Laws of the Iterated Logarithm for Brownian Motions on Compact Manifolds

G.A. Brosamler

Fachbereich Mathematik, Universität des Saarlandes, D-6600 Saarbrücken, Federal Republic of Germany

§ 1. Introduction and Summary

Let (M, g) be a compact C^{∞} Riemannian manifold. It is well-known that (M, g) supports a "Brownian motion", i.e. a strong Markov process

$$
\left\{\Omega, \mathscr{A} ; P r_{x}, x \in M ; X_{t}: \Omega \rightarrow M, \mathscr{F}_{t}, t \geqq 0\right\}
$$

with continuous sample paths such that $\operatorname{Pr}_{x}\left\{X_{t} \in B\right\}=\int_{B} p(t, x, y) d m(y)$ for all $t \geqq 0, x \in M, B$ Borel set $\subseteq M$. Here $p:(0, \infty) \times M \times M \rightarrow \mathbb{R}$ is the fundamental solution of

$$
\begin{equation*}
\frac{1}{2} A_{y} p(t, x, y)=\frac{\partial}{\partial t} p(t, x, y) \tag{1.1}
\end{equation*}
$$

and $d m$ and Δ are volume element and Laplace operator on M induced by the metric. Since $\frac{m}{m(M)}$ is the invariant probability measure for Brownian motion on M, the well-known ergodic theorem implies for all $f \in L^{1}(M)$, all $x \in M$

$$
\begin{equation*}
\operatorname{Pr}_{x}\left\{\omega ; \lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f\left(X_{s}\right) d s=m_{0}^{-1} \int_{M} f d m\right\}=1 \tag{1.2}
\end{equation*}
$$

where $m_{0}=m(M)$. A trivial consequence is

$$
\begin{equation*}
\operatorname{Pr}_{x}\left\{\omega ; \lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f\left(X_{s}\right) d s=m_{0}^{-1} \int_{M} f d m, \text { all } f \in C(M)\right\}=1 \tag{1.3}
\end{equation*}
$$

all $x \in M$.
In [1] Baxter and I proved that for bounded measurable $f: M \rightarrow \mathbb{R}$

$$
\begin{equation*}
\operatorname{Pr}_{x}\left\{\omega ; \varlimsup_{t \rightarrow \infty} \frac{\int_{0}^{t} f\left(X_{s}\right) d s-m_{0}^{-1} t \int_{M} f d m}{\sqrt{2 t \log \log t}}=\sqrt{2 m_{0}^{-1}(G f, f)}\right\}=1 \tag{1.4}
\end{equation*}
$$

all $x \in M$.

Here

$$
\begin{equation*}
(G f)(x)=\int_{M} g(x, y) f(y) d m(y) \tag{1.5}
\end{equation*}
$$

where the kernel g is uniquely determined by the differential equation

$$
\begin{equation*}
\frac{1}{2} \Delta_{y} g(x, y)=-\delta_{x}(y)+m_{0}^{-1}, \quad x, y \in M \tag{1.6a}
\end{equation*}
$$

and the normalisation

$$
\begin{equation*}
\int_{M} g(x, y) d m(y)=0, \quad x \in M \tag{1.6b}
\end{equation*}
$$

Equation (1.5) by the way, defines a bounded linear operator $G: L^{2}(M) \rightarrow L^{2}(M)$ which is nonnegative and symmetric.

We posed the question whether there is an intrinsic class of functions on M, for which the $\log _{2}$-law (1.4) holds simultaneously. The existence of such a class for classical Brownian motion on the circle follows from a result of Stackelberg [9]. For the special case of the flat d-dimensional torus T^{d} it has been shown recently by Bolthausen [2] that the Sobolev spaces $H^{\alpha}\left(T^{d}\right)$ which include $C^{\infty}\left(T^{d}\right)$ are such classes if $\alpha>\frac{d}{2}$. Bolthausen's proof uses our result (1.4) and a $\log _{2}$-law by Kuelbs [4] for Banach space-valued random variables.

It is the purpose of this paper, to prove a simultaneous $\log _{2}$-law for Brownian motion on any compact (M, g). A simple version of such a theorem is
(1.7) Theorem. For any compact C^{∞} Riemannian manifold (M, g) and associated Brownian motion X we have for all $x \in M$

$$
\begin{equation*}
\operatorname{Pr}_{x}\left\{\varlimsup_{t \rightarrow \infty} \frac{\int_{0}^{t} f\left(X_{s}\right) d s-m_{0}^{-1} t \int_{M} f d m}{\sqrt{2 t \log \log t}}=\sqrt{2 m_{0}^{-1}(G f, f)} \quad \text { all } \quad f \in C^{\infty}(M)\right\}=1 \tag{1.8}
\end{equation*}
$$

where $m_{0}=m(M)$.
This theorem follows immediately from our Theorem (3.16) which generalizes the result of [2] for the flat torus as far as the manifold is concerned. We have not been able to improve on the index $\alpha>\max \left(d-\frac{3}{2}, \frac{d}{2}\right)$ of the Sobolev spaces H_{0}^{α} in our $\log _{2}$-laws. The proof of our Theorem (3.16) follows the one for the flat torus in that it relies on our result (1.4) and the boundedness of a certain H_{0}^{α}-valued process (Theorem (3.8)). In order to get the estimates we need for general compact manifolds, we shall use a version of Weyl's theorem on the asymptotic distribution of the eigenvalues of Δ as well as a result of Hörmander [3] that provides bounds for the eigenfunctions of Δ. It also seems convenient to define Sobolev spaces $H_{0}^{\alpha}(M)$ in terms of the kernel (1.6). It can be shown that these $H_{0}^{\alpha}(M)$ are essentially the same as the ones in the sense of [7]. Once the key boundedness result (3.8) has been obtained our argument
differs slightly from that of Bolthausen, in that we give a direct proof of Theorem (3.16), rather than use the $\log _{2}$-law of Kuelbs for Banach space valued random variables referred to earlier. In the last section however, we do use Kuelbs' method to obtain a function space version of the $\log _{2}$-law as was done in [2].

Theorem (1.7) has an intriguing implication, regarding the information about the geometry of M, that can be obtained from a typical Brownian path with arbitrary starting point.

Let $\phi: \Omega \times C^{\infty}(M) \rightarrow C\left(\mathbb{R}^{+}\right)$be defined by $\phi(\omega, f)(t)=f\left(X_{t}(\omega)\right), t \geqq 0$. For $\omega \in \Omega$, let $C_{\omega}=\phi\left(\omega, C^{\infty}(M)\right)$. Obviously C_{ω} is a subspace of the vector space $C\left(\mathbb{R}^{+}\right)$(also: $f \in C_{\omega} \Rightarrow f^{2} \in C_{\omega}$), and Theorem (1.9) below states, that for $x \in M$, $P r_{x}$-a.a. paths the spectrum of G or equivalently of its "inverse" $\frac{1}{2} \Delta$ can be obtained from C_{ω}. Thus for such paths ω all the information on the geometry of M, that is furnished by the spectrum of Δ can be extracted from C_{ω}, by simply using the ergodic theorem and the universal $\log _{2}$-law (1.8).
(1.9) Theorem. For all $x \in M, P r_{x}$-a.a. ω the following hold:
(1) For all $f \in C_{\omega}, a_{\omega}(f)=\lim _{\text {def }} \frac{1}{t} \int_{0}^{t} f(s) d s$ exists and

$$
b_{\omega}(f)_{\text {det }}=\varlimsup_{t \rightarrow \infty} \frac{\int_{0}^{t} f(s) d s-t a_{\omega}(f)}{\sqrt{2 t \log \log t}}
$$

is finite and nonnegative.
(2) The function $\|f\|_{\omega_{\text {def }}} \sqrt{a_{\omega}\left(f^{2}\right)}$ is a norm on the vector space C_{ω} with an inner product, say $(\cdot, \cdot)_{\omega}$. The function

