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w 1. Introduction and Summary 

Let (M, g) be a compact C ~ Riemannian manifold. It is well-known that (M, ~) 
supports a "Brownian motion", i.e. a strong Markov process 

{ Q , d ;  Prx,x~M; Xt: f2~M,~t,t>O } 

with continuous sample paths such that Prx{XtEB}=jp(t,x,y)dm(y ) for all 
B 

t>O, xeM, B Borel set _cM. Here p: (O, o o ) x M x M ~ l R  is the fundamental 
solution of 

1 
(1.1) ~ d,p(t, x, y) =~S p(t, ~, y), 

and dm and A are volume element and Laplace operator on M induced by the 
m 

metric. Since m ( ~  is the invariant probability measure for Brownian motion 

on M, the well-known ergodic theorem implies for all feLl(M), all x~M 

1 ~f(Xs)ds=mol fdm =1, (1.2) Pr x co; t~lim t o 

where m o = m(M). A trivial consequence is 

(1.3) Pr  x c o ; l i m ~  f(Xs)ds=mO-1Sfdm, all f~C(M)=1, 
t~ec M 

all xEM. 
In [1] Baxter and I proved that for bounded measurable f: M--,IR 

t 

~f(Xs)ds-molt ~ f dm 
(1.4) Prx{ co; lim ~ t ~  ~ l o g t M  _]f~mo~(Gf,~-}=l, 

all xeM. 
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Here 

(1.5) (Gf) (x)= j g(x, y) f(y) dm(y), 
M 

where the kernel g is uniquely determined by the differential equation 

(1.6a) �89 -fix(y)+mo 1, x, yeM 

and the normalisation 

(1.6b) ~ g(x,y)dm(y)=O, xeM. 
M 

Equation (1.5) by the way, defines a bounded linear operator G: L2(M)~L2(M) 
which is nonnegative and symmetric. 

We posed the question whether there is an intrinsic class of functions on 
M, for which the logz-law (1.4) holds simultaneously. The existence of such a 
class for classical Brownian motion on the circle follows from a result of Stac- 
kelberg [-9]. For the special case of the flat d-dimensional torus T a it has been 
shown recently by Bolthausen [2] that the Sobolev spaces H~(T a) which in- 

C~(T a) are such classes if ~>2" Bolthausen's proof uses our result (1.4) clude 

and a loga-law by Kuelbs [4] for Banach space-valued random variables. 
It is the purpose of this paper, to prove a simultaneous log2-1aw for Brow- 

nian motion on any compact (M, ~). A simple version of such a theorem is 

(1.7) Theorem. For any compact C ~ Riemannian manifold (M, ~) and associated 
Brownian motion X we have for all x~M 

t 

~f(X~)ds- m o it ~ fdm 
(1.8) PrxIg~mm ~ M = 21/~o-~(Gff) all f~C~176 

t t~ ~ ]/2t log log t 

where mo=m(M ). 
This theorem follows immediately from our Theorem (3.16) which general- 

izes the result of [-2] for the flat torus as far as the manifold is concerned. We 

have not been able to improve on the index e > m a x  d - ~ , ~  of the Sobolev 

spaces H~ in our log2-1aws. The proof of our Theorem (3.16) follows the one 
for the flat torus in that it relies on our result (1.4) and the boundedness of a 
certain H;-valued process (Theorem (3.8)). In order to get the estimates we 
need for general compact manifolds, we shall use a version of Weyl's theorem 
on the asymptotic distribution of the eigenvalues of A as well as a result of 
H/Srmander [-3] that provides bounds for the eigenfunctions of A. It also seems 
convenient to define Sobolev spaces H;(M) in terms of the kernel (1.6). It can 
be shown that these H~(M) are essentially the same as the ones in the sense of 
1-7]. Once the key boundedness result (3.8) has been obtained our argument 
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differs slightly from that of Bolthausen, in that we give a direct proof of Theo- 
rem (3.16), rather than use the log2-1aw of Kuelbs for Banach space valued 
random variables referred to earlier. In the last section however, we do use 
Kuelbs' method to obtain a function space version of the log2-1aw as was done 
in [2]. 

Theorem (1.7) has an intriguing implication, regarding the information 
about the geometry of M, that can be obtained from a typical Brownian path 
with arbitrary starting point. 

