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Summary. Let U,(t)=n~(F~(t)-O, 0_<t_<l, denote the uniform empirical 
process based on the first n of a sequence 41, 42 . . . .  of iid uniform (0,1) 

random variables where F ~ ( t ) = n - l ~  1[0,t1(4i) is the empirical distribution 
i = l  

function. The oscillation modulus of U, is defined by 

con(a) = sup { [ Un(t+h ) - Un(t)l : 0_<t_< 1 -h,h<a}, 

and the Lipschitz -1 modulus of U n is defined by 

cSn(a)=sup{[Un(t +h)-U,(t)l/h~:O<t<_-l-h,a<h< l}. 

Strong limit theorems are presented for both con(a) and cS,,(a) with a = a , ~ 0  
at various rates. For 'short' intervals with a,=cn-llogn, c>0,  the results 
are related to Erdos-R6nyi strong laws of large numbers; at the other ex- 
treme, for 'long' intervals with a , =  1/(logn) C, c>0,  the results are related to 
laws of the iterated logarithm for U n. 

1. Introduction 

Let ~ ,  42, .-. be a sequence of independent uniform (0, 1) random variables. 
For each n >  1 and u~[0, 1] let F~(u) denote the empirical distribution function 
based on 41, .-.,4, and let U,(u)=n}(F~(u)-u) denote the empirical process. 

It is well known that there exists a sequence of empirical processes U, and 
a Brownian bridge U all defined on the same probability space (the Skorokhod 
(1956) construction) such that 

IlU~-Ul[--- sup IG(u)-U(u)l-,O a.s. 
O_<u<l 
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For any half open - half closed interval C = (s, t] with 0_< s < t < 1 set ] C I = t -  s. 
Let cg denote the class of all such intervals. For any real valued function f 
defined on [0,1] let f (C)=- f (s , t ) - f ( t ) - f ( s )  whenever C=(s,t]~cg. Shorack 
and Wellner [11] recently characterized the class of all nonnegative functions q 
defined on [0, 1] such that for all 5>0 

fL v.(c)- v(c)l 1 =<lcL< } sup).- ~ C ~ -  " s n - l o g n  =1 ~--+0 (1) 

for the Skorokhod construction. As demonstration of the potential applica- 
bility of their results, they proposed a weighted interval version of the Cram6r- 
von Mises test and derived its limiting distribution as a functional of the Brown- 
ian bridge. 

In a closely related paper, Stute [13] investigated strong limit theorems for 
the oscillation modulus c%(a) of U, which is defined by 

c%(a) = sup {I U,(C)I:[CI <a}. 

Stute [13-1 showed that for sequences of positive constants {a,} which satisfy 

$1. a, N0 and na, Aov; 
$2. log(1/a,)/loglogn--+ oo ; and 

$3. log(1/a,)/(na,)-+O; 
it follows that 

. ~o,(a,) 
lm - -  ~=1 a.s. (2) 

,+ oo (2a, log(1/a,))- 

(With respect to S1-$3, one should also note Chan's theorem 1.14.2 of [4].) 
Stute applied (2) along with related results to obtain rates of convergence for 
various types of density estimators. 

Let x + =max(0,x) and x - = m a x ( 0 , - x ) ,  For 0 < a < l ,  set 

co+(a)=sup{U+(s,t):O<=t-s<a}, 
and 

e)y(a)=sup{U~-(s , t): O<_t-s <a}. 

It will be shown in the following section that c%+(a) and co2(a ) behave dif- 
ferently, at least for certain choices of a = a,. 

Shorack and Wellner [11] and Stute [13] also investigated the behavior of 
the Lipschitz-�89 modulus of the empirical processes U,, which is defined, for 
0<a<_b<_l, by 

&.(a, b)= sup{I U,(t, t+h)[/h~: a <_h <-b and 0<t_< 1 -h}.  

