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Summary. We introduce a martingale problem to associate diffusion pro- 
cesses with a kind of nonlinear parabolic equation. Then we show the 
existence and uniqueness theorems for solutions to the martingale problem. 

1. Introduction 

H.P. McKean [6] discussed the following nonlinear parabolic equation: 

c~u ~ Z 0 2 
(t, x )=7i ,~  1 c~xl c~xj { alj(x' u(t, ")) u(t, x)} 

- i : 1  ~ ~ {b,(x, u(t, "))u(t, x)}, t>0 ,  x=(x , ) f=leN e, (1.1) 

with coefficients a and b depending on x and on probability densities u. He 
constructed a diffusion process X t whose probability density u(t,x) 
=P(Xtedx) /dx  satisfies the Eq. (1.1) in the case where coefficients a and b are 
tame (see Sect. 3). The purpose of this paper is to construct diffusion processes 
associated with the Eq. (1.1) with more general coefficients than those treated 
by McKean. This enables us to treat, for example, the so-called Landau 
equation which appears concerning the problem of a diffusion approximation 
of the Boltzmann equation (see Sect. 5 and also Funaki [1,2]). The method 
employed here is based on a martingale formulation. We shall introduce a 
martingale problem which corresponds to the Eq. (1.1) and then prove the 
existence and uniqueness theorems for solutions to the martingale problem. 

Let ~ = ~ ( ] R  e) be a family of Borel probability measures on ]R e and let 
~v(1 =<p< oc) be a class of all ue:~ satisfying 

Ilull: = { ~ IxlVu(dx)} 1Iv < o~. 
N.d 
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The space @ is equipped with a topology determined by an LP-analogue pp of 
the Vasershtein metric (see Sect. 2). Throughout this paper, a =  {a~j(x, u)}l<~,j<=a 
and b={bdx , u)}l<_i<a are assumed to be functions of R e x  ~p into the space of 
symmetric non-negative definite d x d matrices respectively IRa with some fixed 
p. Given two such functions, we consider the weak version of (1.1): 

d 
~i (~(t). ~,) = (u(t). ~e.,)O). 4,e cT(P.~). (1.2) 

where C~~ d) is the space of C~-functions on IR e with compact supports, 
(u(t) ,r denotes the integral of t) with respect to a probability measure 
solution u(t)=u(t, dx) and 

a 62 a 
5~,=�89 2 a i ~ ( x , u ) ~ +  ~ b i (x ,u) - - ,  ue~p. 

i,j=l GXIUXj i=1 ~Xi 

To formulate the problem precisely, we introduce some further notations. 
Let C be the space of Ra-valued continuous functions on [0, oo) and denote by 
Xt=Xt(~ ) the value o~(t) of coEC at t~[O, oo). We set ~ and ~ , O ~ t < ~ ,  the 
smallest o--fields generated by {X~; O ~ s < ~ )  and (X~;O<=s~t), respectively. 
Let ~p=B([O, ~),~p) be the space of ~p-valued Borel measurable functions 
u(') on [0, oo) satisfying that sup Hu(t)Hp< oo for every T <  oo. 

0_<t_<r 
The problem is to find, for given fe~p,  a probability measure P on (C, ~ )  

which satisfies the following condition: 

(i) The distribution u(t)=PoXf -1 of X t under P (i.e., u(t, dx) 
= P(Xtsdx)) belongs to the space Np. 

(ii) u(0) = f. (1.3) 

(iii) For every CeC~(Na), r  i 2,qP,(~)r is a martingale 
0 

relative to (P, {~}). 
In Sect. 2, the existence theorem for the martingale problem (1.3) is shown 

under rather general assumptions, namely, the continuity of the coefficients a 
and b in (x, u)~N a X~p and the existence of Lyapunov functions. While, to 
show the uniqueness, we need more restrictive assumption like as follows: the 
function b(x, u) and the symmetric square root a-~(x, u) of a(x, u) satisfy 

I[ a ~(x, u) - a -~ (y, v)]L + ]b (x, u) - b (y, v)] < C Ix "Yl + ~C(pp (U, V)), 
(1.4) 

x. y~IRd, u. v~@. 

with a positive constant C and a strictly increasing continuous function ~c on 

[0, oo) satisfying that ~c(0)=0 and ~ tc-2(V~)dr= o% where II" I} is the norm of 
0+  

matrices. In Sect. 3, the uniqueness theorem is established under a slightly 
milder assumption than (1.4). The uniqueness theorem is again discussed in 
Sect. 5 assuming that the coefficient a has a special form: 

a(x, u)= ~ a(x, y)u(dy), x~lR a, U~-~2, 
Na 
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with a d x d matrix-valued function a(x, y) which has a uniformly Lipschitz 
continuous square root a(x, y), (x, y)~I( zd. The notion of generalized Wiener 
processes is introduced in Sect. 4 to apply it in Sect. 5. Finally in Sect. 6, as 
consequences of the existence and uniqueness theorems, we discuss the Markov 
property, in the sense of McKean, of solutions to the martingale problem (1.3) 
and also the uniqueness of solutions to the Eq. (1.2). 

The author thanks Dr. S. Kusuoka for his useful advise. 

2. Existence Theorem 

In the following we fix a number p(l__<p<oe) and denote II'[]p simply by ]l" I[. 
A metric p = Pv on the space ~p is introduced as follows: 

P(Ul, U2)=inf{ ~ ]x-YlPf(dxdy)} alp, Ul,U2e~p, 
~1~2 d 

where the infimum is taken over the space ~ (u  1, u2) of all Borel probability 
measures F on ~2d which satisfy F(B x~d)=ul(B) and FOR d x B)=uz(B ) for 
every Borel subset B of R e. To prove the existence of a solution to the 
martingale problem (1.3), we make the following assumption throughout this 
section. 