Let r ~2x C~176 +) be defined by (a(co,f)(t)=f(Xt(co)), t>O. For 
coe~2, let Co,=~b(co, C~(M)). Obviously Co, is a subspace of the vector space 
C(N +) (also: feCo,~f2eCo,) ,  and Theorem (1.9) below states, that for xeM,  
Prx-a.a. paths the spectrum of G or equivalently of its "inverse" 1A can be 
obtained from Co,. Thus for such paths co all the information on the geometry 
of M, that is furnished by the spectrum of A can be extracted from Co, , by 
simply using the ergodic theorem and the universal log2-1aw (1.8). 

(1.9) Theorem. For all x~M,  Prx-a.a. co the following hold: 

(1) For all f~Co,, ao,(f)aTf lira 1 i t ~  t f (s )ds  exists and 

t 

~ f ( s ) d s - t a o , ( f )  
bo,(f)avf lim o 

t-o~ l /2 t  loglog t 
is finite and nonnegative. 

_ _  2 (2) The function []fl[o,gf]/ao,(f ) is a norm on the vector space Co, with an 

inner product, say (',')o,. The function 

i b 2 2 ( f l  ,f2>o,d~fg{ o,(fl +f2) -- bo,(fl --f2)} 

( f '  f >~' < on C,  • Co, is bilinear, and symmetric. Moreover sup ~ oo. 
f e C . ~  ]if ][o, 

(3) I f  {Lo,,(',')o,} denotes the completion of the inner product space 
{Co,, (', ")o,} and Go, : L ~  LO, denotes the uniquely determined bounded linear op- 
erator such that 2(Go,f i , f2)o,=(f l , f2)o , for f l , f zeCo, ,  then Go, and G have the 
same spectrum. 

Theorem (1.9) is a corollary of Theorem (1.7). Notice first that a-paths 
which are in the co-set of (1.3) are dense in M. For paths which are also in the 

co-set of (1.8) (i.e. for all xeM,  Prx-a.a. co-paths) the mapping f~l /m00 ~b(co, f )  
provides an isomorphism between the space C~176 endowed with the two 
bilinear forms (., ")L2 and 2(G., ")L2 and the space Co, endowed with the two 
bilinear forms (', ')o, and ( ' , - )o , .  It follows that for such co, the systems 
{LZ(M), (', ")L2, G} and {L~o , (-, .)o,, Go, } are isomorphic. 

As for the extraction of information about the geometry of (M,g) from the 
spectrum of A or equivalently of G or Go, we only mention the following well- 
known approach [-8]: 
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If {2,, n > 0} denote the eigenvalues of - A  (including the simple eigenvalue 

20=0), the function 0(t)= ~ e ~nt exists for t > 0  and has an asymptotic ex- 
n = 0  
d oo 

pansion of the form (4~t)-~- ~ e~t ~ as t - ,0  +. Here the e~ are (in general met- 
v - - 0  

ric) invariants, to be precise, integrals over M of polynomials in the curvature 

and their covariant derivatives. In particular e0 =lim(4~t)  ~- 0(t)=mo, the vol- 
t ~ 0  + 

d 
7~ 

ume of M, and if d=2, e l =  lim t { (4~ t )g0 (0 - c %}= ~ x  Euler characteristic of 
M .  r ~ O +  

It follows from our Theorem (1.9) that a "typical" path can "recognize" the 
eigenvalues of G, hence the 2,, thereby the function ~, hence all % as well as d 

-- - 2 lim log O(t) the dimension of M. 
~o+ logt 

w 2. Green Kernel and Sobolev Spaces 

A function p: (0, oe) x M x M-,IR 1 is called a fundamental solution of (1.1) if it 
is a C 1 function in the first, a continuous function in the second and a C 2 
function in the third variable, if it satisfies (1.1) and if in addition 
lim ~ p(t,x,y)f(y)dm(y)=f(x) for all f s  C(M), xeM. A fundamental solution p 
t ~ 0  M 

of (1.1) was constructed in I63 with the method of parametrix (see also [53). It 
is well-known that p is the only fundamental solution of (1.1), that pc C~ ~ )  
• 2 1 5  that p>0 ,  that p ( t , ' , ' )  is symmetric for all t>0 ,  that 

p(t,x,y)dm(y)=l for all t>0,  x~M. Moreover p satisfies the Chapman-Kol- 
M 
mogorov equation. 