(When b = l  we will write &,(a) =- &,(a, 1).) Stute [13] showed that for any se- 
quence of positive constants {a,} that satisfy Conditions S1-$3 given above 
that whenever 0_<c<g< oe 

lira &,,(ca,,ga,) _1  a.s. (3) 
.~ ~ (2 log(1/a,)) } 



Limit Theorems for Oscillation Moduli of the Uniform Empirical Process 85 

The choices of a , = n  -~ logn and a 'n=n-l( logn) = where - oo <c~< 1 do not sat- 
isfy Stute's conditions, but Shorack and Wellner were able to show that there 
exist finite positive constants M and M~ such that 

limsup,~"(a,~! < M  a.s. (4) 
n ~  (log n) ~-= 

and 
do,(a',) loglogn 

limsup,~ (logn)l_~/2 <M~ a.s. (5) 

for these two sequences respectively. (See page 216 of Cs6rgo and R6vdsz [-4] 
for an Erdos-R6nyi type result for the empirical process closely related to these 
results.) 

In this paper, we will give a detailed description of the limiting behavior of 
con(a,) and cS,(an) for sequences of positive constants {a,} converging to zero at 
a variety of rates. For instance, we will obtain the exact limit in (4) and a 
refinement of (5). We also give, in Sect. 4, an approach to theorems for con(an) 
based upon the strong approximation of Komlds, Major, and TusnSdy (1975) 
and results of Chan (1977) concerning continuity moduli of a Kiefer process. 

2. Strong Limit Theorems for the Oscillation Modulus 
of the Uniform Empirical Process 

In this section we will be concerned with the asymptotic behavior of o),(an) for 
sequences {a,} which converge to zero at rates both faster and slower than 
allowed by Stute's conditions $1-$3.  The sequence a ,=cn-~logt~  fails to sat- 
isfy $3 (it decreases too rapidly), while an=l/( logn) c, 0 < c < o o  fails to satisfy 
$2 (it decreases too slowly). If c is replaced by cn7 ~ in either case, then $1-  
$3 hold. 

Let h ( x ) = x ( l o g x - 1 ) + l  for x>0 .  For  any c > 0  let f l + > l  denote the so- 
lution to h(/~+)= 1/c. It can be shown by elementary methods that fl+ has the 
following properties as a function of c: 

B 1. tic + ,-~ from 1 to ~ as c',~ 0. 

B2. (c/2)~(fl~ + - 1)"~ 1 as c S  oo. 

Theorem 1. Let  {an} be a sequence of positive constants less than 1. 

(I) I f  a,,=(clogn)/n with 0 < c <  o% then 

" c% ( a,) 
lm - -  I =(c/2)~(fl+ - 1) a.s. (6) 

,~ co (2a, log(1/a,)) ~ 

co2(a,) 
lira (2anlog(1/a,))~ (c/2)}(fi + - 1 )  a.s., (6+)  

n ~ o o  

and 

lira co~- (a,) = 1 a.s. ( 6 - )  
,4 oo (2a, log(1/a,)) ~ 
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(II) I f  a.=(c.logn)/n where c.--+O at such a rate that 

log(1/c.)/logn--+0, (7) 
then 

limsup n- logO/c.) co.(a.) < 2 a.s, (8) 
.~oo logn 

(III) I f  a =l / ( logn)  c with 0 < c < o o  

e}=l iminf_  c%(a.) 1 <l imsup co.(a.) , =(1+c)~ a.s. (9) 
.-+~o (2a.logzn)~-= .-+oo (2a.logzn) ~ 

while 
co.(a.) 

) C ~ a s  n---~ o o .  
(2a, log2 n)~ p 

In (I) and (III), c may be replaced by c,--,c. We will require the following two 
inequalities. 

Inequality 1. Let 0 < a < 6 <  1. Then, for every 2>0 ,  

e(%(a)>,@-d) 20 ,~ ) < a ~ S e x p ( - ( 1 - f ) 4 ~ 0 ( ~ a n a  ) 

where ff (x) = 2 h (1 + x)/x2. Moreover, for 2 > fi 2 (n a) ~ 

P ( c o + ( a , > 2 ] / a ) = < ~ e x p  ( - ( 1 - c 5 ) ' ~ r  (~ana)) 

and 

P(co~-(a) > 2Ira) < a @  exp ( -  ( 1 -  6)3 ~ ) .  

The proof of Inequality 1 and properties of r are given in the appendix. 