Assumption I. (i) The functions a and b are continuous in (x, u)~P,J x ~p. 

(ii) For  q =p, p' (p' is some number larger than p), there exist positive 
nondecreasing functions hq defined on [0, ~ )  such that 

~,,~Pq(x)<hq(llu[I)~q(x), x e ~  d, u ~ p ,  
and 

{hp(g) c~}-ldo~ = co, (2.1) 

where @qf~C~176 q=p, p', are functions satisfying 

~,q(x)=lxl~+ 1, Ixl>a, 
Ixl~ + l <O~(x)<lxl~+ 2, Ixf<l. 

In this section the following theorem will be shown. 

Theorem 2.1. Under Assumption I, the martingale problem (1.3) has a solution 
for every f s ~  v. 

Remark. (i) Even if Assumption I-(ii) is satisfied only for q=p, Theorem 2.1 
still holds for every initial distribution feg~q, q>p. 

(ii) The condition for q=p in Assumption I-(ii) can be replaced by the 
following one: 

~uOp(x)<C{O,(x)+llullq, x e ~  a, u e ~ ,  

with C>0 .  Indeed a similar condition is used in Funaki [2] for a martingale 
problem with jumps. 
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(iii) Without the condition (2.1), we can prove the existence of a local 
solution to the martingale problem (1.3). 

For given f e ~  and u(.)sNp (Np is the space introduced in Sect. 1), a 
probability measure P on (C, ~ )  will be called a solution to a martingale 
problem [u('), f ]  if P satisfies PoXo  1 = f  and the condition (iii) in (1.3). We 
introduce an incomplete metric p which gives a vague topology on the space 
as follows: 

p(u, v)= ~ 2-J{1/x [ ~ qoj(x)u(dx)- ~ ~o)(x)v(dx)[}, u, v s ~ ,  
j = 1 ~-'~ N- d 

where {qoi}j~ 1 is a sequence satisfying 
(i) q~j~ Co2 (IR d) for j = 1, 2 . . . . .  

(ii) {~0~}j~ 1 is dense in the space Co(• d) with respect to the uni- (2.2) 
form topology, 

and c~ A fi = min (a, fi) for c~, fislR. Put 

zN(co)=inf{t>O;[co(t)[>N }, o)eC, N = l ,  2, . . . ,  
and 

Hu(')ll~o, r l=  sup Ilu(t)[[, u(.)sNv, T <  oo. 
O<_t<_T 

Assuming that there exists a solution P to the martingale problem [u ( . ) , f ]  
with u(.)e~p and f e ~ q  (q=p or p'), several estimates on P are given a priori 
by the following lemma in which we set f i(t)=PoX; -~. 

Lemma 2.1. (i) For q=p or p' and for every K, T > 0 ,  there exists C 1 = C1( q, K, 
T) > 0 such that 

[[fi(t)llq<=Cl{l+[lfH~}, O<t<_T, 

holds if u(')E~p satisfies [lu(')[lrO,Tl<K. 
(ii) P(~N< T) < N-P {2 + I[fl[W} exp { Thv(K)} if Hu(')l[tO, T~ <--_K. 

(iii) For every e, T>O and every compact subset K in ~p, there exists fi=b(e, 
T, K) > 0 such that 

p(fi(t), fi(s)) <z, O<_s<_t<_T, 

if t - s<(~  and u(t)~K for every tel0,  T]. 
(iv) For every N =  1, 2 . . . . .  and every compact subset K in ~p, there exists C 2 

= C2(N, K)>0  such that 

E [ I X , ~ - X  . . . .  12[~]<C2(t -s ) ,  P-a.s., O < s < t < T ,  

if u(t)~K for every t~[0, T]. 

Proof. (i) Since we see 

E[O~(X,~)]=E[O~(Xo)]+ ~ ~e~(~(X~)ds] 
<=E[~q(Xo)] + i hq(llu(s)ll)E[gJ q(X . . . .  )]ds, 

0 
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Gronwall's lemma (see Hille [-3]) implies that 

E[Oq(Xt^~N)]<=E[Oq(Xo)] exp{ i  h~(l[u(s)ll)ds}. 
Making N tend to infinity, by using Fatou's lemma, we have the desired 
estimate. 

(ii) Assume that I[u(')llto, r l< /and  set )o=hp(K). Then 

exp{--2(tAZN)}Op(Xt^~N), O<<-t<--r, 

is a supermartingale. Hence, we get 

e-  ~ T N p p (z N < T) < E [exp { - 2 ( r  A ZN) } Op (XT ^ ~)] < E [Op (X o)] -<- 2 + I I f I[ ~, 

which proves the conclusion. 
(iii) Let K be a compact subset in ~p. Then we see 

Kj= sup l~,q)j(x)l < oo. 
u ~ K , x ~ N  d 

For u( ' )e~p  satisfying u(t)~K, t~[O, T], we have 

i ~(~(t), ~(s))= 2-J{1 a IE[q~j(X,)-~o~(Xs)]l} 
j = l  

< ~ 2-J{1AKj( t - -s )} ,  O<_s<_t<_T, 
j = l  

which proves the conclusion immediately. 
(iv) Set O(x, y)=lx  " yl 2 (x, y~lRd). Then we see 