We recall the following estimate for large t from [13: There exist ~>0, 
C > 0 such that 

(2.1) sup [p(t,x,y)-moll<-_Ce -~, t>l.  
x , y ~ M  

For small t we shall use a different estimate. In [6] it is essentially shown that 
for all n > 1, there exists C such that 

d [r(x, y)12 

( 2 . 2 )  p(t,x,y)<(2rct) ee zt +Ct n, x, yeM, t<=l. 

Here r(x,y) denotes the geodesic distance of x and y. 
In [1] Baxter and I introduced the Green kernel 

oo 

(2.3) g(x,y)= S {p(t,x,y)-mol}dt, x,y~M, x*y.  
0 

Symmetry in x and y for p implies symmetry for g. Obviously g satisfies (1.6b). 

Moreover g(x, ')  is continuous on M-{x} ,  since ~{p(t ,x ,y)-mol}dt  is con- 
1 
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1 

tinuous on M because of (2.1) and ~{p( t , x , y ) -mol}d t  is continuous on M 
0 

d 
-{x}  because of p(t,x, . )<  C{t 2 e , +t"}, outside a neighbourhood of x. Also 
g(x, .) satisfies (1.6a) in distribution sense, which follows from 

T 

1 ~ (A ~)  (y) d in(y)  ~ { p ( t ,  x ,  y )  - m o  1 } d t 
M e 

= ~ ~(y){p(T,x,y)-p(~,x,y)} din(y), 
M 

a consequence of (1.1), by letting e--+0, T--+oo. We conclude from Weyl's lemma 
that ge Coo off the diagonal of M x M. 

For feLl(M), Gf is defined m-a.e, by (1.5), and ~ Gfdm=O. For every 
M 

bounded measurable f:  M--+IR 1, the function Gf is continuous because 

6 

sup 5 If(Y)l din(y)~ Ip(t,x,y)-rno*l dt 
x~M M 0 

is arbitrarily small for sufficiently small 6 >0  and 

oo 

f(y) dm(y) ~ {p(t, ", y ) - m  o 1} dt 
M a 

is continuous by (2.1). Also we have for fELl(M) 

(2.4) �89 = - f  +mo 1 ~ f dm 
M 

in distribution sense. By Weyl's lemma we have Gf~Coo(M) for feCoo(M). 
Since the only solutions ~b of A qS=0 are the constant functions, (2.4) implies 
for f e  C~176 

(2.5) G(�89 = - f  + mo 1 ~ f dm. 
M 

We introduce for c~ > 0 the kernel 

(2.6) g~(x, y ) =  IF(c0] - 1 ~ t ~-  1 {p ( t ,  x ,  y )  - m o 1} dr, 
0 

Obviously g 1 (x, y) = g(x, y), g~(x, y) = g~(y, x). Since 

x, yeM, xq=y. 

and 

{p(q,x, z ) - m  o 1} {p(t2, z, y ) - m  o 1} dm(z)=p(q + t z ,X ,y ) -m o a 
M 

I 

~e ~(1-0 ~ ~dt=v(~)v(p)EVi~+/~)l-~ for ~,~>0 
0 
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we conclude 

(2.7) ~ g~(x,z)g~(z,y)dm(z)=g~+~(x,y) for e,/?>O, 
M 

i.e. the kernels {g~,e>0} form a semigroup. We conclude from (2.1) that for 
~ > 0  

(2.8) [Ig~Llg~sup i Ig~(x, y)l din(y) < ~ .  

Notice that for every c(>0, the kernel g~ is C ~ off the diagonal. This follows 
1 

for ~ r  1 {p(t, x, y ) -  m o 1} dr, because p(', x, ")e C ~ ([0, oo) x ( M -  {x})), and for 
0 

oo 

r  1 {p( t , x ,y )_mo 1} dt because 
J. 

( 2 . 9 )  

that for x, y s M  

~ r  1 {p(t, x, y ) - m  o 1} dt 
1 

oo 

= ~ din(z) p(1, z, 3') ~ dr(1 + t) ~-1 {p(t, x, z ) -  m o ~} 
M 0 

Lemma. For every dimension d> l, every real e>0 ,  there exists c such 

]g=(x, y)l ~ 

, d 
C / f ~ > -  

2 
d 

c{1 + log -  r(x,y)} /f ~= 
2 
d 

c[r(x,y)] -~+2~ if ~<~ 

where log- t =max{0, - l o g  t}. 