Inequality2. (Stute). Let r > 0  and {a,} satisfy (i) a, N0, (ii) na, A oo and (iii) 
log(1/a,)=O(na,). Then for any e > 0  we can choose a 0 > 0  depending on e and 
the bounding constant in (iii) so small that, for k sufficiently large, 

P( max COm(a,.)/2=l/%m>(r+2~)) 
nk  l < m < n k  

< 2 P (co . . . .  ((1 + O) a.~)/ al/~.~+~ > (r + 0 2.~) 

where )tm--(21og(1/am))~ and nk--[(l+o)k]. (Here [x] = greatest integer less 
than or equal to x.) 

The proof of Inequality 2 is very much the same as the proof of Lemma 2.6 
of Stute [131. 

Proof of Theorem 1. First consider (I). For any e > 0 and r > 0 define 

A m -=- {tOm (am)/l/%~ > (r + 2 ~)(2 log(i/am)) ~} 
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where we specify r later. We seek to show that f P(Am)< 0% but by the max- 

f m=l imal inequality 2 we need only show that P(Dk) < oo where 
k=l 

D k - {co.~+ ~ ((1 + O)an~)/lfa.~+~ > (r+ e)(21og(1/a.k))~} 

with n k = [(1 + O) k] and 0 sufficiently small. Hence by Inequality 1 

20 
P (Dk) < ~ exp ( -- (1 -- 6)4 (1 + 0)- 2 7k (r + e) 2 log (1/an~)) 

20 
_ 6 3 a+(1-~)6(~+~)2~- i 

for large k and 0 < 6  where 

( r + e  ) {2~(r+e) ] 
7k=@ (nk+l(l+O)a.~)}(21og(1/ank))~ ~tp \c~(l~O)]=_y. (10) 

By use of the definition of a n we may rewrite this inequality as 

20 cklog(l +O) (1-0)6(r+~)2"1~-1 
P(Dk)<=63{ - (11~0) s 1 (11) 

The series on the right hand side of (11) will be summable for any small e > 0  
and sufficiently small choice of ~5=6~ provided r is at least as large as the 
solution R of the equation (note (10) and the exponent of (11)) 

/2-}RI 2 / c ~ 2 h ( 1  2~R\ (1 2~R\ l=RZT=R2@ ~is  2 ~2~R ] +~iJ)  =ch +~T-~ )" 

Thus 1 +2~R/c~=fl +, or R=(c/2)~(fl + -1) .  Since e > 0  can be made arbitrarily 
small, it follows by use of the Borel-Cantelli lemma that 

con(an ) 
limsup.~ (2a. log(1/an))~ < (c/2)+(fl+ - 1) 

In fact (6) is true; observe that 

a.s. 

lim ~.(a~) ~ > limsup { IU~(t,t+a~)[ ' O < t < l - a  ~ 
.~ oo (2 a. log(1/a.))- = . _  oo \(2a n log(1/an))~ . . . .  ] 

But by the Erdos-R6nyi law for the increments of the empirical process due to 
Koml6s et al. [7] the right hand side of (12) is equal to (c/2)~(fl + -1) almost 
surely. (See page 162 of [7].) 

The proofs of (6+)  and ( 6 - )  are similar using the corresponding parts of 
Inequality 1 for co + and co~- respectively, + and - versions of Inequality 2, 
and noting that for a=a.=cn -I logn and 2.=(2rlog(1/an))~ with r=(c/2)~(fl + 
- 1 )  or 1, the inequality 2>62(na) ~ holds for 6 sufficiently small. This com- 
pletes the proof of (I). 
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Now assume that the an's are given as in (II). The conditions for the max- 
imal Inequality 2 need not hold in the present case. But by using Inequality 1, 
it is straightforward to show that 

P l~ <oo for any r > 2 ;  
,=l  \ logn 

the details are left to the reader. Condition (7) can be weakened considerably if 
the limsup in (8) is increased beyond 2. 

Finally, assume that the an's are given as in (III). Since in this case 
)Ln/(nan)~O and the conditions for the maximal inequality hold, we have for 
all e > 0, 6 > 0, and k sufficiently large (using Inequality 1) 

~ c(1 - 6)6(r + 02 - c  

where D k is as above. The series on the right hand side of (13) will be sum- 
mable for any small e > 0 and sufficiently small choice of ~ = c5~ provided r is at 
least as large as the solution R of the equation c(r2-1)--1.  Thus R=((1 
+c)/c) ~, and we have shown that the limsup in (9) is <c~R. Our proof that the 
limsup in (9) is >c~R will be given in Sect. 4. [3 

Remark I. Let c%(an, a,)/(2a, log(1/an)) ~ denote the quantity on the right hand 
side of inequality (12). It is clear from the proof that for an's as in (I) that 

lim c~ an) n~ ~ (2an log(1/a,)) ~ =(c/2)~(/~+ - 1) a.s. (14) 

We will make use of this fact in the following section. 