Ca(N, K)= sup {~qou,~0 (x, y); Ixl, lYl <N,  ueK} < 0% 

where ~cr y) is defined by (~,,O(', y))(x) for each y. Since 

t A ~ N  

O ( x , ^ ~ , x  . . . .  ) -  ~ 2e~(~),x~,(x~,x . . . .  )dr, t>=s 
S A Z N  

is a martingale relative to P(. ]~)  (P-a.s.) for every s>=0, we have 

g E l x t ^ ~ - X  . . . .  121~ = E  2',(~),xO(X~,X . . . .  )driers 
S A T N  

< C 2 ( N , K ) ( t - s ) ,  P-a.s., O<_sNt<_T, 

for u ( ' ) ~ p  satisfying u(t)~K, t~[0, T]. [] 

We also need the next lemma to prove Theorem 2.1. 

Lemma 2.2. There exists a family {P~,g; xEIR d, g ~ p }  of probability measures on 
(C, i f )  such that P~,g solves the martingale problem [g, 6x] , where b~ is the b- 
distribution at x, and the mapping x~--~P~,g(B) is Borel measurable on ~(d for 
every gE~p and B E f f  . 
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Proof Noting the existence of a Lyapunov function tpp for the operator Leg, 
techniques developed by Stroock and Varadhan [7] prove that the family ~(x,  
g) of solutions to the martingale problem [g, 6x] is non void for every x and g. 
Therefore, we can choose Px, g from N(x, g) so that Px, g(B) is Borel measurable 
in x ~ N  a for every Be~" by applying Corollary 1 of Kuratowski and Ryll- 
Nardzewski [5]. [] 

We are now ready to prove Theorem 2.1. Let Cgp= C([0, oo),@) be the 
space of Np-valued continuous functions on [0, oe). 

Proof of Theorem 2.1. We divide the proof into six steps. 

Step 1. Take a family {P~,g; x~IR e, ge@} given by Lemma 2.2 and fix it. For 
s>0 ,  let P~,g be a unique probability measure on (C, ~ )  satisfying 

(i) P2,g(Xt=x, 0<t<__s)= 1, 

(ii) -s  r~,go~ s ~- l=px ,  g, (2.3) 

where ~s is a mapping of C defined by 3~(co)=~o~+(coeC) and co~ + is a shifted 
path: 

COs+ (t)=co(t + s), t >= O. 

For each n =  1, 2 . . . . .  we define a sequence {P~(")}~=I of probability measures on 
(C, ~') inductively in the following manner. For a given initial distribution f 
~ p ,  we put 

P(")(')= ~ Px,r �9 
Na 

After determining Pi ("), we define Pi(~) 1 by the unique probability measure which 
satisfies the following condition. 

(i) P ~  = Py~ on ~/o. 
(ii) A regular conditional probability distribution of P/~)I given ~ / .  (2.4) 

is P~/.),I* with f *  = Pi(")oXiT. 1 . 
By the condition (i) in (2.4), there exists a unique probability measure P(") on 
(C, i f )  such that 

P(") = Pi (") on ~ / .  for every i = 1, 2 . . . . .  

We set fi~(t)=P(")oXt 1 and u.(t)=~.([nt]/n) for t>0 ,  where [nt] is the largest 
integer not exceeding nt. Note that P(") is a solution to the martingale problem 
Eu.( ') ,f] .  

Step 2 is devoted to proving that 

K(T) = sup ]]Un(~ [0, TI < OQ, T < 0 0 .  (2.5) 
n 

First we note that a similar method used in the proof of Lemma 2.1-(i) shows 
the following: 

E P(m [~lp(X(i+l)/n) ] ~ E  P(m [Op(Xi/n)] exp {hp(HU~(i/n)ll)/n}. (2.6) 

Making use of this estimate repeatedly, we get 
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,.t l 4 
where 

]llulllP=S@(x)u(dx) and %=Ill/Ill. 
IRa 

Let ~(t), 0__< t < 0% be an inverse function of a function A defined by 

A(~)=p i {hv(c()~'} -ldO(, 0:>=0~o" 
Gt 0 

Note that :fit) is defined for every t > 0  by the condition (2.1). Since the 
function a(t) satisfies 

c~f~ eKe { i hp(c~(s))ds}=cC(t), t>=O, 

we obtain by the induction in i=0,  1, ..., 

IllUn(i/n)ltl <= cffi/n), n = 1, 2,..., 
and therefore 

Illu.(t)lll_<--~(t), t>__0, n = l , 2  . . . . .  

This proves the estimate (2.5). 

Step 3. Here we show 

lim sup sup ~ [xlPfin(t, dx)=O,r<oc,  (2.7) 
N ~ o o  n O<_t<-r l x l>  N 

which implies that {~,(t); n = l ,  2 . . . . .  tM-0, T]} is a relatively compact subset of 
~p. In fact, we observe 

IxiP fi.(t, dx)= EP'"' EIX~l" ; IXtl > N ]  
[ x l > N  

< ~ E~)KIX~lP]f(dx)+ ~ G")EIXy;lX, l>N]f(dx) 
lxl >logN [xl< logN 

= I] ") (N, t) + I(2 ") (N, t), 

where E(~n)[ �9 ] stands for the expectation relative to a regular conditional 
probability distribution P(x ") of P(') 
solution to the martingale problem 
(2.5) prove that 

