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Summary. Let D be a bounded C 2 domain in IR d and let q be a bounded 
Borel function in D. For  xsD and ze~?D suppose (X,) under the law px;z is 
Brownian motion in D starting at x and conditioned to converge to z. Let 

be the lifetime of (Xt). We show that if the quantity E =z exp q(Xs)ds 

is finite for one xeD and one z~c~D, then this quantity remains bounded as 
x varies over D and z varies over 0D. This may be considered one quanti- 
tative expression of the qualitative statement that no matter  where Brow- 
nian motion in D eventually hits ~D, it goes all over D before it gets there. 
We apply this result to show that if the equation �89 admits a 
non-negative solution in D, which is strictly positive on a subset of 0D of 
positive harmonic measure, then for any non-negative bounded Borel func- 
tion f on OD it admits a unique bounded solution u satisfying u = f  on OD, 
and this solution u is non-negative. 

1. Introduction 

Let D be a bounded domain in N d and let q: D--+R be a bounded Borel 
function. Let ((X~); px, x~lR ~) be Brownian motion in IR a and let ~ = i n f { t > 0 :  
Xt6D }. Recall that "c< co a.s. For  each Borel function f :  OD-~N let 

(1.1) 

for each x E D  for which the expectation makes sense. It was shown by Chung 
and Rao [4] that if u~ is defined and finite at one point of D, then it is locally 
bounded in D; moreover, they showed that in this case if f is bounded, then so 
is uf. The function u 1 obtained by setting f = l  in (1.1) shall be called the 
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gauge of D. If the gauge of D is finite and f is bounded, then u =u y  is the 
unique bounded solution of the boundary value problem: 

�89 in D, (1.2a) 

u=f  on ~?D. (1.2b) 

(See Sect. 3 and the references cited there for further discussion of this.) We 
point out that the gauge of D can be identically + oo in spite of the bounded- 
ness of D and q. This is not pathological and is related to the possibility of 
non-existence of positive solutions of (1.2a). (See [-8, 4], and Sect. 3.) 

Now Williams [13] has shown that if ~D is of class C 2 and if for some 
non-empty relatively open subset A of ~D we have u~A finite, then the gauge of 
D is finite. This result may be regarded as one quantitative expression of the 
qualitative statement that no matter where Brownian motion in D eventually 
hits QD, it goes all over D before it gets there. To see this, suppose q takes on 
only the values 0 and 1 and A and B are non-empty relatively open subsets of 
D which border, respectively, on the part of D where q = 0 and on the part of D 
where q-- 1. Since a Brownian path can reach A without entering the part of D 
where q = 1, while to reach B it must traverse this part of D, it might seem that 
ulB could be infinite with ul~ still finite. But Williams' result tells us that this 
is impossible. 

In this paper we strengthen this result of Williams in the following way. 
For  x~D and ze~?D let px;z be the probability law for Brownian motion in D 
starting at x and conditioned to converge to z. (See discussion and references 
below.) We show that if 0D is of class C 2 and if for some xo~D and some 
z o e ~D we have 

E:'~176 

then in fact 

{ ]} sup supE  x;: exp q(Xs)ds <oo. 
x a D  zeOD 

As corollaries we recover a result of Chung [4] and obtain a variation on a 
result of Aizenman and Simon [1]. In Sect. 3 we discuss the boundary value 
problem (1.2) and then show how our results relate to the existence of positive 
solutions of (1.2). 

The rest of this introduction is devoted to establishing some notation and 
to recalling some facts that we shall be needing. Let pt(x, y) be the transition 
density for Brownian motion killed on exit from D (see [10], pp. 33-41). For  
c~>_0 let 

c o  

G~(x, y)=  ~ e-~tpt(x, y)dt (x, y~D) 
o 

and for each Borel function f :  OD--,IR let 

H}(x)=E~{e-~f(X~)} 
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for each x ~D for which the expectation makes sense. If e = 0, we drop it from 
the notation and just write G(x, y), HI(x ). For  the analogous objects defined 
with respect to some open set W different from D we write G w etc. G is called 
the Green function of D and we call G~ the e-Green function of D. If 
L:D•  oo] and (p:D-~[0, oo] are Borel, we write Lop for the func- 
tion defined by 

(L~o)(x)=S L(x, y)~o(y)dy (x~D). 
D 

In particular this explains what ptq) and G~cp mean. G,~0 is called the e- 
potential of ~0 (relative to D). Fix a reference point p ,  ~ D. It will be convenient 
for us to take 0D to be the Mart in boundary of D in case this differs from the 
usual boundary of D. Then X~ should be redefined to be l imX t where the limit 

is taken in the Martin topology. Let K: D x 0D~(0,  oo) be the Martin kernel 
relative to the reference point p , .  For  z e~?D we shall sometimes write K ~ for 
the function K ( ' ,  z). If z is a minimal point of the Martin boundary, then 
Doob  [6] has shown that it is meaningful to speak of Brownian motion in D 
conditioned to converge to z and that this process has transition density 
p{(x, y) given by 

1 
p~(x, Y)=K(x, z~ p,(x, y)K(y, z) (x, y~D) 

and hence has e-potential density G~ given by 

1 
a~ (x, y) = K (x, z) G~ (x, y) K (y, z) (x, y 6 D). 