Proof We have by (2.2) with n =0, after a change of the integration variable, 

1 min{1,[r(x,Y)] -21 d 1 

~r  -~+2~ ~ s ~ - l + ~ e - ~ d s  
0 0 

max {1, [ r (x ,  Y}] - 2  } d 

+c[r(x,y)] -a+2~ ~ s 2 l+~ds 
1 

In this inequality the first integral on the right side is always majorized by the 
1 d . 1 

finite integral ~s-~- l+~e-2~ds ,  whereas the second integral is majorized by 
0 oo d d 

~, - - -  1 + : ( ~  the finite integral j s 2 as if c~<~, by 2 log- r (x ,y)  if c~=~ and by 
1 

d 
cmax{[r(x,y)] d-2~, 1} if ~>~.  
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In the following we let 

L2(M) = {fEL2( M); S f dm= 0}, 
M 

C~(M) = {f6 C~176 ~ f dm = 0}, 
M 

Co(M)= {f~ C(M), ~ f din=O}, 
M 

B(M)= {f: M - d R  measurable and bounded}. 

We will usually suppress "M" in the notation. 

Remark. In order to justify changing the order of integration in some of the 
arguments to follow, it will be helpful to notice that for 0 < a < d, 0_-< z < d 

c if a + z < d  

s [r(x,z)] ~ c { l + l o g -  r(x,y)} if a + z = d  

tc[r(x,y)] d . . . .  if a+z>d.  

The proof is straightforward (though somewhat tedious) in normal coordinates 
and follows along the same lines as in the case of bounded Euclidean regions. 
(It uses the decomposition 

M = {z; r(x, z)<�89 y)} w {z; r(y, z) < i t ( x ,  y)} 

w {z; �89 y) < r(x, z) < r(y, z)} 

u {z; �89 y) < r(y, z) __< r(x, z)}). 

If we let for c~ > 0 

(2.10) (G~f) (x) = j" g~(x, y) f(y) din(y), 
M 

then (2.10) defines a semigroup of bounded symmetric linear operators 
G~ : LZ- ,L 2. Notice that (using the preceding remark) 

(2.11) ]IG~fIIL2< IlfllL2' [[g2~[I 1/2. 

Obviously G 1 =G. The operators G~ are invertible because of (2.4). Invertibility 
and the semigroup property imply that the G~ are positive definite. Just as in 
the case e = l  we have for c~>0 that G~feC(M) if f :  M ~ I ~  is bounded and 

d 
measurable. We note incidentally that for c~ >~, G~" L2o~L 2 is Hilbert-Schmidt, 

since in this case ~5 [g~(x,y)] 2 dm(x)dm(y)< Go. We could define the G~ by stan- 
dard functional analytic methods, but it seems easier and faster to use the 
probabilistic approach we have taken. 

~--G=/z(L2), endowed with pointwise ad- (2.12) Definition. For real e > 0  let H 0 -  
dition and pointwise multiplication by scalars and with the inner product 

(2.13) ( G=/; L ,  G~/2 f z)n~ = 2~ ( f  ~ , f  z)L~" 
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We write l[ [1~/~ for the norm induced by ( , )n;.  
c~ ~ 2 Obviously the spaces H 0 are complete; moreover H o___L 0 and 

Ilfl[L 2<2-~/2 IIg=ll x/2 I]fllHg for fEH;.  

From definition (2.12) and from (2.11) we conclude that for ~ <c~ 2 we have H; ~ 
__ H; ~ and 

~2 ~1 

[]f[lna , < 2 - ~  Hg.~_~, 11/2" ][f[lna ~ for f~H~ ~. 

Since for every integer k > l ,  every ~bsC~, we have qS=Gk{(--1)k2-kAkqS}, it 
follows that C~___H0 zk and hence C~___H i for all real a>0 .  Since GkOsC ~ and 
since C~ is dense in L2o, we have that C~ is dense in H02k, k > l ;  hence C~ is 
dense in all H; ,  e>0 .  In other words, the spaces H; are the completions of C~ 
with the norm H ]ln~. It can be shown that they are the Sobolev spaces of [7] 
restricted by the metric condition ~ fdm=O.  To this end one has to show that 

u 
on C~ the norms Ho k are equivalent to the admissible norms in [7] which are 
defined in terms of (non canonical) inner products on the k-jets. The rest is 
interpolation. 