I~")(N, t)< Cl (p, K(T), T) 

which implies 

given ~o with x=co(0). Since P~") is a 
[u,(.), 6x] for f-a.e, x, Lemma 2.1-(i) and 

y ( l+lx f ) f (dx) ,  t<:T, 
Ix[>__logN 

lim sup sup I]")(N,t)=O. 
N ~ e e  n O<_t<--T 

While, since the integrand of I(2")(N, t) is bounded by 

{E~ ") El X f ] }  "/p' {P~")(lXtl > N)} 1 -v/P', 
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by using Lemma 2.1-(i) again, we obtain 

I(2")(N, t)< ~ {Cl(p' , K(T),  r)(1 + IxlP')} p/p' 
Ixl < l o g N  

x { g  -p C~ (p, K(T) ,  Z)(1 + IxlP)} 1 -P/r f (dx) ,  t <= T, 
which proves 

lim sup sup 1(2 ")(N, t) = 0. 
N ~ o o  n O < - t < T  

Therefore we get (2.7). 

Step 4. For every N = 1, 2 . . . . .  Lemma 2.1-(iv) shows 

Ee("'[IXtA~,~--X . . . .  l a [ ~ ] < C 2 ( N , K ) ( t - - s ) ,  P(")-a.s., O<_s<_t<_T, 

where K is a closure of the set {u , ( t ) ;n=l ,  2 . . . . .  te[0, T]} in the space @. 
While, noting (2.5), Lemma 2.1-(ii) shows that 

lim sup P(")(~N < T) =0, T<oo .  
N - - * ~  n 

Hence, the family {P(")}~=l is relatively weakly compact on the space C (see 
Lemma 4.2 of Funaki [1]). 

Step5. Lemma 2.1-(iii) combined with the result in Step3 proves that 
{fi,(.)},~=~ is a family of ~-valued p-equicontinuous functions. While Step3 
also shows that the set {ft,(t); n = l ,  2 . . . . .  tel0,  T]}, T<oo ,  is relatively com- 
pact in the space ~ with the vague topology. Therefore Ascoli's theorem 
proves the relative compactness of the set {fi,(')}~=i in the space C(E0, oo), N) 
with a topology determined by uniform convergence on each bounded interval 
of [0, oo). Since {P(")}~=I is relatively compact, there is a subsequence {P("')} 
which converges weakly to a probability measure P on (C ,~) .  We also see 
that ft,,(-) converges to u ( . ) = P o X _  i in the space C([0, oo), ~). For each t>0 ,  
since 

p(u,, (t), u(t)) = p(fi,,(En' t]/n'), u(t)) 

< sup p(fi,,(s),u(s))+p(u(En't]/n'),u(t))-~O as n '~oo ,  
O<_s<_t 

we see that G,(t) converges to u(t) vaguely, which proves the convergence of 
G,(t) to u(t) in the space ~p because {G,(t)} is relatively compact in Np. 

Step 6. Finally in this step we prove that the probability measure P given in 
Step 5 is a solution to the martingale problem (1.3). We may only show the 
condition (iii) in (1.3). Since 

O(x,)- i ~e.o,~)O(x~)&, t>=o, 
0 

is a martingale relative to P(~') for every 6eC~(Na),  it is sufficient to show 
that 

lim E e~') E~g~,. q)] = E e [~" ~]  (2.8) 
. ' ~ o o  
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holds for every bounded continuous function ~b on C, where 

t 

0 
and 

t 

0 

The compactness of the family {u,,(s);s~[O, t], n = l ,  2 . . . .  } and Assumption I- 
(i) show that {7%} is a family of uniformly bounded functions which are 
equicontinuous at every coeC. While, since we have shown in Step 5 that u,,(s) 
converges to u(s) in ~p for every se[0, t], Lebesgue's dominated convergence 
theorem proves that 7~,,(co) tends to 7~((~) as n ' ~ o e  for every coeC. Therefore 
7',, converges to ~P uniformly on each compact subset of C as n'--, oe. Hence 
we can show (2.8) and this concludes the proof of Theorem 2.1. [] 

Noting that the condition (2.1) was used only to prove (2.5) in Step 2 in the 
proof, we get the following. 

C o r o l l a r y .  Suppose Assumption I except the condition (2.1). Assume also that 
there exists a solution P to the martingale problem (1.3). Then the function u(') 
= P O X _  1 belongs to the space cgp. 

Proof. By applying similar methods developed in Step 3 in the proof of Theo- 
rem 2.1, we can prove 

lira sup .( IxlPu(t, dx)=O, Z<o~, 
N ~  O<t<r Ixl>N 

which shows that the set {u(t); t~[0, T]}, T <  o% is relatively compact in the 
space ~p. Therefore the proof is completed since we see u( . )sC([0,  oe),~) 
easily. [] 

3. U n i q u e n e s s  T h e o r e m  - G e n e r a l  C a s e  

In this section the uniqueness theorem for the martingale problem (1.3) is 
shown. As in Sect. 2, a number p (1 __<p< or) is fixed. We assume the following. 

Assumption II. There exist a positive integer d' and an lRe| func- 
tion a(x, u)= {aij(x, u)}l<=i<=d,l<=j<_ d, defined on lRa x ~p such that 

d' 

(i) aij(x,u)= ~ Crik(X,U)ajk(X,U), l <=i, j<d ,  
k = l  

and 

(ii) for every K > 0, 

[I o-(x, u) - o-(y, v)II + I b (x, u) - b (y, v)l -<_ C 1 I x - Y l + ~:(P (u, v)), 
X, yE]R d, u, v ~ @  K, 
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with some positive constant C1= CI(K ) and a strictly increasing continuous 
function ~:(.)=~c(.;g) on [-0,~) satisfying that ~(0)=0 and ~ K-2(]//r)dr 

0+ 
= o% where ~ = {uE@; I[ull <K}.  