$$
\left\langle f_{1}, f_{2}\right\rangle_{\omega{ }_{\omega \mathrm{def}}}=\frac{1}{4}\left\{b_{\omega}^{2}\left(f_{1}+f_{2}\right)-b_{\omega}^{2}\left(f_{1}-f_{2}\right)\right\}
$$

on $C_{\omega} \times C_{\omega}$ is bilinear, and symmetric. Moreover $\sup _{f \in C_{\omega}} \frac{\langle f, f\rangle_{\omega}}{\|f\|_{\omega}^{2}}<\infty$.
(3) If $\left\{L_{\omega},(\cdot, \cdot)_{\omega}\right\}$ denotes the completion of the inner product space $\left\{C_{\omega},(\cdot, \cdot)_{\omega}\right\}$ and $G_{\omega}: L_{\omega} \rightarrow L_{\omega}$ denotes the uniquely determined bounded linear operator such that $2\left(G_{\omega} f_{1}, f_{2}\right)_{\omega}=\left\langle f_{1}, f_{2}\right\rangle_{\omega}$ for $f_{1}, f_{2} \in C_{\omega}$, then G_{ω} and G have the same spectrum.

Theorem (1.9) is a corollary of Theorem (1.7). Notice first that ω-paths which are in the ω-set of (1.3) are dense in M. For paths which are also in the ω-set of (1.8) (i.e. for all $x \in M, \operatorname{Pr}_{x}$-a.a. ω-paths) the mapping $f \rightarrow \sqrt{m_{0}} \phi(\omega, f)$ provides an isomorphism between the space $C^{\infty}(M)$ endowed with the two bilinear forms $(\cdot, \cdot)_{L^{2}}$ and $2(G \cdot, \cdot)_{L^{2}}$ and the space C_{ω} endowed with the two bilinear forms $(\cdot, \cdot)_{\omega}$ and $\langle\cdot, \cdot\rangle_{\omega}$. It follows that for such ω, the systems $\left\{L^{2}(M),(\cdot, \cdot)_{L^{2}}, G\right\}$ and $\left\{L_{\omega},(\cdot, \cdot)_{\omega}, G_{\omega}\right\}$ are isomorphic.

As for the extraction of information about the geometry of (M, g) from the spectrum of Δ or equivalently of G or G_{ω} we only mention the following wellknown approach [8]:

If $\left\{\lambda_{n}, n \geqq 0\right\}$ denote the eigenvalues of $-\Delta$ (including the simple eigenvalue $\lambda_{0}=0$), the function $\psi(t)=\sum_{n=0}^{\infty} e^{-\lambda_{n} t}$ exists for $t>0$ and has an asymptotic expansion of the form $(4 \pi t)^{-\frac{d}{2}} \sum_{v=0}^{\infty} \alpha_{v} t^{v}$ as $t \rightarrow 0^{+}$. Here the α_{v} are (in general metric) invariants, to be precise, integrals over M of polynomials in the curvature and their covariant derivatives. In particular $\alpha_{0}=\lim _{t \rightarrow 0^{+}}(4 \pi t)^{\frac{d}{2}} \psi(t)=m_{0}$, the volume of M, and if $d=2, \alpha_{1}=\lim _{t \rightarrow 0^{+}} t\left\{(4 \pi t)^{\frac{d}{2}} \psi(t)-\alpha_{0}\right\}=\frac{\pi}{3} \times$ Euler characteristic of M.

It follows from our Theorem (1.9) that a "typical" path can "recognize" the eigenvalues of G, hence the λ_{n}, thereby the function ψ, hence all α_{v} as well as d $=-2 \lim _{t \rightarrow 0^{+}} \frac{\log \psi(t)}{\log t}$, the dimension of M.

§ 2. Green Kernel and Sobolev Spaces

A function $p:(0, \infty) \times M \times M \rightarrow \mathbb{R}^{1}$ is called a fundamental solution of (1.1) if it is a C^{1} function in the first, a continuous function in the second and a C^{2} function in the third variable, if it satisfies (1.1) and if in addition $\lim _{t \rightarrow 0} \int_{M} p(t, x, y) f(y) d m(y)=f(x)$ for all $f \in C(M), x \in M$. A fundamental solution p of (1.1) was constructed in [6] with the method of parametrix (see also [5]). It is well-known that p is the only fundamental solution of (1.1), that $p \in C^{\infty}((0, \infty)$ $\times M \times M)$, that $p>0$, that $p(t, \cdot, \cdot)$ is symmetric for all $t>0$, that $\int_{M} p(t, x, y) d m(y)=1$ for all $t>0, x \in M$. Moreover p satisfies the Chapman-Kolmogorov equation.

We recall the following estimate for large t from [1]: There exist $\alpha>0$, $C>0$ such that

$$
\begin{equation*}
\sup _{x, y \in M}\left|p(t, x, y)-m_{0}^{-1}\right| \leqq C e^{-\alpha t}, \quad t \geqq 1 \tag{2.1}
\end{equation*}
$$

For small t we shall use a different estimate. In [6] it is essentially shown that for all $n \geqq 1$, there exists C such that

$$
\begin{equation*}
p(t, x, y) \leqq(2 \pi t)^{-\frac{d}{2}} e^{-\frac{[r(x, y)]^{2}}{2 t}}+C t^{n}, \quad x, y \in M, t \leqq 1 \tag{2.2}
\end{equation*}
$$

Here $r(x, y)$ denotes the geodesic distance of x and y.
In [1] Baxter and I introduced the Green kernel

$$
\begin{equation*}
g(x, y)=\int_{0}^{\infty}\left\{p(t, x, y)-m_{0}^{-1}\right\} d t, \quad x, y \in M, x \neq y \tag{2.3}
\end{equation*}
$$

Symmetry in x and y for p implies symmetry for g. Obviously g satisfies (1.6b). Moreover $g(x, \cdot)$ is continuous on $M-\{x\}$, since $\int_{1}^{\infty}\left\{p(t, x, y)-m_{0}^{-1}\right\} d t$ is con-
tinuous on M because of (2.1) and $\int_{0}^{1}\left\{p(t, x, y)-m_{0}^{-1}\right\} d t$ is continuous on M $-\{x\}$ because of $p(t, x, \cdot) \leqq C\left\{t^{-\frac{d}{2}} e^{-\frac{x}{t}}+t^{n}\right\}$, outside a neighbourhood of x. Also $g(x, \cdot)$ satisfies (1.6a) in distribution sense, which follows from

$$
\begin{aligned}
& \frac{1}{2} \int_{M}(\Delta \phi)(y) d m(y) \int_{\varepsilon}^{T}\left\{p(t, x, y)-m_{0}^{-1}\right\} d t \\
& \quad=\int_{M} \phi(y)\{p(T, x, y)-p(\varepsilon, x, y)\} d m(y)
\end{aligned}
$$

a consequence of (1.1), by letting $\varepsilon \rightarrow 0, T \rightarrow \infty$. We conclude from Weyl's lemma that $g \in C^{\infty}$ off the diagonal of $M \times M$.