Hunt  and Wheeden [7] have shown that if the usual boundary of D is 
Lipschitz, then the Martin boundary of D may be identified with the usual 
boundary of D and all points z~ 6D are minimal. We shall state most of our 
results for the case where the usual boundary of D is of class C 2, but we shall 
prove them under the weaker assumption that D is what we call Green-smooth 
(Definition 2.7). We do not know whether the Mart in boundary of a Green- 
smooth domain may be identified with its usual boundary. For  x e D ,  #x will 
denote the harmonic measure for D relative to x; i.e., the measure on 0D 
defined by #x(dz)=P~{X~dz}.  As is well known (Harnack's inequality), if x 1 
and x 2 are any two points of D, then each of #xl and #~2 is bounded by a 
constant times the other. We shall write # for #p, and LI(0D) for L~(#). We 
mention in passing that if the boundary of D is of class C T M  and if a is d - 1  
dimensional Lebesgue measure on ?D, then there is a constant C~ e(1, or) such 
that C11#__<a=< Cz#. This follows easily from results of Widman [12]. (Wid- 
man states and proves his results only in dimension d > 3, but presumably they 
are valid for d = 2 as well.) 

It is a pleasure to thank K,L. Chung for suggesting the problem considered in this paper. I 
also thank K.M. Rao for posing a question which proved very helpful to me. 
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2. Results 

We state our results for the case where the boundary of D is of class C 2, but 
we shall prove them for more general domains D which we call Green-smooth 
(see (2.7) below for the definition). 

Theorem 2.1. Suppose the boundary of D is of class C 2 and that for some x o ~ D 
and some z o ~ ~D we have 

Then there exist constants A1,A2~(O , oo) such that for all x ~ D  and all z e 3 D  
we have 

 ,  XZIexpli    l'slt    
Corollary 2.2. Suppose the boundary of D is of class C a and that for some Borel 
set A ~ D  with #(A)>0 we have ulA finite. Then the gauge of D is finite. 

Corollary 2.3. Suppose the boundary of D is of class C a and gauge of D is 
finite. Then for any compact set F c_D there is a constant C< oo such that for 
all f s L 1 (~?D) we have u I well defined throughout D and 

sup luf(x)[< C ~ I f ld# .  
x ~ F  ~D 

Remark. In the special case where D is a sufficiently small open ball, this result 
was proved, by a different method, by Aizenman and Simon in [1]. (They also 
considered certain unbounded q's.) 

Corollary 2.4. Suppose the boundary of D is of class C 2 and the gauge of D is 
finite. Then there is a constant C < ~ such that for all f ~ L 1 (~D) we have 

[us(x)l d x <  C ~ If(z)] #(dz). 
D OD 

Remark. This result was proved by a different method by Chung in [2]. 

Corollary 2.5. Suppose the boundary of D is of class C 2 and f is a non-negative 
Borel function on OD such that uf(x)< oo for some x6D.  Then f ~La(SD). 

Proof of Corollary 2.2. For each x e D we have 

Hence 

px a.s. 

Ula(p,)= ~ 1A(z) E p*;~ exp q(X~)ds #(dz), 
9D 
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where p ,  eD  is the reference point fixed in the introduction. Since/~(A)>0 and 
UlA(p,)< oe, there exists z 0 cA for which (2.1) holds with x o = p , .  Letting A 2 be 
as in (2.2), we find that the gauge u a of D satisfies 

Ul(X)=SEX;={exp[iq(Xs)ds]}#~'(dz)<A2<~176 

for a l l x s D .  [] 

Proof of Corollary 2.3. It is an immediate consequence of Harnack 's  inequality 
for harmonic functions that there is a constant C a < oe such that for all x~F we 
have ~x< C 1/~ so 

[us(x) [ ~ f (z)E x;z e x p [  q(Xs)ds <C [f(z)lp(dz) 
oD 

where C=C1A 2 and A 2 is as in (2.2). [] 

We defer the proof  of Corollary 2.4. 