Remark. Assume that, for every K > 0 ,  there exist positive constants C and 
such that 

(i) [ la (x ,u ) -a(y ,v ) l l<C{lx -y l+p(u ,v )} ,  x, y e ~  d, u, v s ~ ,  
a n d  

(ii) inf {(0, a(x, u)0); x ~ N  d, ue r  0~lRd: 101 = 1} > c~. 

Then Theorem 5.2.2 of Stroock and Varadhan [7] shows that the positive 
definite square root a~(x, u) of a(x, u) satisfies that 

Ha~(x ,u) -a~(y ,v)[ l<C{lx-y l+p(u ,v)} /2 l /~ ,  x , y ~ R  a, u, v e ~ .  

Theorem 3.1. Under Assumption II, for each f e@,  there is at most one solution 
to the martingale problem (1.3). 

The proof of the theorem will be completed by showing the uniqueness of 
solutions P which satisfy PoX_  1 ~Cgp, since Assumption II implies Assumption I 
except the condition (2.t). Since Assumption II also implies the uniform 
Lipschitz continuity in x of the coefficients, the martingale problem [u ( ' ) , f ]  
has a unique solution Py,,(.) for every u(.)eCgp and f ~ @ .  A property of the 
mapping u(.)~--~fi(.)=Pz,,e)oX71 of the space cgp is investigated by the follow- 
ing lemma. 

Lemma 3.1. For every K > 0 ,  there exist positive constants to=to(K)<1 and C 2 
= C 2 ( K  ) such that 

PZ(fil (t), fi2(t)) < C2 i tc2(P(Ul(S), u2(s)); K)ds, O<t<_t o, 
0 

holds if ut(')ecgp, l= 1, 2, satisfy Ilul(')l[t0,1j<K, where fiz(t)=Py,,~(1)o X[ -1. 

Proof. For uz(')ecgp; Iluz(-)llt0,11</ (l=1,2),  let (XI(t),X2(t))~IR 2a, t>O, be a 
unique solution to the following stochastic differential equation: 

dXt(t) = a(Xl(t), ul(t))dBt+ b(XZ(t), ul(t))dt, l= 1, 2, 
x 1 (0) = x ~ (0) = x ,  (3.1) 

where B t is a d'-dimensional Brownian motion and X is an f-distributed IR< 
valued random variable. B~ and X are defined on a proper probability space 
(f2, ~, P) and taken to be mutually independent. Note that distributions on C 
of Xl( ')  are Py,~(.) for I= 1, 2. We set 

t 
A,= ~ {b(X 1 (s), ul (s))-b(XZ(s), Uz(S)) } ds 

0 
and 

M, = X ~ (t) - X ~ (t) - At. 
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Then, since M t is a d-dimensional martingale relative to P, Burkholder-Davis- 
Gundy's inequality (see, e.g., Ikeda and Watanabe [-4] p. 110) yields that 

with some positive constant C3, which shows that there exists a positive 
constant C 4 = C4(K ) such that 

E[- sup ]Msf]<=C4tp/2E[- sup IXl(s)-X2(s)l p] 
O<---S<--t O~_s<_t 

q- C 4 t c 2 ( p ( u l ( s ) ,  u 2 ( s ) ) ) d s  , t~[-O, 1]. 

As for the process At, we obtain a similar bound: 

E[  sup [As] p] < C s tPE[ sup IXl(s)-X2(s)f]  
O<--s<--t O<--s<--t 

q- C 5 ~r u 2 ( s ) ) ) d s  , te[O,  1]. 

Noting that 

I ( t ) -E[  sup IXl(s)-XZ(s)lq <2 p-1 {El sup IMy]  + E [  sup IAslq}, 
O<~s<t O<-s<-t O<_s<_t 

we get 

re[O, 1], C2= 4(C 4 + C5) 2/p, 
which proves that 

I(t) 2/p < C2 i ~2(p(ul(s), u2(s)))ds, 
0 

This completes the proof since we see that 

t~[-0, to], t o = l  A C~ -x. 

p%(O,~2(t))<I(t) ~/~. []  

Proof of Theorem 3.1. For f ~ p ,  assume that there are two different solutions 
P1 and P2 to the martingale problem (1.3). We set uz(t)=PpX; -~ (/=1,2). The 
uniqueness of solutions to the martingale problem [u( . ) , f ]  for every u(.)scgp 
and f ~ p  implies that t*= in f{ t>0 ;  ul(t)+Uz(t)} is finite. We put f*=u~(t*) 
(=Uz(t*)). Since P/o~_~;71 (/=1,2) are two solutions to the martingale problem 
(1.3) with f replaced by f* ,  we may assume t*=0  without loss of generality. 
Noting that fi,(.)=u,(.) (/=1,2), by the assumption on ~c, Lemma 3.1 shows 
that p(ux(t), u2(t))=0 holds for every sufficiently small t (see Hille [3]) and this 
leads us to a contradiction. Hence we have the conclusion. [] 
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Remark. (i) Assuming d = l  for simplicity, McKean [6] discussed the case 
where a and b are tame functionals of degree m: 

a(x, u)= a(x; Yl,..., Ym) u(dYk) , 
k = l  

b(x, u)= S b(x; Yl ..... Ym) [[ u(dyk). 
~.m k = l  

If the functions a(x;y 1 ..... Ym) and b(x;y 1 ..... Ym) are uniformly Lipschitz 
continuous on IR "+1, then a(x,u) and b(x,u) satisfy Assumption II for every 
p > l .  