For $f \in L^{1}(M), G f$ is defined m-a.e. by (1.5), and $\int_{M} G f d m=0$. For every bounded measurable $f: M \rightarrow \mathbb{R}^{1}$, the function $G f$ is continuous because

$$
\sup _{x \in M} \int_{M}|f(y)| d m(y) \int_{0}^{\delta}\left|p(t, x, y)-m_{0}^{-1}\right| d t
$$

is arbitrarily small for sufficiently small $\delta>0$ and

$$
\int_{M} f(y) d m(y) \int_{\delta}^{\infty}\left\{p(t, \cdot, y)-m_{0}^{-1}\right\} d t
$$

is continuous by (2.1). Also we have for $f \in L^{1}(M)$

$$
\begin{equation*}
\frac{1}{2} \Delta(G f)=-f+m_{0}^{-1} \int_{M} f d m \tag{2.4}
\end{equation*}
$$

in distribution sense. By Weyl's lemma we have $G f \in C^{\infty}(M)$ for $f \in C^{\infty}(M)$. Since the only solutions ϕ of $\Delta \phi=0$ are the constant functions, (2.4) implies for $f \in C^{\infty}(M)$

$$
\begin{equation*}
G\left(\frac{1}{2} \Delta f\right)=-f+m_{0}^{-1} \int_{M} f d m \tag{2.5}
\end{equation*}
$$

We introduce for $\alpha>0$ the kernel

$$
\begin{equation*}
g_{\alpha}(x, y)=[\Gamma(\alpha)]^{-1} \int_{0}^{\infty} t^{\alpha-1}\left\{p(t, x, y)-m_{0}^{-1}\right\} d t, \quad x, y \in M, x \neq y \tag{2.6}
\end{equation*}
$$

Obviously $g_{1}(x, y)=g(x, y), g_{\alpha}(x, y)=g_{\alpha}(y, x)$. Since

$$
\int_{M}\left\{p\left(t_{1}, x, z\right)-m_{0}^{-1}\right\}\left\{p\left(t_{2}, z, y\right)-m_{0}^{-1}\right\} d m(z)=p\left(t_{1}+t_{2}, x, y\right)-m_{0}^{-1}
$$

and

$$
\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} d t=\Gamma(\alpha) \Gamma(\beta)[\Gamma(\alpha+\beta)]^{-1} \quad \text { for } \alpha, \beta>0
$$

we conclude

$$
\begin{equation*}
\int_{M} g_{\alpha}(x, z) g_{\beta}(z, y) d m(z)=g_{\alpha+\beta}(x, y) \quad \text { for } \alpha, \beta>0 \tag{2.7}
\end{equation*}
$$

i.e. the kernels $\left\{g_{\alpha}, \alpha>0\right\}$ form a semigroup. We conclude from (2.1) that for $\alpha>0$

$$
\begin{equation*}
\left\|g_{\alpha}\right\| \|_{\operatorname{def}}^{=\sup _{x \in M}} \int\left|g_{\alpha}(x, y)\right| d m(y)<\infty . \tag{2.8}
\end{equation*}
$$

Notice that for every $\alpha>0$, the kernel g_{α} is C^{∞} off the diagonal. This follows for $\int_{0}^{1} t^{\alpha-1}\left\{p(t, x, y)-m_{0}^{-1}\right\} d t$, because $p(\cdot, x, \cdot) \in C^{\infty}([0, \infty) \times(M-\{x\})$), and for $\int_{1}^{\infty} t^{x-1}\left\{p(t, x, y)-m_{0}^{-1}\right\} d t$ because

$$
\begin{aligned}
& \int_{1}^{\infty} t^{\alpha-1}\left\{p(t, x, y)-m_{0}^{-1}\right\} d t \\
& \quad=\int_{M} d m(z) p(1, z, y) \int_{0}^{\infty} d t(1+t)^{\alpha-1}\left\{p(t, x, z)-m_{0}^{-1}\right\}
\end{aligned}
$$

(2.9) Lemma. For every dimension $d \geqq 1$, every real $\alpha>0$, there exists c such that for $x, y \in M$

$$
\left|g_{\alpha}(x, y)\right| \leqq \begin{cases}c & \text { if } \alpha>\frac{d}{2} \\ c\left\{1+\log ^{-} r(x, y)\right\} & \text { if } \alpha=\frac{d}{2} \\ c[r(x, y)]^{-d+2 \alpha} & \text { if } \alpha<\frac{d}{2}\end{cases}
$$

where $\log ^{-} t=\max \{0,-\log t\}$.
Proof. We have by (2.2) with $n=0$, after a change of the integration variable,

$$
\begin{aligned}
\int_{0}^{1} t^{\alpha-1} p(t, x, y) d t \leqq & c+c[r(x, y)]^{-d+2 \alpha} \int_{0}^{\min \left\{1,[r(x, y)]^{-2}\right\}} s^{-\frac{d}{2}-1+\alpha} e^{-\frac{1}{2 s}} d s \\
& +c[r(x, y)]^{-d+2 \alpha} \int_{1}^{\max \left\{1,[r(x, y)]^{-2}\right\}} s^{-\frac{d}{2}-1+\alpha} d s
\end{aligned}
$$

In this inequality the first integral on the right side is always majorized by the finite integral $\int_{0}^{1} s^{-\frac{d}{2}-1+\alpha} e^{-\frac{1}{2 s}} d s$, whereas the second integral is majorized by the finite integral $\int_{1}^{\infty} s^{-\frac{d}{2}-1+x} d s$ if $\alpha<\frac{d}{2}$, by $2 \log ^{-} r(x, y)$ if $\alpha=\frac{d}{2}$ and by $c \max \left\{[r(x, y)]^{d-2 \alpha}, 1\right\}$ if $\alpha>\frac{d}{2}$.

In the following we let

$$
\begin{aligned}
L_{0}^{2}(M) & =\left\{f \in L^{2}(M) ; \int_{M} f d m=0\right\} \\
C_{0}^{\infty}(M) & =\left\{f \in C^{\infty}(M) ; \int_{M} f d m=0\right\} \\
C_{0}(M) & =\left\{f \in C(M), \int_{M} f d m=0\right\} \\
B(M) & =\{f: M \rightarrow \mathbb{R} \text { measurable and bounded }\}
\end{aligned}
$$

We will usually suppress " M " in the notation.
Remark. In order to justify changing the order of integration in some of the arguments to follow, it will be helpful to notice that for $0 \leqq \sigma<d, 0 \leqq \tau<d$

$$
\int_{M}[r(x, z)]^{-\sigma}[r(z, y)]^{-\tau} d m(z) \leqq \begin{cases}c & \text { if } \sigma+\tau<d \\ c\left\{1+\log ^{-} r(x, y)\right\} & \text { if } \sigma+\tau=d \\ c[r(x, y)]^{d-\sigma-\tau} & \text { if } \sigma+\tau>d .\end{cases}
$$

The proof is straightforward (though somewhat tedious) in normal coordinates and follows along the same lines as in the case of bounded Euclidean regions. (It uses the decomposition

$$
\begin{aligned}
M=\left\{z ; r(x, z)<\frac{1}{2} r(x, y)\right\} & \cup\left\{z ; r(y, z)<\frac{1}{2} r(x, y)\right\} \\
& \cup\left\{z ; \frac{1}{2} r(x, y) \leqq r(x, z) \leqq r(y, z)\right\} \\
& \left.\cup\left\{z ; \frac{1}{2} r(x, y) \leqq r(y, z) \leqq r(x, z)\right\}\right) .
\end{aligned}
$$

If we let for $\alpha>0$

$$
\begin{equation*}
\left(G_{\alpha} f\right)(x)=\int_{M} g_{\alpha}(x, y) f(y) d m(y), \tag{2.10}
\end{equation*}
$$

then (2.10) defines a semigroup of bounded symmetric linear operators $G_{\alpha}: L_{0}^{2} \rightarrow L_{0}^{2}$. Notice that (using the preceding remark)

$$
\begin{equation*}
\left\|G_{\alpha} f\right\|_{L^{2}} \leqq\|f\|_{L^{2}} \cdot\left\|g_{2 \alpha}\right\|^{1 / 2} \tag{2.11}
\end{equation*}
$$