Remark 2. It is apparent that (9) is also true for an's that satisfy (a) a,'-~0, (b) 
nan/loglogn~oo, and (c) c,=log(1/an)/loglogn~c~(O, oo). Furthermore, Stute's 
theorem (2) and our (9) can be unified for an's in this range as follows: if S1 
and $3 hold, then 

con(a.) 
limsupn~ {2an(log(1/an)+loglogn)} ~ -  1 a.s. (15) 

where limsup may be replaced by lira if $2 holds. This should be compared 

with both Theorem 1.2.1 on page 30, and Chan's (1977) Theorem S. 1.15.1 on 
page 87, of CsSrgo and R6v6sz (1981). See Sect. 4 for use of Chan's theorem in 
combination with the strong approximation of Komlds, Major, and Tusn~dy 
(1975) to give another approach to limit theorems for co,(a,). 

Remark 3. A limit theorem for the oscillation modulus of the uniform quantile 
process similar to Theorem 1 has been given by Mason (1983). For intervals 
satisfying the Conditions S1-$3, Mason shows that the oscillation modulus of 
the quantile process behaves essentially the same as that of the empirical pro- 
cess. For very short intervals, however, the behavior is somewhat different. 
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3. Strong Limit Theorems for the Lipsehitz-�89 Modulus 
of the Uniform Empirical Process 

In this section we will show that (5,(a,) exhibits the same behavior as co,(a,) for 
sequences of positive constants {a,} converging to zero at the rates described 
in the introduction and in Sect. 2. The following theorem summarizes the limit- 
ing behavior of the Lipschitz-�89 modulus. 

Theorem 2. Let {a,} be a sequence of positive constants less than 1. 
(Ia) For a,'s satisfying Conditions $1-$3 

lim cS,(a,) 
- 1 a . s .  (16) 

(21og(1/a))~ n ~ o o  n 

(I) I f  G=(clogn)/n with 0 < c < o v ,  then 

cS,(a.) 
lim 2 ~-(c/2)~(fi + -  1) a.s. (17) 
,-oo ( log(1/a , ) )  

(II) I f  a,=(c, logn)/n with c,~O at such a rate that log(1/c,)/logn->O, then 

�89 1 c~ log(i/c,) 
imsup ~ &,(a,)<,zo a.s. (18) 
,~ ~ (logn) ~ 

(III) I f  a,= 1/(logn) c with 0 < c <  0% then 

cS,(a,) (1 c+_C)~ limsup 2 ~ -  - -  a.s. (19) 
,-.~ ( l og ( i / a , ) )  

As before, our proof will require two inequalities. 

Inequality 3 (Shorack and Wellner). For  0 _ < a _ < ( 1 - 6 ) b < b < 6 < � 8 9  and 2 > 0  

P(~,(a,b)>=,t)<=~b3 exp ( - ( l -g) )47~-  ) 

where ? -  ~(2~3~/6]/na) satisfies 

1 - c~ if 2 < (3/25) 32 (n a) } 

7=> 362(na) } (1 -6 )  , ~ 2 1 

2~ 2 if z__>(3/2~)c5 (ha) ~. 

(This is Corollary 2 of Shorack and Wellner [11].) 

Inequality 4. Let r>0 ,  0 < b < 1, and assume that {a,} satisfies the conditions of 
Inequality 2. Then for any e > 0 we can choose a 0>0,  depending on e and the 
bounding constant in (iii), so small that for all k sufficiently large 

P( max (Sm(am, b)/2.>(r+2e))<2P(~ . . . .  (a ...... b)>(r+e)2,~) (20) 
nk t <=m<--nk 

where 2m=(21og(1/am)) ~ and G =  [(1 +0)k]. 
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The proof is omitted since it is much like the proof of Lemma 2.6 of 1-13]. 