(ii) Let a and b have the following form: 

a(x, u)= S a(x, y)u(dy), 
~a~ (3.2) 

b(x, u)= ~ b(x, y)u(dy), 
N.a 

where a(x, y) and b(x, y) are functions of ]R 2a into N a |  and IR a, respective- 
ly. If a(x, y) and b(x, y) are uniformly Lipschitz continuous on IR 2e and the 
matrix a(x, y) is symmetric and uniformly positive definite on ]R 2a, then a(x, u) 
and b(x,u) satisfy Assumption II for every p=>l. This case will be discussed 
again in Sect. 5. 

4. Generalized Wiener Processes and Stochastic Integrals 

We introduce a notion of generalized Wiener processes and define stochastic 
integrals to apply them in the next section. Take u(.)eB([-0, oo), ~), the space 
of ~-valued Borel measurable functions, and fix it throughout this section. Let 
Bb(IR a) be the space of bounded Borel measurable functions on Na. 

Definition. A family of stochastic processes {B~(~o), t~[0, oo); ~OEBb(lRa)} defined 
on a probability space (f2,(r with a reference family {(r is called a 
{Nt}-generalized Wiener process (with intensity u(.)) if it satisfies the following 
three conditions. 

(i) For  every t>0 ,  c~, f i eN and (p, OEBb(]Ra), 

Bt(a~o+flO)=c~Bt((p)+flBt(O), P-a.s. 

(ii) For  every q)SBb(lRa), B.(q)) is a {(#t}-adapted continuous process such 
that Bo(~p) = 0. 

(iii) For  every (p~Bb(N a) and O<_s<t, 

E[exp {i(B'(cP)--Bs(q)))}l~fs]=exp{ -is (q)' q~ ' P-a.s., 

where 
(p, ~b)r= ~ (p(x)O(x)u(r, dx), q), OeBb(~lfl ). 

N.a 
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A generalized Wiener process exists on a probability space (f2, N, P) taken 
properly. We shall sometimes denote Bt(~o ) by (B t, q~>. By the property (iii), for 
every bounded measurable function (p(x; co) on ]Rex (2 which is N~-measurable, 
we can define 

also denoted by 

Bt(~o (" ; co))- B~(~o (" ; co)), t>_s>_O, 

<B t -B~, (p(" ; co)>. 

Let ~#~ be a family of continuous square integrable martingales X = {Xt} on 
(f2, ~f, P) with respect to {fr For  XeJ / / ; ,  we set 

I X I T = E [ X ~ ]  ~, T<oo, 
and 

IXI = ~,, 2-" ( IXI .A1) .  
n = i  

Now we define stochastic integrals with respect to the {Nt}-generalized Wiener 
process. Let 5~ 2 =SP2(u(-)) be the space of measurable functions f =  {f( t ,  x; co)} 
defined on [0, oo)x Ndx  f2 such that for each xelR d, f is a {N,}-predictable 
process and 

T 
2 [ f l lT .~=  ~ dt ~ E[f2(t,x;co)']u(t, dx)< oo 

0 Na  

for every T <  oo. For  fE~('2,  we set 

Ilfll~2 = ~ 2-"(llfll,,s%A 1). 
n = l  

Let ~ o  be a family of functions f e ~ 2  having the property that there exist a 
sequence of increasing numbers 0 = t o < t I < . . .  < t, < . . .  ~ oo and a sequence of 

co co IR d measurable functions {fi(x; )}i=o on x O such that f i (x ; - )  is ~t-measur- 
able for every x ~  d, 

sup Ifi(x; co)] < 
i, X, tO 

and 

f ( t ,  x; co)=fo(X; co)l{o}(t)+ ~ fi(x; co)l(t,,t~+ll(t). 
i = O  

For  f~5r we define 

oo 
I ( f ) ( t )= ~ <B t . . . .  t--Bt~^t,  fi( ';co)>, t>=O. 

i = 0  

Then we see that I ( f ) ~  and 

I I ( f ) l  = IlfJl~'2 for every f ~ o .  

b--r c Using this isometry, since Yo is dense in ~-q~2, the mapping f e ~  0 I ( f )~ / / /2  
is extended to f~q~2~--~I(f)~J//~ as usual. I ( f )  is called a stochastic integral of 
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f ~ z  with respect to the generalized Wiener process B r We shall also denote 
t 

I( f)( t)  by ~ ( f ( s , ' ;  co), dB~). We see easily that, for f and g ~ 2 ,  the quadratic 
0 

variational process corresponding to I ( f )  and I(g) is given by 

( I ( f ) ,  I(g)) (t) = i ( f ( s ,  "; co), g(s, "; co)) s ds. 
0 

Finally we give a representation theorem for martingales in terms of gener- 
alized Wiener processes, which is an infinite dimensional analogue of the well- 
known martingale representation theorem (see, e.g., Ikeda and Watanabe [4] p. 
90). We call k n {B.}k= 1 an n-dimensional generalized Wiener process with in- 
tensity u(.) if {Bk.}k is an independent system and B. k is a generalized Wiener 
process with intensity u(.) for each k. 