Obviously $G_{1}=G$. The operators G_{α} are invertible because of (2.4). Invertibility and the semigroup property imply that the G_{α} are positive definite. Just as in the case $\alpha=1$ we have for $\alpha>0$ that $G_{\alpha} f \in C(M)$ if $f: M \rightarrow \mathbb{R}$ is bounded and measurable. We note incidentally that for $\alpha>\frac{d}{4}, G_{\alpha}: L_{0}^{2} \rightarrow L_{0}^{2}$ is Hilbert-Schmidt, since in this case $\iint\left[g_{\alpha}(x, y)\right]^{2} d m(x) d m(y)<\infty$. We could define the G_{α} by standard functional analytic methods, but it seems easier and faster to use the probabilistic approach we have taken.
(2.12) Definition. For real $\alpha>0$ let $H_{0}^{\alpha}=G_{\alpha / 2}\left(L_{0}^{2}\right)$, endowed with pointwise addition and pointwise multiplication by scalars and with the inner product

$$
\begin{equation*}
\left\langle G_{\alpha / 2} f_{1}, G_{\alpha / 2} f_{2}\right\rangle_{H_{0}^{\alpha}}=2^{\alpha}\left(f_{1}, f_{2}\right)_{L^{2}} . \tag{2.13}
\end{equation*}
$$

We write $\left\|\|_{H_{0}^{\alpha}}\right.$ for the norm induced by $\langle,\rangle_{H_{0}^{\alpha}}$.
Obviously the spaces H_{0}^{α} are complete; moreover $H_{0}^{\alpha} \subseteq L_{0}^{2}$ and

$$
\|f\|_{L^{2}} \leqq 2^{-\alpha / 2}\left\|g_{\alpha}\right\|^{1 / 2}\|f\|_{H_{0}^{\alpha}} \quad \text { for } f \in H_{0}^{\alpha}
$$

From definition (2.12) and from (2.11) we conclude that for $\alpha_{1}<\alpha_{2}$ we have $H_{0}^{\alpha_{2}}$ $\subseteq H_{0}^{\alpha_{1}}$ and

$$
\|f\|_{H_{0}^{\alpha_{1}}} \leqq 2^{-\frac{\alpha_{2}-\alpha_{1}}{2}}\left\|g_{\alpha_{2}-\alpha_{1}}\right\|^{1 / 2} \cdot\|f\|_{H_{0}^{\alpha_{2}}} \quad \text { for } f \in H_{0}^{\alpha_{2}}
$$

Since for every integer $k \geqq 1$, every $\phi \in C_{0}^{\infty}$, we have $\phi=G_{k}\left\{(-1)^{k} 2^{-k} \Delta^{k} \phi\right\}$, it follows that $C_{0}^{\infty} \subseteq H_{0}^{2 k}$ and hence $C_{0}^{\infty} \subseteq H_{0}^{\alpha}$ for all real $\alpha>0$. Since $G_{k} \phi \in C_{0}^{\infty}$ and since C_{0}^{∞} is dense in L_{0}^{2}, we have that C_{0}^{∞} is dense in $H_{0}^{2 k}, k \geqq 1$; hence C_{0}^{∞} is dense in all $H_{0}^{\alpha}, \alpha>0$. In other words, the spaces H_{0}^{α} are the completions of C_{0}^{∞} with the norm $\left\|\|_{H_{0}^{\alpha}}\right.$. It can be shown that they are the Sobolev spaces of [7] restricted by the metric condition $\int_{M} f d m=0$. To this end one has to show that on C_{0}^{∞} the norms H_{0}^{k} are equivalent to the admissible norms in [7] which are defined in terms of (non canonical) inner products on the k-jets. The rest is interpolation.

From (2.11) we also conclude that (2.10) defines a semigroup of bounded linear operators which are symmetric and positive definite, on each H_{0}^{β} for $\beta>0$. The following lemma follows from (2.10) by application of the CauchySchwarz inequality and of Lemma (2.9).
(2.14) Lemma. If $\alpha>\frac{d}{4}$, then (2.10) defines a bounded linear operator $G_{\alpha}: L^{2} \rightarrow B$.

As one would expect one has the following Sobolev theorem.
(2.15) Theorem. If $\alpha>\frac{d}{2}$, then the set H_{0}^{α} is contained in C_{0} and

$$
\|f\|_{\infty} \leqq 2^{-\alpha / 2} \sup _{x \in M}\left|g_{\alpha}(x, x)\right|^{1 / 2}\|f\|_{H_{0}^{x}} \quad \text { for } f \in H_{0}^{\alpha}
$$

Proof. If $\alpha>\frac{d}{2}$, then $f=G_{\alpha / 2} \bar{f}$ is bounded for $\bar{f} \in L_{0}^{2}$ by Lemma (2.14), to be precise

$$
\|f\|_{\infty} \leqq \sup _{x \in M}\left|g_{\alpha}(x, x)\right|^{1 / 2}\|\bar{f}\|_{L^{2}}=2^{-\alpha / 2} \sup _{x \in M}\left|g_{\alpha}(x, x)\right|^{1 / 2}\|f\|_{H_{0}^{\alpha}} .
$$

Now let $\bar{\phi}_{n} \in C_{0}^{\infty}$ be such that $\left\|\bar{\phi}_{n}-\bar{f}\right\|_{L^{2}} \rightarrow 0$ and let $\phi_{n}=G_{\alpha / 2} \bar{\phi}_{n}$. Then $\left\|\phi_{n}-f\right\|_{\infty}$ $=\left\|G_{\alpha / 2}\left(\bar{\phi}_{n}-\bar{f}\right)\right\|_{\infty} \leqq C\left\|\bar{\phi}_{n}-\bar{f}\right\|_{L^{2}}$; and since $\phi_{n} \in C_{0}$, it follows that $f \in C_{0}$.

Remark. A refinement of the preceding argument shows that $\bigcap_{\alpha>0} H_{0}^{\alpha}=C_{0}^{\infty}$. This implies in particular that for $\alpha>0$, we have $G_{\alpha} f \in C_{0}^{\infty}$ if $f \in C_{0}^{\infty}$.

We shall now give a characterization of the functions in H_{0}^{α} in terms of their Fourier coefficients. This characterization is quite standard when M is a flat d-dimensional torus.

Denote by $0<\lambda_{1} \leqq \lambda_{2} \leqq \lambda_{3} \leqq \ldots$ the nonzero eigenvalues of $-\Delta$ and by $\phi_{1}, \phi_{2}, \ldots$ an orthonormal sequence of corresponding eigenfunctions. Thus $\Delta \phi_{n}$ $=-\lambda_{n} \phi_{n}, \int_{M} \phi_{n_{1}} \phi_{n_{2}} d m=\delta_{n_{1} n_{2}}$. Moreover $\phi_{n} \in C_{0}^{\infty}(M)$ and the ϕ_{n} are complete in

For $f \in L_{0}^{2}$, let $f_{n}=\left(f, \phi_{n}\right)_{L^{2}}$. We have $f=\sum f_{n} \phi_{n}$ in L^{2}. We note for later use that $G \phi_{n}=2 \lambda_{n}^{-1} \phi_{n}$, hence $G_{\alpha} \phi_{n}=2^{\alpha} \lambda_{n}^{-\alpha} \phi_{n}$.
(2.16) Definition. $\phi_{n}^{\alpha}=\lambda_{n}^{-\alpha / 2} \phi_{n}, n \geqq 1, \alpha>0$.

From $\left\langle G_{\alpha / 2} f, \phi_{n}^{\alpha}\right\rangle_{H_{0}^{\alpha}}=2^{\alpha / 2} f_{n}$ for $f \in L_{0}^{2}$, we conclude the following

(2.17) Theorem.

(1) For all $\alpha>0$, the functions $\left\{\phi_{n}^{\alpha}, n \geqq 1\right\}$ form a complete orthonormal system in H_{0}^{α}.
(2) A function $f \in L_{0}^{2}$ belongs to H_{0}^{α} iff $\sum_{n=1}^{\infty} \lambda_{n}^{\alpha} f_{n}^{2}<\infty$.
(3) For $f \in H_{0}^{\alpha},\|f\|_{H_{0}^{\alpha}}^{2}=\sum_{n=1}^{\infty} \lambda_{n}^{\alpha} f_{n}^{2}$.