From (2.11) we also conclude that (2.10) defines a semigroup of bounded 
linear operators which are symmetric and positive definite, on each Ho ~ for 
fi>0. The following lemma follows from (2.10) by application of the Cauchy- 
Schwarz inequality and of Lemma (2.9). 

d 
(2.14) Lemma. I f  ~>~, then (2.10) defines a bounded linear operator 

G~: U ~ B .  
As one would expect one has the following Sobolev theorem. 

(2.15) Theorem. I f  e>d, then the set H i is contained in C o and 
Z 

[ I f l l ~  2-=/2 sup[g~(x,x)l 1/g Ihflblta for f s H ; .  
x e M  

, t  

Proof. If e > 2 '  then f=G~/z f  is bounded for f ~ L  2 by Lemma (2.14), to be 
precise 

I l f l ]o~sup [g=(x,x)[ 1/2 IIf[IL2=2 e/2 sup Ig~(x,x)] 1/2 ]]flh/tg. 
x e M  x ~ M  

Now let ~ ,~C~ be such that IlqS,--fljL2--~0 and let ~)n=G~/2~n . Then I]~b,-fHo~ 
= IL G~/2 (4~n--f)  ll ~ <= C II ~ . - - f  II L2 ; and since ~b n e C o, it follows that f ~  C o. 

Remark. A refinement of the preceding argument shows that ~ H i = C~. This 
~ > 0  

implies in particular that for c~>0, we have G~feC~ i f f eC~ .  
We shall now give a characterization of the functions in H i in terms of 

their Fourier coefficients. This characterization is quite standard when M is a 
flat d-dimensional torus. 
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Denote by 0<21__<22__<23<... the nonzero eigenvalues of - A  and by 
q51, q~2 ....  an orthonormal sequence of corresponding eigenfunctions. Thus A qS, 
= -2,4~,, ~ (~,~O~2dm=(~ . . . .  . Moreover O,~C~(M) and the q5 are complete in 
L2o. M 

For f~L  2, let f ,=(f4,)r~. We have f = ~ f ~ b ,  in L 2. We note for later use 
that G~b,=2221r hence G~O,=2~22~(a,. 

(2.16) Definition. q5~,=22~/2r n > l ,  c~>0. 

From (G~/2 f, ~b~)H~=2~/2f, for f r  2, we conclude the following 

(2.17) Theorem. 

(1) For all c~>0, the fimctions {r 1} form a complete orthonormal sys- 
tem in H;. 

(2) A function fsL2o belongs to H; iff ~ 2~ s  oo. 
n = l  

(3) for fe l l ; ,  Ilfl12~= ~ 2~f  2. 
n - 1  

This theorem implies immediately 

(2.18) Corollary. For f eH~, the vectotfield g r a d f  exists weakly and ]lgradfl[ 
~L 2. Moreover for fl,f2~H~ 

(2.19) (f~, f2)H~ = ~ gradf l '  gradf2 dm 
M 

Here II [I denotes the i -norm of a tangent vector. (2.19) implies that for fleH~, 
f2 eLz, ~ gradfl"gradGf2dm=2 ~ f l fa din. 

M M 

w 3. A Universal Law of the Iterated Logarithm 

In this section we shall use a version of Weyl's celebrated theorem on the 
distribution of the eigenvalues 21<22__<23__<... of the Laplacian - A  on M. 
According to this theorem there exists 7 > 0  such that 

2 

(3.1) 2 ~ne- .  

We will also need Theorem (1.1) of HSrmander [3], by which for correspond- 
ing LZ-orthonormal eigenfunctions 4,  

d d - 1  

(3.2) ] ~ [~.(x)]2-a2Yl<b2~ -, all x~M, 2>1 
2 ~ < 2  

for some constants a and b. Actually all we need of (3.2) are suitable growth 

controls for q5 and r namely 
d - 1  

(3.3) sup [~,(x)]Z< An e 
x ~ M  
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and 
. - 1 ( 2 c ~ +  1 )+  1 

(3.4) sup [~b~(x)-I 2 ~ a ~ n  e 
:geM 

which follow from (3.1) and (3.2). Notice that (3.1) follows immediately from 
(3.2). It can also be derived from the asymptotic expansion of ~ e  x"', men- 
tioned in w 1, via Tauberian theorems. 

