is said to be a Lhvy system of the Hunt process Z if K(z; dz') 

is a kernel on lRx IR such that K(z, {z})=0 for every zelR, and H is a continuous 
additive functional of Z such that for any nonnegative Borel function F on 
IR x IR we have 

s<_t 

=E z dH s K(Zs, dz')F(Zs, z' . 
0 

Every Hunt  process has a L6vy system [1]. Jacod [12] has related a L6vy system 
of a semi-direct Markov process product (Y, Z) to a L6vy system of the (say) 
Hunt  process Z. In our situation we can obtain a more explicit relationship by 
expressing a L6vy system of (X, Z) in terms of the coefficients f ,  g; the jumps of 
(A~); and a L6vy system of Z. 

Let Bt= 2 AAs, where A~ is the quasi-left-continuous additive functional 
sK=t 

of (6.1). Then Motoo's theorem (see, e.g., [1]) states that there exists a Borel 
function h on lRx IR such that B t is equivalent to the AF 

(6.4) B,=B;= ~ h(Zs_,Z~) 
s e t  
sEJ 

where equality means up to indistinguishability and J =  {(s, o)): Zs_(m)+Zs(m)}. 

(6.5) Theorem. Let Z, X, and A be as given at the beginning of this section, and 
let h be as given in (6.4). Let (K, H) be a L~vy system for Z. Then (N, H) is a L~vy 
system for (X, Z), Where N(x, z; dx'• dz')=K(z; dz') ek( . . . . .  ,)(dx') and k(x, z, z') 
=x  + f ( x ) ( z ' - z )+g(x )h ( z , z ' )  and ~a denotes point mass at a. 
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Proof Recall that 0~ as given in (6.2) is the shift for (X, Z). Extend H ,  the AF 
of Z, to (2 by Ht(x, co)= Ht(co ). Then H is also an AF of (X, Z). 

Let Y~ be a nonnegative previsible process and let F be nonnegative Borel 
on 1R 2. It is well known that ~ dH s ~ K(Zs, dz')F(Zs, z') is the dual previsible 
projection of ~ F(Z~_, Zs). Thus 

s~J 

s<=t,s~J 

Let Y~= W~G(Xs_) where W~ is nonnegative previsible, and GeN+. A monotone 
class argument then yields 

(6.6) EX'={ ~, W~F(Xs_,Zs_,Z~)) 
s ~ t , s ~ J  

for nonnegative Borel F on 1R 3. From properties of the stochastic integral [-16, 
p. 300] we have (assuming h vanishes on the diagonal of 11t 2) 

(6.7) X t = X  t_ +f(Xt_)AZt+g(X~_)AA , 

= Xt_ + f (Xt_)  AZt + g(X,_) h(Zt_, Zt) 

= k (X ,_ ,  Z,).  

Let nonnegative Borel F be defined on IR 4. Equations (6.6) and (6.7) imply 

EX'Z{ ~ WJ(X~_,X~,.Z~,Z~_)} 
s<=t,s~J 

=E x'= W~ K(Z~,dz')F(Xs,k(X~_,Z~,z') ,Z~,z')dH s 
0 

= E  x,~ WsSN(X~,Zs;dx'dz ' )F(Xs,x ' ,Z~,z ' )dH ~ . 

This completes the proof. 
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