This theorem implies immediately
(2.18) Corollary. For $f \in H_{0}^{1}$, the vectorfield $\operatorname{grad} f$ exists weakly and $\|\operatorname{grad} f\|$ $\in L^{2}$. Moreover for $f_{1}, f_{2} \in H_{0}^{1}$

$$
\begin{equation*}
\left\langle f_{1}, f_{2}\right\rangle_{H_{0}^{1}}=\int_{M} \operatorname{grad} f_{1} \cdot \operatorname{grad} f_{2} d m \tag{2.19}
\end{equation*}
$$

Here \|\| denotes the g-norm of a tangent vector. (2.19) implies that for $f_{1} \in H_{0}^{1}$, $f_{2} \in L^{2}, \int_{M} \operatorname{grad} f_{1} \cdot \operatorname{grad} G f_{2} d m=2 \int_{M} f_{1} f_{2} d m$.

§ 3. A Universal Law of the Iterated Logarithm

In this section we shall use a version of Weyl's celebrated theorem on the distribution of the eigenvalues $\lambda_{1} \leqq \lambda_{2} \leqq \lambda_{3} \leqq \ldots$ of the Laplacian $-\Delta$ on M. According to this theorem there exists $\gamma>0$ such that

$$
\begin{equation*}
\lambda_{n} \sim \gamma^{\frac{2}{d}} \tag{3.1}
\end{equation*}
$$

We will also need Theorem (1.1) of Hörmander [3], by which for corresponding L^{2}-orthonormal eigenfunctions ϕ_{n}

$$
\begin{equation*}
\left|\sum_{\lambda_{n} \leqq \lambda}\left[\phi_{n}(x)\right]^{2}-a \lambda^{\frac{d}{2}}\right| \leqq b \lambda^{\frac{d-1}{2}}, \quad \text { all } x \in M, \lambda \geqq 1 \tag{3.2}
\end{equation*}
$$

for some constants a and b. Actually all we need of (3.2) are suitable growth controls for ϕ_{n} and $\phi_{n}^{\alpha}=\lambda_{n}^{-\frac{\alpha}{2}} \phi_{n}$, namely

$$
\begin{equation*}
\sup _{x \in M}\left[\phi_{n}(x)\right]^{2} \leqq A n^{\frac{d-1}{d}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{x \in M}\left[\phi_{n}^{\alpha}(x)\right]^{2} \leqq A_{\alpha} n^{-\frac{1}{d}(2 \alpha+1)+1} \tag{3.4}
\end{equation*}
$$

which follow from (3.1) and (3.2). Notice that (3.1) follows immediately from (3.2). It can also be derived from the asymptotic expansion of $\sum e^{-\lambda_{n} t}$, mentioned in $\S 1$, via Tauberian theorems.

We note incidentally that (3.1) implies compactness of the operators $G_{\beta}: H_{0}^{\alpha} \rightarrow H_{0}^{\alpha}, L_{0}^{2} \rightarrow L_{0}^{2}$, and hence compactness of the embeddings $H_{0}^{\alpha_{1}} \subseteq H_{0}^{\alpha_{2}} \subseteq L_{0}^{2}$, $\alpha_{2}<\alpha_{1}$.

We now turn to Brownian motion on (M, g) as introduced in $\S 1$, and define for bounded measurable $f: M \rightarrow \mathbb{R}^{1}$

$$
\begin{equation*}
L_{t}(f, \omega)=\int_{0}^{t} f\left(X_{s}(\omega)\right) d s, \quad t \geqq 0 \tag{3.5}
\end{equation*}
$$

If $\alpha>\frac{d}{2}$, then for fixed $\omega \in \Omega, t \geqq 0, \int_{0}^{t} g_{\alpha / 2}\left(\cdot, X_{s}\right) d s \in L_{0}^{2}$ since

$$
\int d m(x)\left(\int_{0}^{t} g_{\alpha / 2}\left(x, X_{s}\right) d s\right)^{2} \leqq t^{2} \sup _{y, z \in M}\left|g_{\alpha}(y, z)\right|
$$

If we define for $\alpha>\frac{d}{2}$ the H_{0}^{α}-valued process $L^{\alpha}(t, \omega)$ by

$$
\begin{align*}
L^{\alpha}(t, \omega)(x) & =2^{-\alpha} G_{\alpha / 2}\left\{\int_{0}^{t} g_{\alpha / 2}\left(\cdot, X_{s}\right) d s\right\} \tag{3.6}\\
& =2^{-\alpha} \int_{0}^{t} g_{\alpha}\left(x, X_{s}\right) d s
\end{align*}
$$

then

$$
\begin{equation*}
\left\langle L^{\alpha}(t, \omega), f\right\rangle_{H_{0}^{\alpha}}=L_{t}(f, \omega) \quad \text { for } f \in H_{0}^{\alpha} . \tag{3.7}
\end{equation*}
$$

Such L^{α} were introduced in [2] without the kernel g_{α} for Brownian motion on the flat torus. For every $\omega \in \Omega$, the H_{0}^{α}-valued process $L^{\alpha}(t, \omega)$ is strongly continuous in t, since

$$
\left\|L^{\alpha}(t, \omega)-L^{\alpha}\left(t_{0}, \omega\right)\right\|_{H_{0}^{\alpha}}^{2}=2^{-\alpha}\left(t-t_{0}\right)^{2} \sup _{y, z \in M}\left|g_{\alpha}(y, z)\right| .
$$

If we use in H_{0}^{α} the σ-field of its Borel sets, then the function $L^{\alpha}:[0, \infty)$ $\times \Omega \rightarrow H_{0}^{\alpha}$ is progressively measurable. In [1] we studied the Central Limit Theorem and the Law of the Iterated Logarithm for the \mathbb{R}^{1}-valued variables in (3.5). In those two theorems the asymptotic variance was given by the form $2 m_{0}^{-1}(f, G f)_{L^{2}}$ which equals $2^{-\alpha+1} m_{0}^{-1}\left\langle G_{\alpha+1} f_{1}, f_{2}\right\rangle_{H_{0}^{\alpha}}$ for $f_{1}, f_{2} \in H_{0}^{\alpha}$. In $\S 5$ we shall give a $\log _{2}$-law for the process $L^{\alpha}(t)$. We start now with
(3.8) Theorem. For any compact C^{∞} Riemannian manifold (M, g) of dimension $d \geqq 1$ and associated Brownian motion X, let the H_{0}^{α}-valued process $L^{\alpha}(t)$ be
defined by (3.6) for $\alpha>\frac{d}{2}$. If $\alpha>\max \left(d-\frac{3}{2}, \frac{d}{2}\right)$, then for all $x \in M, \operatorname{Pr}_{x}-a . a . \omega$ the random set $\left\{\frac{L^{\alpha}(t, \omega)}{\sqrt{2 t \log \log t}}, t \geqq 3\right\}$ in H_{0}^{α} is conditionally norm-compact.