We note incidentally that (3.1) implies compactness of the operators 
Gp: H"o~H~o, L2o--~L2o, and hence compactness of the embeddings H~___ H~ 2 c_L2o, 
~ 2 ~ 1  �9 

We now turn to Brownian motion on (M,~) as introduced in w 1, and define 
for bounded measurable f: M ~ I R  1 

t 

(3.5) Lt( f, co) = ~ f(Xs(co)) d s, t > O. 
0 

t 

If e > ~ ,  then for fixed coef2, t>O, ~g~/2(" 
0 

,Xs)dsel_ ~ since 

(i )2 5din(x) g,/2(X, Xs)ds < t  2 sup hg~(y,z)l. 
y , z ~ M  

If we define for ~ > ~  the H;-valued process U(t, co) by 

(3.6) U(t, co) (x) = 2 ~ G a / 2  g~/2(', Xs) ds 

t 

= 2  -~ 5g~(x,X,)ds 
0 

then 

(3.7) (U(t, oo),f)n~ = L,(f, co) for f~H~. 

Such U were introduced in [2] without the kernel g~ for Brownian motion on 
the fiat torus. For every coef2, the H~-valued process U(t, co) is strongly con- 
tinuous in t, since 

]l U(t, oo) - U(to, co)I1 ~; = 2-~(t - to) 2 sup [g~(y, Z)[. 
y, z E M  

If we use in H~ the a-field of its Borel sets, then the function U: [-0, ~ )  
• is progressively measurable. In El] we studied the Central Limit 
Theorem and the Law of the Iterated Logarithm for the IRl-valued variables in 
(3.5). In those two theorems the asymptotic variance was given by the form 
2m ~ l ( f  Gf)L 2 which equals 2 -~+ 1 mo 1 (G,+ 1 f l , f 2 ) ~  for f t , f2cH~ �9 In w we 
shall give a logg-law for the process U(t). We start now with 

(3.8) Theorem. For any compact C ~ Riemannian manifold (M, ~) of dimension 
d> l and associated Brownian motion X, let the H~-valued process U(t) be 
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defined by (3.6) for c~>~. If ~>max (d-32, d2), then for all xeM, Pr~-a.a. co the 

f I (t, co) } 
random set (l/2t~oglogt, t>= 3 in H i is conditionally norm-compact. 

Proof. First we notice that a version of Ito's formula holds. For all xeM, feH;  

(3.9) Mt(f co)•f L,(f  co) + (G f)  (Xt(co)) - (G f)  (X0(co)) 

is a Prx-martingale. Its increasing process is 

(3.10) (Mr(f), Mr(f)} = i ]grad G f[ 2 (Xs) ds 
0 

= 2 i f(X~)(G f)(X,) ds. 
0 

Furthermore if we let g~(x)=2-~g~+l(x, .), then by (2.9), g~(x)eH;, 

sup ]lg~ (x)]] H; = 2 2  - ~ supg~+2(X,X)<00, 
x ~ M  x ~ M 

and 

(Gf) (x) = (g~(x) , f}~ for f~H;.  

{ g~(X') --0} --1' Obviously Pr  x co; t~o~lim l / 2 t l ~ 1 7 6  t 

If we define the H~)-valued process MS(t, co) by 

(3.11) M~(t, co) = L~(t, co) + g~(Xt(co)) - g:(X0(co)) , 

the theorem is proved if we prove Pr~-almost sure conditional compactness in 
M~(t,co) } 

H; of ( ] / ~ g t , t > 3  . 

In view of (3.9) we have (M~(t, co),f}H~=Mt(fco) for all fe l l ; .  We let 
M~"~(co)=Mt(~b],co). From (3.1), (3.4) and (3.10) we conclude 

(3.12) (M~' ~, Mg "~} <= ctn-�89 (2~+ 3)+ 1. 

I f c ~ > d - ~ , f l ~ f  ( 2 ~ + 3 ) - l ,  t h e n f i > l .  

( ~ )  F . - n - ~  a' Clearly - 1 - 2 6 a > 0 .  For v > 2  let t~ Let 61~ O, , _ , -  . ,52Crfi 

gnn B 
I 

] /21oglogt~  with c from (3.12). Then for v_>2 = 2  ~, for v>2 ,  n > l  let %~= 2c ~ t~ 
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Prx{ sup M~'~>e, 1/2t~loglogt~} 
t ~ < t < t v +  1 

\ t , t ~ j > ~ c ~ l ~ 1 7 6  
- -  L t v < = t < t v +  i 

__<Prx sup exp[e.~M~ - ~ e . ~ .  r ,Mt'~}]>(vlog2)S7-~ 
{ t ~ < t < t ~ +  1 

e 2 n #  1 

< (v log 2) - ~ = (v log 2) - ~ n ~, 

as exp[.. .]  is a continuous martingale. The last term is majorized by v -"~ for 
v> 2, n>no> 2 with (~=�89 

Hence for v o > 2 

V->_2vo 1/2t loglog t >e .  