Proposit ion 4.1. Let (s if, P) be a probability space with a reference family {fit} 
and Miedr i=1,  2 . . . . .  n such that Mi(0)=0. Assume that there exist functions 
aikE~2(U(')), 1 <i<n,  1 <_k<n' with some n' such that the quadratic variational 
processes corresponding to M i and Mj are given by 

i ds S dx) 
k = l  0 IR a 

Then on an extension (f2, ~, P) and (~t) of (s if, P) and (fit). there exists an n'- 
dimensional generalized Wiener process {Bk.}~'=l with intensity u(.) such that 

ll" t 

Mi(t) = 2 f (aik(S, "; co), dB~>, i= 1, 2 . . . . .  n. 
k = l O  

As the generalized Wiener 

n = n ' = l  and (a(s , .  

we may take 
t 

process, in a simple case: 

;co),a(s,.;co))s4=0 a.s. for every s>0,  

t 

Bt(q) ) = ~ f (s;  (p)dM~ + S (q) - f ( s ;  q))a(s, "; co), dB',), q~eBb(Rld), 
0 0 

f (s;  qo)- f(s,  co; ~o)= { ~ a2(s, x; co)u(s, dx)} -1 ~ ~o(x)a(s, x; co)u(s, dx), 
Na Na 

with a generalized Wiener process B' t with intensity u(.) defined on a probabili- 
ty space (~, ~, t3) properly extended in such a way that B'~ and M~ are mutually 
independent. In general case, although we need arguments in infinite dimen- 
sional spaces, the proposition is shown by applying similar methods developed 
in the book of Ikeda and Watanabe so that we omit the proof. 

5. Uniqueness  Theorem - Special  Case  

In this section, taking p=2,  the uniqueness theorem for the martingale prob- 
lem (1.3) is shown assuming that the coefficient a has a special form: 

a(x, u)= j a(x, y)u(dy), x e N  a, u ~  2, 
Na 
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with an IRd| IR<valued function a(x, y)= {aij(x, Y)}I __<i,j__<d defined on ]R 2d. We 
also assume the following. 

Assumption Il l .  (i) There exist a positive integer d' and an lRd| 
function a(x, y)= {aij(x, Y)}l<_~<_d,l<=j<=d' defined on IR 2a such that 

d' 

ai;(x,y)= ~ tTik(X,y)ajk(X,y), l<=i, j<=d. 
k = l  

(ii) There exists C > 0 such that 

[la(xl, y l ) -a(xZ,  y2 ) l l<C{ lx l - xZ l+ly l -y2 l }  , xl, xZ, yl, y2slR e, 
and 

Ib(xl, ua)-b(x2, u2)l~f{lxl-x21q-pz(Ul, U2)}, xI, x2~IR d, u p  u 2 E ~  2.  

Theorem 5.1. Under Assumption III, the martingale problem (1.3) with p =2  has 
a unique solution for every f e ~ 2 .  

We need two lemmas to prove the theorem. 

Lemma 5.1. For every u( ' )~Z 2 and f e~ ,  the martingale problem [-u( ') ,f]  has a 
unique solution Pf,u(.). 

Proof. We may only prove the assertion of the uniqueness of solutions. Let P 
be a solution to the martingale problem [u( . ) , f ] .  We set 

M t = {Mi(t)}~= 1 = X , -  X o - i b(Xs, u(s))ds. 
o 

Then Mi(t), 1Gi<=d, are continuous square integrable martingales on the 
probability space (C, i f ,  P) with respect to (~t) and quadratic variational pro- 
cesses are given by 

d" t 

( M  i, Mj)(t)= i aij(X~, u(s))ds = ~ ~ ds ~ azk(X s, y)ajk(X~, y)U(S, dy). 
0 k = l  0 ]~.d 

Therefore, by Proposition 4.1, on an extension (C, ~ ,  P) and (~ )  of (C, ~-, P) 
�9 and (~),  there exists a d'-dimensional generalized Wiener process {Bk}d- 1 with 

intensity u(-) such that 

d' t 

Mi(t)= Z ~ ((Tik(Xs, "),dBk), l <_i<_d, 
k = 1 0  

which gives 
d" t t 

X~(t) = Xi(O ) + ~, ~ (a~k(X ~, "), dB k) + ~ b~(X~, u(s))ds. 
k = l O  0 

(5.1) 

Since the Lipschitz continuity in the variable x of coefficients a and b implies 
the pathwise uniqueness of solutions to the stochastic integral equation (5.1), 
we get the conclusion by imitating the arguments due to Yamada and Wa- 
tanabe (see Ikeda and Watanabe [4]). [] 
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Lemma 5.2. There exists a positive constant C such that, for every Ul(')~c-~2(l= 1, 
2), 

t 

p~ (~l(t), fi2(t)) < CeCt~/32(Ul (S), u 2 ( s ) ) d s  , t~O, 
0 

holds, where fix(t)= P1,,,(.) o X;~ l. 

Proof For every uz(.)~cg2 (l=1,2), by applying the theory of measurable 
selections (see Chap. 12 of Stroock and Varadhan [6]), we can take a family 
{F(t), ts[0, oo)} which satisfies 

(i) The mapping F: ts[0,  oo)~--~F(t)E~(P,. 2d) is Borel measurable, 
where the space ~(IR 2d) is equipped with the weak topology. 