Proof  of  Theorem 2. We will first prove (Ia). Observe that 

liminf (5,(a,) ~ _> lim cS,(a,, a , )  (21) 
,4 co (21og(1/a,)) ~- -,-~ ~ (2 log(1/a,)y 

By Theorem 0.1 of Stute [13] the right hand side of (21) is a.s. equal to 1. 
Hence to complete the proof we will show that 

(5.(a.) _< 1 a.s. (22) limsup.~o~ (21og(1/a.)) ~ -  

By Cassels' [2] theorem, for each 0 < b < 1 

lira cS.(b, 1) =0  a.s., 
.4 oo (2 log(1/a.)) ~ 

and hence to prove (22) we need only to show that 

limlimsup &.(a. ,b)  ~<1 a.s. (23) 
b~0 .~o~ (21og(1/a.)) - =  

To prove (23), choose any e>0  and 0 < b < � 8 9  and let 

D k = {c7~.~ +1 (a.~+1, b) > (1 + e) 2.~} 

(using the notation of Inequality 4). As in the proof of Theorem 1, it is suf- 

ficient to prove, in view of Inequality4, that ~ P(Dk)<Oe. Since 2 . / ( n a . ) ~ O  
k = l  

by $3, we have for all b < 6 < � 8 9  and k sufficiently large, by Inequality 3, 

24 
P(Dk) < ~  exp( -  (1 - 6) 5 (1 + e)z log (1/a.~)) 

= (24/63)(a.Ja.~+ 1) a(1.~ -o)~1 +~)~ - 1 

< (48/63) a~ ~. (24) 

for some v > 0  by choosing b, and hence 6, sufficiently small. But by Stute's 
conditions, for all k sufficiently large a -1 <nk+ ~. Hence (24) is 

n k +  1 

< (48/63) [( 1 + O) k] - ~. (25) 

Since the series in (25) converges, (23) follows by Borel-Cantelli, and this com- 
pletes the proof of (22). 

Now assume that the {a.} are given as in (I). Choose 0 < c < oe. First notice 
that by Remark 1 

eS.(a.) > lira cS.(a., a.) 
liminf (2 log (1 /a . ) )~ .~o~  = .~o~ (2 log(1/a.)) ~ 

= lim co.(a., a.) 
. ~  (2a.log(1/a.)) ~" 

=(c/2)~(fi + - 1 )  a.s. 
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Hence we need only show that 

limsup,,,, aS,}?,) ,,~ <(c/2)~(fi? _ 1) a.s. (26) 
,~o~ t z l o g t l / a , ) ) -  

By Cassels' [2] theorem and the fact that (c/2)+(fi~ + - 1 ) >  1 for c > 0  (see B2 
above), to establish (26) it is enough to show that 

,. & , ( d b , , d  -1)  
lim nmsup ~ ~ -  < 1 a.s., (27) 
d . . . . .  t log~l/a,))  

and 
.. (5 , (a , ,db , )  

lim umsup - - 1  <(c/2)-~(fl + - 1) a.s. (28) 
. . . . .  (21og(1/a,)) ~ 

where b, = n-~-logn. To prove (27) and (28), choose 0<  e < 1 and d > 0 so that 

d - l <  ( ~ ) ~  ( ~ f <  (~)'* ,3] 2' 

Set 
A .  = {&.(db . ,  d -  1) > (1 + 2e)(21og(1/a.))  ~} 

and 
D k = {c5,~+* (db . . . . .  d -  1) >= (1 + e)(2 log(1/a,~))~}. 

Observe that 
(n d b,)~/((1 + e)(2 log(1/a,)) I-)--+(d/2)~/(1 + e); 

hence, for every 6 satisfying 

- -  < 3 <  - { 1 ]  ~ (2(idg)2)+ (~)~ (~)~ \ 5 ] '  

we have, for all n sufficiently large, 

62 (nd b.)}(3/2 }) > (1 + e)(2 log(1/a.)) ~. 

Thus, by the first part of Inequality 3, for all k sufficiently large 

( (  d \ 4 ,  \3 * *, , 
P(Ok)<24 ~-(l+e)~- ) 3 ~-) (a,~/a . . . .  )a{,,lk -(8/d)~11/3):} (1+0---1. (29) 

By choosing d sufficiently large, the right hand side of (29) is 

< C(d, 0(1 + 0) - ~  (30) 

for some v > 0  and finite positive constant C(d,e) dependent only on d and e. 
Since the series in (30) is summable and e > 0 can be made arbitrarily small, we 
have (27) by Inequality 4 and the Borel-Cantelli lemma. 