< ~ Pr~{ sup M?~>e.1/2t~loglogtJ< ~ v -"~. 
" r  'r t,r m-Lt < t v +  1 v ~  ~2o 

Replacing qS~ by -~b~ we conclude for v o > 2 

pr~t sup 'M~ ''~ ' >~.}< 
V >-- 2~o 1/2 t log log t 

2 ~ V -n6. 

It follows that for v o > 2 

Prx{co; 3n>n o, 3t~[2 "~ oe) such that 

~g = "r 

IM~"~[ > ] 
-- '~'n - -  . = n o  v = v o  

and since ~ ~ v -"~<m,  
n = 2  v = 2  

Pr x co; VVo>2, 3n>no, 3tel-2 ~~ ~ )  such that 1 /2 t loglogt  i.e. 

M? ~1 } 
(3.13) Pr x co; 3Vo>_-2, such that Vn>__no,Vte[2~~ l/2tloglogt-<_e, =1. 

~ i ~+i 
If we set ~*=e, for n>n o and ~,*-2- (qS~, G4)])=4mo~-2~-T for n < n  o, 

then (3.13) and (1.4) imply that Prx-a.e. there is Vo>2 (depending on co) such 
that 

{ M~(t'co) ,t>=2~~ * all n>_--l}. 
1/2t log log t 
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Since the last set is compact in H~3, the proof is finished. 

Wt ,o L (t'co) } (3.14) Remark. For any coat?, [ ~ = g t , t > = 3  is conditionally II ][H~- 
compact iff 

IIL~(t'co)llna <oe and (1) sup 
~>_3 1/2t loglog t 

~L ~ (2) lim sup ][g~(t'co)-HN (t'co)IlH~=0, 
N ~  ~>__3 l /2 t  loglog t 

where fl)" H~o--,H~ denotes the projection of H~ onto the subspace spanned 
by ~b~ . . . . .  qS~v. Notice that (2) follows from the conditional compactness 

, ----L~(t' co) } 
of [ i /2 t~ag~gt , t>3,  because the H~v are uniformly equicontinuous. By 

Theorem (3.8) we have proved 

(3.15) Prx I lim sup IlI~(t'co)-- El} I~(t'co)llH3 O; 
[X--oo t>=3 ~ ~  = )=1, xaM. 

We will use this remark in Section 5. 
Theorem (3.8) allows us to prove a universal log2-1aw. 

(3.16) Theorem. For any compact C a Riemannian manifold (M,g) of dimension 
d> 1 and associated Brownian motion X and Lt(f) defined by (3.5), we have 

(3.17) Lt(fco ) 
Pr~ o9; clustert~oo set ] / 2 t l og log t  

all fal l ;}  = 1, xaM 

/ f e > m a x ( d  3 d 

Proof By Theorem (3.8) we have for all xaM, Prx-a.a. co 

C(co) = sup IIL~(t)lln~ 
~>=3 ] /2t  loglog t 

<OO. 

We conclude from [(L~(t),f)H~l < Ilfkln~ HL~(t)IIH~ that for all xeM, Prx-a.a. co 

t t < 
S f(Xs) ds 
0 

l /2 t  log log 
IlfllH~ C(co), t>3, fel l; .  
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The theorem follows now from our result (1.4) applied to a countable dense set 
of functions in H~. 

w 4. The Law of the Iterated Logarithm for Vector Functions 

Once we have the log2-1aw (1.4) of [1] for a single function, a logz-law for a 
single vector function follows at once by the trick of considering arbitrary lin- 
ear combinations of the components (cf. I-4]). We shall give some details. 

For f l  . . . .  , f ,  eLZo, the matrix ((fi, Gfj)f2, i , j= 1, ..., n) is nonnegative definite. 
It is positive definite iff f l ,  . . . , f ,  are linearly independent. For linearly inde- 
pendent f~ . . . .  , f ,  eL2o we define the ellipsoid E I ...... ~, by 

where ( ~  aij ) is the inverse matrix of ((fi, Gfj)L~, i , j = l  . . . . .  n). 