Proof. First we notice that a version of Ito's formula holds. For all $x \in M, f \in H_{0}^{\alpha}$

$$
\begin{equation*}
M_{t}(f, \omega)=\underset{\text { def }}{=} L_{t}(f, \omega)+(G f)\left(X_{t}(\omega)\right)-(G f)\left(X_{0}(\omega)\right) \tag{3.9}
\end{equation*}
$$

is a $P r_{x}$-martingale. Its increasing process is

$$
\begin{align*}
\left\langle M_{t}(f), M_{t}(f)\right\rangle & =\int_{0}^{t}|\operatorname{grad} G f|^{2}\left(X_{s}\right) d s \tag{3.10}\\
& =2 \int_{0}^{t} f\left(X_{s}\right)(G f)\left(X_{s}\right) d s
\end{align*}
$$

Furthermore if we let $g^{\alpha}(x)=2^{-\alpha} g_{\alpha+1}(x, \cdot)$, then by $(2.9), g^{\alpha}(x) \in H_{0}^{\alpha}$,

$$
\sup _{x \in M}\left\|g^{\alpha}(x)\right\|_{H_{0}^{\alpha}}^{2}=2^{-\alpha} \sup _{x \in M} g_{\alpha+2}(x, x)<\infty
$$

and

$$
(G f)(x)=\left\langle g^{\alpha}(x), f\right\rangle_{H_{0}^{\alpha}} \quad \text { for } f \in H_{0}^{\alpha}
$$

Obviously $\operatorname{Pr}_{x}\left\{\omega ; \lim _{t \rightarrow \infty} \frac{g^{\alpha}\left(X_{t}\right)}{\sqrt{2 t \log \log t}}=0\right\}=1$.
If we define the H_{0}^{α}-valued process $M^{\alpha}(t, \omega)$ by

$$
\begin{equation*}
M^{\alpha}(t, \omega)=L^{\alpha}(t, \omega)+g^{\alpha}\left(X_{t}(\omega)\right)-g^{\alpha}\left(X_{0}(\omega)\right) \tag{3.11}
\end{equation*}
$$

the theorem is proved if we prove $P r_{x}$-almost sure conditional compactness in H_{0}^{α} of $\left\{\frac{M^{\alpha}(t, \omega)}{\sqrt{2 t \log \log t}}, t \geqq 3\right\}$.

In view of (3.9) we have $\left\langle M^{\alpha}(t, \omega), f\right\rangle_{H_{0}^{\alpha}}=M_{t}(f, \omega)$ for all $f \in H_{0}^{\alpha}$. We let $M_{t}^{n, \alpha}(\omega)=M_{t}\left(\phi_{n}^{\alpha}, \omega\right)$. From (3.1), (3.4) and (3.10) we conclude

$$
\begin{equation*}
\left\langle M_{t}^{n, \alpha}, M_{t}^{n, \alpha}\right\rangle \leqq \operatorname{ctn}^{-\frac{1}{d}(2 \alpha+3)+1} \tag{3.12}
\end{equation*}
$$

If $\alpha>d-\frac{3}{2}, \beta=\frac{1}{\operatorname{def} d}(2 \alpha+3)-1$, then $\beta>1$.
Let $\delta_{1} \in\left(0, \frac{\beta-1}{2}\right), \varepsilon_{n}=n^{-\frac{1}{2}-\delta_{1}}$. Clearly $\delta_{2}=\beta-1-2 \delta_{1}>0$. For $v \geqq 2$ let t_{v} $=2^{v}$, for $v \geqq 2, n \geqq 1$ let $\alpha_{n v}=\frac{\varepsilon_{n} n^{\beta}}{2 c} \sqrt{\frac{2 \log \log t_{v}}{t_{v}}}$ with c from (3.12). Then for $v \geqq 2$

$$
\begin{aligned}
& \operatorname{Pr}_{x}\left\{\sup _{t_{v} \leqq t<t_{v+1}} M_{t}^{n, \alpha} \geqq \varepsilon_{n} \sqrt{2 t_{v} \log \log t_{v}}\right\} \\
& \quad \leqq \operatorname{Pr}_{x}\left\{\sup _{t_{v} \leqq t<t_{v+1}}\left[\alpha_{n v} M_{t}^{n, \alpha}-\frac{1}{2} \alpha_{n v}^{2}\left\langle M_{t}^{n, \alpha}, M_{t}^{n, \alpha}\right\rangle\right] \geqq \frac{\varepsilon_{n}^{2} n^{\beta}}{2 c} \log \log t_{v}\right\} \\
& \quad \leqq P r_{x}\left\{\sup _{t_{v} \leqq t<t_{v+1}} \exp \left[\alpha_{n v} M_{t}^{n, \alpha}-\frac{1}{2} \alpha_{n v}^{2}\left\langle M_{t}^{n, \alpha}, M_{t}^{n, \alpha}\right\rangle\right] \geqq(v \log 2)^{\frac{\varepsilon_{n}^{2} n^{\beta}}{2 c}}\right\} \\
& \quad \leqq(v \log 2)^{-\frac{8 n}{2 c} n^{\beta}} \\
& 2 c
\end{aligned}(v \log 2)^{-\frac{1}{2 c} n^{\delta_{2}},}
$$

as $\exp [\ldots]$ is a continuous martingale. The last term is majorized by $v^{-n^{\delta}}$ for $\nu \geqq 2, n \geqq n_{0} \geqq 2$ with $\delta=\frac{1}{2} \delta_{2}$.

Hence for $v_{0} \geqq 2$

$$
\begin{aligned}
& \operatorname{Pr}_{x}\left\{\sup _{t \geqq 2 v_{0}} \frac{M_{t}^{n, \alpha}}{\sqrt{2 t \log \log t}} \geqq \varepsilon_{n}\right\} \\
& \quad \leqq \sum_{v=v_{0}}^{\infty} P r_{x}\left\{\sup _{t_{v} \leqq t<t_{v}+1} M_{t}^{n, \alpha} \geqq \varepsilon_{n} \sqrt{2 t_{v} \log \log t_{v}}\right\} \leqq \sum_{v=v_{0}}^{\infty} v^{-n^{\sigma}} .
\end{aligned}
$$

Replacing ϕ_{n}^{α} by $-\phi_{n}^{\alpha}$ we conclude for $v_{0} \geqq 2$

$$
\operatorname{Pr}_{x}\left\{\sup _{t \geqq 2^{v_{0}}} \frac{\left|M_{t}^{n, \alpha}\right|}{\sqrt{2 t \log \log t}} \geqq \varepsilon_{n}\right\} \leqq 2 \sum_{v=v_{0}}^{\infty} v^{-n^{\delta}} .
$$

It follows that for $v_{0} \geqq 2$

$$
\operatorname{Pr}_{x}\left\{\omega ; \exists n \geqq n_{0}, \exists t \in\left[2^{v_{0}}, \infty\right) \text { such that } \frac{\left|M_{t}^{n, \alpha}\right|}{\sqrt{2 t \log \log t}}>\varepsilon_{n}\right\} \leqq 2 \sum_{n=n_{0}}^{\infty} \sum_{v=v_{0}}^{\infty} v^{-n^{\delta}}
$$

and since $\sum_{n=2}^{\infty} \sum_{v=2}^{\infty} v^{-n^{\delta}}<\infty$,
$\operatorname{Pr}_{x}\left\{\omega ; \forall v_{0} \geqq 2, \exists n \geqq n_{0}, \exists t \in\left[2^{v_{0}}, \infty\right)\right.$ such that $\left.\frac{\left|M_{t}^{n, x}\right|}{\sqrt{2 t \log \log t}}>\varepsilon_{n}\right\}=0 \quad$ i.e.
(3.13) $\operatorname{Pr}_{x}\left\{\omega ; \exists v_{0} \geqq 2\right.$, such that $\left.\forall n \geqq n_{0}, \forall t \in\left[2^{v_{0}}, \infty\right), \frac{\left|M_{t}^{n, x}\right|}{\sqrt{2 t \log \log t}} \leqq \varepsilon_{n}\right\}=1$.