Now to prove (28), choose d > c ,  and any sequence of partitions c 
= p l k <  ... < p k k = d  such that 

rk= max(Pik/Pi_l ,k)--+l as k~oo.  (31) 
2<=i<=k 
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Note that 

c5. (a., d b.) {(5. ( P i -  1. k l'/-- 1 log n, Pi k ~ - 1 log t z) ) 
( 2 1 o g ( 1 / a , ) ) ~ - m a x k  ~ " ( ~ o g ~ f a ~  

, n~co,,(pikl~ - logn) 
_< r~ max ~ ~. 
- 1 <=i<=k(Piklogn)~:(21og(1/a.)) ~ (32) 

Part (I) of Theorem 1 implies that (32) converges almost surely to 

(pik/2) (flp~ r~(c/Z)~(fl + - r d m a x  } + - 1 ) =  1) 
l<_i_<k 

by B2, and hence (31) completes the proof of (28) and part (I). 
Parts (II) and (III) of Theorem 2 are proved much like parts (II) and (III) of 

Theorem 1, with the additional use of Cassels' theorem at the appropriate steps 
and noting that (o . (a . )>go. (a . ,a . ) .  I-1 

R e m a r k  4. Although part (Ia) of Theorem 2 is implicit in the results of Stute 
[13], we have included it here for completeness. 

R e m a r k  5. Shorack [10] has used Theorem 2 to give a proof of part of a theo- 
rem of Kiefer. 

4. An Approach to e~.(a) and Stute's Theorem 
Via Strong Approximation 

Let K(t ,  s), 0_<t_< 1, 0 <s  < oe denote a Kiefer process: i.e. a mean-zero Gauss- 
ian process with covariance E ( K ( t l , s l ) K ( t 2 , s z ) ) = ( s ~ A s 2 ) ( t l A t 2 - t l t 2 ) .  The 
strong approximation of Koml6s, Major, and Tusn/tdy (1975) yields a single 
sequence ~1, 32 . . . .  off i id Uniform (0, 1) rv's  and a Kiefer-process K defined 
on a common probability space with the property that, if U, denotes the em- 
pirical process of the first n ~'s and I B , = - K (  ", n)/n ~, 

limsup II U.-IB~ II/{(log n)2/n~} <-_ some M < oo a.s. (33) 
n~or? 

Now let 

(om.(a)=sup {I~B.(C)I' I CI ~a} 
= s u p { l l B . ( t  + h ) - I B . ( t ) [ :  h < a ,  O_<t_<l-h}. (34) 

where the limsup may be replaced by lim if, in addition, $2: 
log (1/a,) / loglog n ~  Go holds. 

Combining (33) and (35) yields the following theorem concerning the oscil- 
lation modulus co,(a) of U,. 

com.(a.) 
limsup.~ {2a.(1-a.)(log(1/a.)+loglogn)} ~ = 1 a.s. (35) 

It then follows from a theorem of Chan (1977) (see p. 87 of Cs6rg6 and Rdv6sz 
(1981) with their er=OUr a,, their T=our l l ,  and their a r chose~ to be T 
= our n) that, if a n is nonincreasing, 
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Theorem 3. Let a n >0 be no//increasing and satisfy 

Then 

limsup 

where the limsup may 

Proof. Let /~,---{2a,(1 

=ft ,  

=ft ,  

(log/l)2 
{na,(log(1/a,) + loglog n)} ~ 

,0. (37) 

co,(a,) = 1 a.s. (38) 
{2 an(1 - an) (log (1/a,) + loglog n)} ~ 

be replaced by l i r a / f  $2: log(1/a,)/loglogn---,oo holds. 

- a,) (log (1/a,) + loglog n)} - ~. Then 

sup {I Un(C)I : I Cl = a,} 

sup {lIB,(C)[: lCl<a,} +O (fin(l~ n)2) = a.s. by (33) 

oo~3,(a,)+o(1) a.s. by(37). 