(4.1) Theorem. For all n> 1, all linearly independent bounded measurable func- 
tions f l  . . . . .  f ,  : M ~ I R  we have for all x e M  

(Lt(A), ..., Lt(f,)) } 
(4.2) Pr x I R  n -  cluster set - EA,  = 1. 

t~oo ] /2t  loglog t .... s, 

Proof Let n >2. It is sufficient to prove (4.2) for the special case where (fi, Gfi) 
= ~ii for i , j= 1 .. . .  , n. The general case can be reduced to this special case by a 
linear transformation. In the special case 

For ~eSBn, define ~ : R ~ I R  by ~ ( t / ) = ] / ~  f (it/i and j~: M ~ I R  by 
i=1  

7=1 

Obviously 

(4.3) E ~ < ~ m  ~ on B , -  {(}, { ~ ( 0 = ~ m ~ ,  

and for any dense set D on OB, 

and by our log2-1aw (1.4) applied to f~, if D O is a countable dense set on 8B, 
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(4.5) Pr x ~cluster set[~ ( (Lt(fl)' "" 'L t ( s  

= + 2 
[ - ~ m ~ '  ~ m ~ ] '  all f ~ D o } = l ,  x~M. 

Notice that (~,Gf~)L~=I. If we denote by Af~ ..... f.(co) the cluster set in (4.2) 
and by f2y ...... y. the co-set in (4.5), we have for co~Oy ...... y :  

(1) Ar ..... f.(co)~_B., 
(2) 0 B. ~_ Af ...... r 

Notice that (1) follows from Af ...... f.(co)c_ t/;If~(r/)[< all f~Do, 

for coef2f, ..... f .  and from (4.4). For the proof of (2) we observe that (1) and (4.3) 
imply f~Ay~ ..... f.(co) for f~D o, co~f2f~ ..... f .  Using (1) and (2) as well as the 
projection H' :  I R ' ~ N " -  1, 

/r/n(~l . . . .  , ~n- 1, ~ n ) :  ( ~ 1 , ' " ,  ~n- 1), 

we conclude that 

A s ...... y,_l(co)=B,_ 1 for coeOy ...... y .  

In view of our universal logz-law (3.17), the proof of the preceding theorem 
also gives the universal version for vector functions. 

(4.6) Theorem. I f  c~ > max (d 
3 d 

- , ,  then for all x e m  \ 21 

(4.7) 
(Lt(f0, ... ' Lt(f,)) 

Pr~ IR"-c lus terse t  ] / 2 t log log t  =El ...... f~ 

all n> 1, all linearly independent fl ,  ...,f,6H~o} = 1. 

w 5. A Function Space Version of the Law 
of the Iterated Logarithm 

In this section we shall give a log2-1aw for the H~-valued process U(0  as was 
done in [2] for the special case of the fiat torus. This result can be obtained 
from the general Theorem (3.1) in Kuelbs [4] and our Theorem (3.8). Such an 
argument was used in [2] for the fiat torus. It is probably simpler for the 
reader if we restate Kuelbs' argument in the context of our paper. 

If we let 
1 real/2 K~={f~H2~+I;~.- o IIf[luo~§ < 1} 

= 2 - 7 + T m o g a ~ { f ~ H ; ;  IIfll~/~ < 1}, 
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[ 
then K~ is a compac t  symmet r ic  convex set in H~. [Not ice  tha t  G ~+ 1. H~o~H~ ~ 

~ + 1  d \ \ 2 
is of  H i lbe r t -Schmid t  type  for T > ~ . }  

A p p l y i n g  T h e o r e m  (4.1) to the funct ions ~b~ we conc lude  

{ H~vU(t) -H~v(K~), all N > I } = I ,  x~M, (5.1) Pr x I1 II~-cluster~ooSet 1 / 2 t l ~ 1 7 6  t 

where the HTv are  the pro jec t ions  of R e m a r k  (3.14). 
F r o m  (5.1) and  (3.15) we have immed ia t e ly  

(5.2) Theorem.  Under the assumptions of Theorem (3.8) 

Prx II ]lH~--clustert~ set l / 2 t l ~ 1 7 6  t 

Remark. In  the or iginal  no ta t ion  of  Kue lbs '  T h e o r e m  (3.1) in [4] we would  set 
his B = B* = H~ + 1, S = 2 -  ~ + 1 mo 1 G~+ 1. His  space H ,  can be identif ied as Ho 2~ + 1, 

except  that  I l f l l , - - 2 -  lm~/2 Ibfl[/~o~+ 1. 
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