If we set $\varepsilon_{n}^{*}=\varepsilon_{n}$ for $n \geqq n_{0}$ and $\varepsilon_{n}^{*}=2 \sqrt{\frac{2}{m_{0}}\left(\phi_{n}^{\alpha}, G \phi_{n}^{\alpha}\right)}=4 m_{0}^{-\frac{1}{2}} \lambda_{n}^{-\frac{\alpha+1}{2}}$ for $n<n_{0}$, then (3.13) and (1.4) imply that $P r_{x}$-a.e. there is $v_{0} \geqq 2$ (depending on ω) such that

$$
\left\{\frac{M^{\alpha}(t, \omega)}{\sqrt{2 t \log \log t}}, t \geqq 2^{\nu_{0}}\right\} \subseteq\left\{f \in H_{0}^{\alpha} ; \mid\left\langle f, \phi_{n}^{\alpha}\right\rangle_{H_{0}^{\alpha}} \leqq \varepsilon_{n}^{*} \quad \text { all } \quad n \geqq 1\right\}
$$

Since the last set is compact in H_{0}^{x}, the proof is finished.
(3.14) Remark. For any $\omega \in \Omega,\left\{\frac{L^{\alpha}(t, \omega)}{\sqrt{2 t \log \log t}}, t \geqq 3\right\}$ is conditionally $\left\|\|_{H_{0}^{\alpha-}}\right.$
compact iff
(1) $\sup _{t \geqq 3} \frac{\left\|L^{\alpha}(t, \omega)\right\|_{H_{0}^{z}}}{\sqrt{2 t \log \log t}}<\infty \quad$ and
(2) $\lim _{N \rightarrow \infty} \sup _{t \geqq 3} \frac{\left\|L^{\alpha}(t, \omega)-\Pi_{N}^{\alpha} L^{\alpha}(t, \omega)\right\|_{H_{0}^{\alpha}}}{\sqrt{2 t \log \log t}}=0$,
where $\Pi_{N}^{\alpha}: H_{0}^{\alpha} \rightarrow H_{0}^{\alpha}$ denotes the projection of H_{0}^{α} onto the subspace spanned by $\phi_{1}^{\alpha}, \ldots, \phi_{N}^{\alpha}$. Notice that (2) follows from the conditional compactness of $\left\{\frac{L^{\alpha}(t, \omega)}{\sqrt{2 t \log \log t}}, t \geqq 3\right\}$, because the Π_{N}^{α} are uniformly equicontinuous. By Theorem (3.8) we have proved

$$
\begin{equation*}
\operatorname{Pr}_{x}\left\{\lim _{N \rightarrow \infty} \sup _{t \geqq 3} \frac{\left\|L^{\alpha}(t, \omega)-\Pi_{N}^{\alpha} L^{\alpha}(t, \omega)\right\|_{H_{0}^{\alpha}}}{\sqrt{2 t \log \log t}}=0\right\}=1, \quad x \in M . \tag{3.15}
\end{equation*}
$$

We will use this remark in Section 5.
Theorem (3.8) allows us to prove a universal $\log _{2}$-law.
(3.16) Theorem. For any compact C^{∞} Riemannian manifold (M, g) of dimension $d \geqq 1$ and associated Brownian motion X and $L_{t}(f)$ defined by (3.5), we have

$$
\begin{align*}
& \operatorname{Pr}_{x}\left\{\underset { t \rightarrow \infty } { } \left\{\text { cluster set } \frac{L_{t}(f, \omega)}{\sqrt{2 t \log \log t}}=\left[-\sqrt{\frac{2}{m_{0}}(f, G f)_{L^{2}}}, \sqrt{\frac{2}{m_{0}}(f, G f)_{L^{2}}}\right]\right.\right. \tag{3.17}\\
& \left.\quad \text { all } f \in H_{0}^{\alpha}\right\}=1, \quad x \in M
\end{align*}
$$

if $\alpha>\max \left(d-\frac{3}{2}, \frac{d}{2}\right)$.
Proof. By Theorem (3.8) we have for all $x \in M, P r_{x}$-a.a. ω

$$
C(\omega)=\sup _{t \geqq 3} \frac{\left\|L^{\alpha}(t)\right\|_{H_{0}^{\alpha}}}{\sqrt{2 t \log \log t}}<\infty .
$$

We conclude from $\mid\left\langle L^{\alpha}(t), f\right\rangle_{H_{0}^{\alpha}} \leqq\|f\|_{H_{0}^{\alpha}}\left\|L^{\alpha}(t)\right\|_{H_{0}^{\alpha}}$ that for all $x \in M, \operatorname{Pr}_{r_{x}}$-a.a. ω

$$
\left|\frac{\int_{0}^{t} f\left(X_{s}\right) d s}{\sqrt{2 t \log \log t}}\right| \leqq\|f\|_{H_{0}^{\alpha}} C(\omega), \quad t \geqq 3, f \in H_{0}^{\alpha}
$$

The theorem follows now from our result (1.4) applied to a countable dense set of functions in H_{0}^{α}.

§4. The Law of the Iterated Logarithm for Vector Functions

Once we have the $\log _{2}$-law (1.4) of [1] for a single function, a $\log _{2}$-law for a single vector function follows at once by the trick of considering arbitrary linear combinations of the components (cf. [4]). We shall give some details.

For $f_{1}, \ldots, f_{n} \in L_{0}^{2}$, the matrix $\left(\left(f_{i}, G f_{j}\right)_{L^{2}}, i, j=1, \ldots, n\right)$ is nonnegative definite. It is positive definite iff f_{1}, \ldots, f_{n} are linearly independent. For linearly independent $f_{1}, \ldots, f_{n} \in L_{0}^{2}$ we define the ellipsoid $E_{f_{1}, \ldots, f_{n}}$ by

$$
E_{f_{1}, \ldots, f_{n}}=\left\{\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{R}^{n}, \sum_{i, j=1}^{n} a_{i j} \zeta_{i} \zeta_{j} \leqq 1\right\}
$$

where $\left(\frac{m_{0}}{2} a_{i j}\right)$ is the inverse matrix of $\left(\left(f_{i}, G f_{j}\right)_{L^{2}}, i, j=1, \ldots, n\right)$.
(4.1) Theorem. For all $n \geqq 1$, all linearly independent bounded measurable functions $f_{1}, \ldots, f_{n}: M \rightarrow \mathbb{R}$ we have for all $x \in M$

$$
\begin{equation*}
\operatorname{Pr}_{x}\left\{\mathbb{R}^{n} \text {-cluster set } \frac{\left(L_{t}\left(f_{1}\right), \ldots, L_{t}\left(f_{n}\right)\right)}{\sqrt{2 t \log \log t}}=E_{f_{1}, \ldots, f_{n}}\right\}=1 \tag{4.2}
\end{equation*}
$$

Proof. Let $n \geqq 2$. It is sufficient to prove (4.2) for the special case where $\left(f_{i}, G f_{j}\right)$ $=\delta_{i j}$ for $i, j=1, \ldots, n$. The general case can be reduced to this special case by a linear transformation. In the special case

$$
E_{f_{1}, \ldots, f_{n}}=B_{n_{\text {def }}}=\left\{\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{R}^{n}, \sum_{i=1}^{n} \zeta_{i}^{2} \leqq \frac{2}{m_{0}}\right\}
$$

For $\zeta \in \partial B_{n}$, define $\ell_{\zeta}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $\ell_{\zeta}(\eta)=\sqrt{\frac{m_{0}}{2}} \sum_{i=1}^{n} \zeta_{i} \eta_{i}$ and $\bar{f}_{\zeta}: M \rightarrow \mathbb{R}$ by \bar{f}_{ζ} $=\ell_{\zeta}\left(f_{1}, \ldots, f_{n}\right)=\sqrt{\frac{m_{0}}{2}} \sum_{i=1}^{n} \zeta_{i} f_{i}$.