Thus Chan's (1977) (35) yields (38). [] 

Remark 6. Taking a, = 1/(log//)c, c > 0, in Theorem 3 completes the proof of (9) 

(1t since, for this a,, log(1/a , )+loglogn= 1 + c  log(1/a,). Theorem 3 goes beyond 

(III) of Theorem 1 in that even longer intervals than a, = 1/(log//)c are allowed; 
e.g. a, = a > 0 is possible. When a, = a > 0, note that Theorem 3 agrees with Cas- 
sels' (1951) theorem. 

Remark 7. While Stute's conditions S1-$3 are satisfied for a ,=n- l ( log / / )  3 (and 
hence (2) holds), (37) fails for this a,, and hence the approach of this section 
breaks down in this range of 'short '  intervals. However, /f we could replace 
(logn)2/n ~ by (logn)/n + in (33), then (37) could be replaced by 

(log n) 
{n a, (log (1/a,) + loglog//)}~ ~ 0, (39) 

and (39) is implied by $3. Thus, if (33) is ever improved to hold with (logn)///~, 
our proof of Theorem 3 provides a short proof of Stute's theorem (2). There is 
also another way to look at this: if (33) is ever improved to hold with 
(log n)/n ~, then Stute's theorem (2) implies (this case of) Chart's theorem (35) via 
the improved version of (33). On the other hand, note that even an improved 
version of (33) will not yield (I) or (II) of Theorem 1 where the intervals a, are 
'very small'. 

Let K denote the Kiefer process as defined in [4]. Let B = K ( . ,  n)/n +~, so 
_ * denote the that B, is distributed as Brownian bridge for each //_> 1. Let co n 

modulus of continuity of B n. 

Theorem 4. Suppose ar',~ , ra i l  ~ a//d c~, defi//ed by 

c~=(log(1/ar))/loglogr or a,.=(logr) -~  (40) 
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satisfies 

I f  c e (0, ov], then 

I f  c E [0, oo), then 

c ~ c e E O ,  oo] as r~oo .  

1 = liminf cot (at) 
~ (2at log(I/a,.)) ~ 

__< limsup co~ (a~) _ 
~ (2a~log(1/a~)) ~ 

(41) 

a.s. (42) 

c ~ = liminf co* (at) 
. . . .  (2 a r loglog r) ~ 

) 

co* (at) c) ~ a.s. (43) 
< l imsup  (2 a~ 1--og~-og r)~ = (1 + 

Also, if e ~ (0, or), then 

B,(C) = c  ~ a.s. (44) liminf sup 
,~ ~ icl ~ .  (21CI loglog n) ~ 

Much  of this result, plus analogs for W(n, .)In ~ of all of this theorem, are 
discussed in [4];  they are due to Chan, Cs6rg6 and R6v6sz, and Book  and 
Shore. Thus we omit the proof. Theorem 1 (III) is an immediate  corollary to 
(43) and the proof  of Theorem 3. 

5. Appendix 

First we will summarize some properties of the function 0 that  appears in 
Inequali ty 1 and then provide a proof  for the inequality. Our Inequali ty 1 can 
also be derived from Lemmas  2.1, 2.2, and 2.4 in Stute (1982); such a proof  is 
no shorter  than the proof  given below, however. 

The function ~(x)---2h(1 +x)/x 2, where h ( x ) - x ( l o g x - 1 ) +  1, has the fol- 
lowing properties:  

C1. 01 for 2 > 0  with 0 (0 )=1 ,  

C2. 0(2) ~ (21og 2)/2 as 2 ~ ,  

C3. 0 ( 2 ) > 1  1 + ~  for all 2 > 0  and this is > 1 - 6  for 0<2_<36 .  

For  any 0 < b < � 8 9  and # = + ,  - ,  or [], let 

II g~/(1 - I)ll~ = s u p  {Ig, ~ (u)/(l - u ) l :  O<_u<_b}. 

In particular, by James [5] and Shorack [9] the following inequalities hold for 
any 2 > 0 :  

2 (a) P([lU~/(1-I)llbo> 2 / ( 1 - b ) ) < e x p ( - 2  O(2/bn~)/2b(1-b)), 

(b) P(llU~-/(1-I)]fo> 2/(1-b))<=exp(-22/2b(1-b)) ,  

(c) P(IIUff(1 - I) h] ~ > 2/( 1 - b)) < 2 exp ( - 22 0 (2/b n~)/2 b (1 - b)). 
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Proof  of  Inequality 1. Choose 0<a<cS<�89 First assume that 2>(~2(na) ~. Let m 
denote any positive integer, and observe that for 0 < t - s  < a  