(ii) For every t > O, F(t)E~(u 1 (t),u2(t)) and (5.2) 

Ix " yl2 F (t, dxdy)=p2(ul  (t), u2(t)). 
~12 d 

Let k d, {Bt }k= 1 be a d'-dimensional generalized Wiener process with intensity F(-) 
defined on a probability space (~2, ~, P). Note that we can take 2d instead of d 
in Sect. 4. Let X be an f-distributed random variable independent of {B~}d'=I. 
We now consider the following stochastic differential equation: 

d'  

dX](t) = ~ (aZik(Xt(t); "), dBkt) + bi(X'(t), u,(t))dt, 
k = l  

x 1 (0) = x 2 (0) = x ,  

l <i<d,  l=1,2 ,  

(5.3) 

w h e r e  Xt(t)= l d a n d  i . 2 o x 1 {Xi(t)}i=l alk(x, yl, Y )=  ik(,Y), (x, yl, Y2) elR3d. By using a 
usual iteration technique, we can show the existence and uniqueness of so- 
lutions to (5.3). By Assumption III-(ii) and (5.2)-(ii), we obtain 

E EIX 1 ( t ) -  X 2(t)12] ~ C i {g El x l ( s ) -  X 2(s)12] + p2(ul(s), u2(s))} ds 
0 

with some positive constant C. Since Gronwall's lemma shows 

E[lXl( t ) -X2(t ) [  2] < CeCt i p22(U1(S)' u2(s))ds' 
0 

we get the conclusion by noting 

p2(ul(t), ~2(t))<=EElXl(t)-X2(t)12]. [] 

Since Assumption III implies Assumption I (p=2) except the condition 
(2.1), by the corollary of Theorem 2.1, the proof of Theorem 5.1 is concluded 
by showing the existence and uniqueness of fixed points of the mapping 
u(.)ecg2F--,~(.)=P~,,(.)oX-l~cg 2. However this is an easy consequence of Lem- 
ma 5.2. Therefore the proof of the theorem is now complete. 

Remark. The coefficients a(x, u) and b(x, u) of the 3-dimensional spatially ho- 
mogeneous Landau equation have the forms in (3.2) with kernels: 



Diffusion Process Associated with Nonlinear Parabolic Equation 347 

a(x, y)= {aig(X, y)}~ __<i,g< 3, 

% ( x ,  y) = {~jlx - yl 2 _ (xi - y ) ( x ~ -  yj)} k(x,  y), 

b(x,  y)=  - 2 ( x - y )  k(x, y). 

Here k(x, y) is a non-negative function on R 6. If the functions 

(xi-Yi) k]/~,y) and (xi-Yi)k(x,y), 1 < i < 3 ,  

are uniformly Lipschitz continuous in (x, y )eR 6, then the coefficients a(x, u) 
and b(x,u) satisfy Assumption III. We remark that the non-negative definite 
matrix a(x, u), (x, u)~lR 3 x ~2, degenerates if and only if there exists a line L in 
IR 3 such that x e L  and u(L)=l .  See Funaki [2] for the derivation of the 
Landau equation. 

6. Markov Property and Uniqueness Theorem for the Nonlinear Parabolic 
Equation 

As consequences of the existence and uniqueness theorems for the martingale 
problems (1.3) and [u( . ) , f ] ,  we study the Markov property of solutions to (1.3) 
and also the uniqueness of solutions to the Eq. (1.2). We make the following 
three assumptions. 

(A) The martingale problem (1.3) with an initial distribution f ~ p  
(1 < p <  oe) has a unique solution Ps" 

(B) For every f e ~ p  and u(.)sNp, the martingale problem [u ( - ) , f ]  has a 
unique solution Pf.u(.). 

(C) For every fes~p and u ( . ) ~ p ,  the following linear equation (6.1) has a 
unique solution v(.)~Np. 

d 
dt <v(t), tp) = <v(t), ~%~('u(t)lp>, t~0 ,  tpe C~(]Rd), 

(6.1) 
v(0) = f .  

First it is shown that Py has a Markov property in the sense of McKean. 
We define ut+(.)~p by ut+(s)=u(t+s), s>O, for t > 0  and u(.)e~p. 

Proposition 6.1. Assume (A), (B) and put u( t ) = Pfo Xt -1. 

(i) The probability measure Pf has a Markov property in the following sense: 

Pf(o)7e'[.,~)(co)=P~(o,,?(.)(" ), Pf-a.s. co, t>O, 

where cot + e C is the shifted path introduced in the proof of Theorem 2.1. 
(ii) The function u(t) solves the Eq. (1.2). 

Proof. Since Py(cO+e'[~)(co) solves the martingale problem [u~+(.),~,(0] for 
t > 0, we get the assertion (i). The assertion (ii) follows from the condition (iii) 
of (1.3) immediately. [] 

Next we show the uniqueness of solutions to the nonlinear equation (1.2) 
follows from that to the linear equation (6.1). 
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Proposition 6.2. Assume (A), (B) and (C). Then the Eq. (1.2) with an initial 
condition u ( 0 ) = f  has a unique solution u ( ' ) ~ p .  

Proof The existence of a solution was already shown. Let u ( . ) ~ p  be a 
solution to the Eq. (1.2) with u(0)=f.  Since v(t)=Py,ue)oXf 1 solves the Eq. 
(6.1), the assumption (C) shows v( . )=u( . )  which proves Py, u(.)=Py. Therefore 
we get u(t)=PyoXt -1 and this implies the uniqueness of solutions to the Eq. 
(1.2). []  

Remark. By using results of Echeverria I-8], S.R.S. Varadhan pointed out that 
the existence and uniqueness of solutions to a usual (linear) martingale prob- 
lem are equivalent to those to a corresponding linear weak forward equation. 
His remark shows that the assumption (C) follows from the assumption (B). 
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