Obviously

$$
\begin{equation*}
\ell_{\zeta}<\sqrt{\frac{2}{m_{0}}} \text { on } B_{n}-\{\zeta\}, \ell_{\zeta}(\zeta)=\sqrt{\frac{2}{m_{0}}} \tag{4.3}
\end{equation*}
$$

and for any dense set D on ∂B_{n}

$$
\begin{equation*}
\bigcap_{\zeta \in D}\left\{\eta ;\left|\ell_{\zeta}(\eta)\right| \leqq \sqrt{\frac{2}{m_{0}}}\right\}_{-}=B_{n} \tag{4.4}
\end{equation*}
$$

and by our $\log _{2}$-law (1.4) applied to \bar{f}_{ζ}, if D_{0} is a countable dense set on ∂B,

$$
\begin{align*}
& \operatorname{Pr}_{x}\left\{\underset{t \rightarrow \infty}{\operatorname{cluster} \operatorname{set} \ell_{\zeta}\left(\frac{\left(L_{t}\left(f_{1}\right), \ldots, L_{t}\left(f_{n}\right)\right)}{\sqrt{2 t \log \log t}}\right)}\right. \tag{4.5}\\
& \left.=\left[-\sqrt{\frac{2}{m_{0}}},+\sqrt{\frac{2}{m_{0}}}\right], \quad \text { all } \quad \zeta \in D_{0}\right\}=1, \quad x \in M .
\end{align*}
$$

Notice that $\left(\bar{f}_{\zeta}, G \bar{f}_{\zeta}\right)_{L^{2}}=1$. If we denote by $A_{f_{1}, \ldots, f_{n}}(\omega)$ the cluster set in (4.2) and by $\Omega_{f_{1}, \ldots . f_{n}}$ the ω-set in (4.5), we have for $\omega \in \Omega_{f_{1}, \ldots, f_{n}}$:
(1) $A_{f_{1}, \ldots, f_{n}}(\omega) \subseteq B_{n}$,
(2) $\partial B_{n} \subseteq A_{f_{1}, \ldots . f_{n}}(\omega)$.

Notice that (1) follows from $A_{f_{1}, \ldots, f_{n}}(\omega) \subseteq\left\{\eta ;\left|\ell_{\zeta}(\eta)\right| \leqq \sqrt{\frac{2}{m_{0}}}\right\}$ all $\zeta \in D_{0}$, for $\omega \in \Omega_{f_{1} \ldots ., f_{n}}$ and from (4.4). For the proof of (2) we observe that (1) and (4.3) imply $\zeta \in A_{f_{1}, \ldots, f_{n}}(\omega)$ for $\zeta \in D_{0}, \omega \in \Omega_{f_{1} \ldots ., f_{n}}$. Using (1) and (2) as well as the projection $\Pi^{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$,

$$
\Pi^{n}\left(\zeta_{1}, \ldots, \zeta_{n-1}, \zeta_{n}\right)=\left(\zeta_{1}, \ldots, \zeta_{n-1}\right)
$$

we conclude that

$$
A_{f_{1}, \ldots, f_{n-1}}(\omega)=B_{n-1} \quad \text { for } \omega \in \Omega_{f_{1}, \ldots, f_{n}}
$$

In view of our universal $\log _{2}$-law (3.17), the proof of the preceding theorem also gives the universal version for vector functions.
(4.6) Theorem. If $\alpha>\max \left(d-\frac{3}{2}, \frac{d}{2}\right)$, then for all $x \in M$

$$
\begin{align*}
& \operatorname{Pr}_{x}\left\{\mathbb{R}^{n}-\underset{t \rightarrow \infty}{\text { cluster set }} \frac{\left(L_{t}\left(f_{1}\right), \ldots, L_{t}\left(f_{n}\right)\right)}{\sqrt{2 t \log \log t}}=E_{f_{1}, \ldots, f_{n}}\right. \tag{4.7}\\
& \left.\quad \text { all } n \geqq 1, \text { all linearly independent } f_{1}, \ldots, f_{n} \in H_{0}^{\alpha}\right\}=1 .
\end{align*}
$$

§ 5. A Function Space Version of the Law of the Iterated Logarithm

In this section we shall give a $\log _{2}$-law for the H_{0}^{α}-valued process $L^{\alpha}(t)$ as was done in [2] for the special case of the flat torus. This result can be obtained from the general Theorem (3.1) in Kuelbs [4] and our Theorem (3.8). Such an argument was used in [2] for the flat torus. It is probably simpler for the reader if we restate Kuelbs' argument in the context of our paper.

If we let

$$
\begin{aligned}
K_{\alpha} & =\left\{f \in H_{0}^{2 \alpha+1} ; \frac{1}{2} m_{0}^{1 / 2}\|f\|_{H_{0}^{2 \alpha+1}} \leqq 1\right\} \\
& =2^{-\frac{\alpha}{2}+\frac{1}{2} m_{0}^{-\frac{1}{2}} G_{\frac{\alpha+1}{2}}^{2}\left\{f \in H_{0}^{\alpha} ;\|f\|_{H_{0}^{\alpha}} \leqq 1\right\},}
\end{aligned}
$$

then K_{α} is a compact symmetric convex set in H_{0}^{α}. (Notice that $G_{\frac{\alpha+1}{2}}^{2}: H_{0}^{\alpha} \rightarrow H_{0}^{\alpha}$ is of Hilbert-Schmidt type for $\frac{\alpha+1}{2}>\frac{d}{4}$)

Applying Theorem (4.1) to the functions ϕ_{n}^{α} we conclude

$$
\begin{equation*}
\operatorname{Pr}_{x}\left\{\| \|_{H_{0}^{\alpha}}-\text { cluster set } \frac{\Pi_{N}^{\alpha} L^{\alpha}(t)}{\sqrt{2 t \log \log t}}=\Pi_{N}^{\alpha}\left(K_{\alpha}\right), \text { all } N \geqq 1\right\}=1, \quad x \in M \tag{5.1}
\end{equation*}
$$

where the Π_{N}^{α} are the projections of Remark (3.14).
From (5.1) and (3.15) we have immediately
(5.2) Theorem. Under the assumptions of Theorem (3.8)

$$
\operatorname{Pr}_{x}\left\{\| \|_{H_{0}^{\alpha}}-\underset{t \rightarrow \infty}{ } \text { cluster set } \frac{L^{\alpha}(t)}{\sqrt{2 t \log \log t}}=K_{\alpha}\right\}=1
$$

Remark. In the original notation of Kuelbs' Theorem (3.1) in [4] we would set his $B=B^{*}=H_{0}^{\alpha+1}, S=2^{-\alpha+1} m_{0}^{-1} G_{\alpha+1}$. His space H_{μ} can be identified as $H_{0}^{2 \alpha+1}$, except that $\|f\|_{\mu}=2^{-1} m_{0}^{1 / 2}\|f\|_{H_{0}^{2 \alpha+1}}$.

References

1. Baxter, J.R., Brosamler, G.A.: Energy and the Law of the Iterated Logarithm. Math. Scand. 38, 115-136 (1976)
2. Bolthausen, E.: On the Asymptotic Behaviour of the Empirical Random Field of Brownian Motion. [To appear]
3. Hörmander, L.: The Spectral Function of an Elliptic Operator. Acta Math. 121, 193-218 (1968)
4. Kuelbs, J.: The Law of the Iterated Logarithm and Related Strong Convergence Theorems for Banach Space Valued Random Variables, Lecture Notes in Math. 539, 224-314. Berlin-Heidel-berg-New York: Springer 1976
5. Minakshisundaram, S., Pleijel, A.: Some Properties of the Eigenfunctions of the Laplace-Operator on Riemannian Manifolds. Canad. J. Math. 1, 242-256 (1949)
6. Minakshisundaram, S.: Eigenfunctions on Riemannian Manifolds. J. Indian Math. Soc. 17, 159165 (1953)
7. Palais, R.S.: Seminar on the Atiyah-Singer Index Theorem. Princeton: Princeton University Press 1965
8. Singer, I.M.: Eigenvalues of the Laplacian and Invariants of Manifolds. Proc. Int. Congress of Mathematicians, 187-200 (1974)
9. Stackelberg, O.: A Uniform Law of the Iterated Logarithm for Functions C-uniformly distributed mod 1. Indiana Univ. Math. J. 21, 515-528 (1971)

Received September 10, 1982; in revised form May 25, 1983