U.(s, t) = n+(r.(t) - F.(s) - (t - s)) 

< n ~  q ( t ) - r .  \ t -  �9 1 

Thus, recalling the definitions of co + and co2 given in the introduction, 

O<_j<=m--10__<r=<a+m-1 \IT1 /TI 

Stationarity of the increments of U., inequality (a), and C1 yield 

(d) P(co~+(a)>_~a~)<_m + "+m-~> ~ - -  - P ( [ I  U ,  [1o = 2 0  - n ~ m  -1) 
( 2 a _ ~ _ n ~ m _ l ) Z ( l _ a _ m _ l )  2 

<mexp 2 ( a + m _ l ) ( l _ a _ m _ l  ) 

((2a ~ _ n~m-  1)(1 - a - m- 1) ~ 

<mexp 2 (a+m-X) [ - ~ )  ~ - 

Now choose m to be the smallest positive integer for which 

(e) m -  l < a 5  a. 

This entails that 2/m > 1/(m - 1) > a 6 3. Also note that if 2 > (52 (F/a) �89 then (e) 
implies that 

(f) ,~ > 6 2 (n a)~ > n~/(m a~ a). 

Using (e) and (f) we have 

a ( 1 - a - m - 1 )  ( n~ ] 
a + m -  1 >-(1-a)(1-c5)=>(1-5) z, 1 - ~ ] = > 1 - 6 ,  

so that (d) gives the inequality for co+ when 2>c52(na) ~. Likewise, whenever 
0 < t - s < a, the inequality 

�89 
u .  ( s ,  t )  = n - ( r .  ( t )  - c ,  ( s )  - ( t  - s ) )  

leads to, using inequality (b) and the same choice of m as in (e) above, 

P(co2 (a) > ;~ a i) < m P( II g,- II; _>- ;~a~ - n ~ m -  1) 
( "~2a(1-a)2 ( 1 -  n~ ~2~ 

__<m exp 2a(1 - a )  m;ta ~ ] ] 
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which yields the inequality for co~- when J~=>c52(rta) ~. Combination of the in- 
2 equalities for co + and co~- yields the inequality for co, in the case ,~>c5 (ha) ~. 

Now assume that 0 < 2 < 6 2 ( n a )  ~. Observe that whenever s<t<[ms]/m 
+ 1/m 

and whenever s < [ms]/m + 1/m < t < 1 

IU.(s, Ol<= u. (s, [ms@+l) + u. ([rn2] +ml-,t ) , 

so that in either case whenever m is a positive integer such that m - l < a  and 
O<__t-s<__a 

I 

(g) c%(a)< max sup U, (J--,J~+t) + 2  max sup U, (J~-t,J--]]. 
O < j < _ m - 1 0 < = t < a  \t 'n m l < j < m  O < t < m - 1  \lt'l m /  

We now choose m to be the smallest integer such that m-~<a32/4; which 
entails that 

(h) m < 4/(d ~2) + 1 < 5/(a 32). 

Now (g) and the stationary increments of U, imply that 

) p(co.(a)>_2]/a)<j__~ ~ P ][U,/(l_i)llao> 2a~ (1-a ) 1 
- 1 - a  1+c5 . =  

+j~.= P Hg. / ( l - I ) ] l l /m>~a ~ 

=-b+d. 

By inequality (c) we have 

b < 2 m e x p  2 a ( 1 - a )  (1+c5) a ~b \an ~ ( 1 ~ )  

10 )2 

(Here we are using (h) and C1.) Inequality (c) also gives 

( 't2a (1-1/m)2~ 2 ('~a~(121/rn)6 ~ 
d<2m= e x p .  2(1/m)(1-1/m) 4 ( ( ~  O\(1/,n)n~2(l+c~)/! 

2a~m6 <- 3 (~. 10 exp(_( l_6)422 /2)  if 2n ~ _ <acSZ 

Thus if 2 <6n~/ma ~ 
2O P(co.(a)>-_2 ]/~)<=~ exp (-(1-6)4 @) �9 
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2 1 But this last stipulation on 2 holds for Z<c~ (ha)% since (h) implies that 
2<(~2(na)~<5n~/ma ~. Thus the inequality holds in the case )~c~2(na) ~. 
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