Proof of Corollary 2.5. In view of Theorem 2.1, either f = 0  t~x - a.e. or 

us(x)= ~ f ( z )E  x:= exp q(Xs)ds #~(dz)> A a ~ f(z)l~x(dz) 
c~D c~D 

where A~e(0, oe) is as in (2.2). Now from Harnack's  inequality, there is a 
constant ~e(0, ~ )  such that /~x>e#.  Then 

oO A a e 

while f = O  #-a.e. in the first case. Thus fEI2(OD) in either in the second case, 
case. [] 

Lemma  2.6. Suppose the boundary of D is of class C 2. Let q~ be a bounded non- 
negative Borel function in D such that cp>0 on a set of strictly positive 
Lebesgue measure in D. Then there are constants Ca, Cz6(0 , ~ )  such that for all 
x6D, 

C a dist (x, R a \ D )  < G cp (x) < C 2 dist (x, IRa\D). 

Proof Since ~D is of class C 2 and compact,  the radius of curvature of 0D is 
bounded away from 0. Hence there exists r~(0, Go) such that a ball of radius r 
can be rolled all over the inside of 0D and another ball of radius r can be 
rolled all over the outside of 0D. Or, to state what we have in mind more 
precisely though perhaps less vividly, if we let B = {yelRa: I[Y][ < r}, then: 

(a) For  each xsD with dist(x, lRa\D)<r, there exists peD such that xeB 
+ p _~ O and dist (x, IRa\(B + p)) = dist (x, IR a\D);  

(b) For  each xeD, there exists peRa \D  such that B+pc_lRa\D and 

dist (x, B + p) = dist (x, IRa\D). 
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Now let K={ysD:dist(y, lRd\D)>r/2}. Then K is a compact subset of D, 
G o is bounded away from 0 on K, and G1K is bounded so there exists e>0  
such that Gcp>eG1K on K. Then Gcp>eG1K throughout D by the domination 
principle (see [9], p. 138 or [10], p. 175). Also Gq~<sG1 where s=supcp. Thus 
it suffices to show that there are constants 71, 72e( 0, m) such that for all xeD, 

G 1K(x ) > 71 dist (x, F,J\D), (2.3) 

G 1 (x) < ?z dist (x, IRd\D). (2.4) 

Let V={yeNd: Ilyll <r/2} and let A={yslRe:  r <  IIyH <r+d iamO}.  Since G1K 
is bounded away from 0 on each compact subset of D, we need only check (2.3) 
for x near OD. For such x, (2.3) follows from (a) by comparison with G B 1 v. The 
estimate (2.4) follows from (b) by comparison with GAl. This completes the 
proof of the lemma. [] 

Definition 2.7. We shall say D is Green-smooth iff whenever (p and ~ are 
bounded non-negative Borel functions in D with ~b>0 on a set of strictly 
positive Lebesgue measure in D, there exists a constant C<oe  such that 
G~o~CGV/. 

Lemma 2.8. Suppose the boundary of D is of class C 2. Then D is Green-smooth. 

Proof. Clearly this follows from Lemma 2.6. [] 

Example 2.9. Even if D has a Lipschitz boundary, D may fail to be Green- 
smooth. 

Proof Let the dimension d=2.  Under the conformal map T: z~z  2, the rose- 
leaf 

D: - ~ - <  0 =~-, 0 < r < 2 c o s 2 0  

is transformed into the disc 

W: 0 < r < 2 c o s 0 .  

The variables r and 0 are polar coordinates, of course. The function 

g ( z )  : 
1 - [ z - l l  2 2 c o s 0 - r  

Izl 2 r 

is positive and harmonic in W. (It is a multiple of the Poisson kernel for W 
with pole at 0.) Hence h = g o T is positive and harmonic in D. Now 

i ~/8 2 cos 2 O-  r 2 

~h> ~ r2 
D 0 - ~ / 8  

> ! ~-r dr=+ ao. 

rdOdr 
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As is shown below (Lemma 2.11), if D were Green-smooth, then every positive 
harmonic function in D would be integrable. Thus D cannot be Green-smooth. 
Clearly 0D is Lipschitz. This completes the proof of the example. [] 

Lemma 2.10. Suppose D is Green-smooth and Co, ~ are bounded non-negative 
Borel functions in D with ~ > 0 on a set of strictly positive Lebesgue measure in 
D. Let eel0 ,  oo). Then there is a constant C <  oo such that G~q~< CG~O. 

Proof. If a = 0  this is just the definition of Green-smoothness. Suppose e>0 .  
Let K be a compact subset of D of strictly positive Lebesgue measure. Using 
the domination principle, it is easy to see that it suffices to show that 

G~I<TG~IK 

for a suitable constant 7 < ~ .  Let 

and let 
T=  inf{t > 0: X ~ K }  

(2.5) 

From (2.7) we obtain 

exp { - ~E" [T; T <  r]/v} < v j r .  

v < v~ exp { ~ E" (z)/v } = v~ exp { ~ G l/v}. (2.8) 

Since D is Green-smooth, 

G1 <72G1K (2.9) 

for a suitable constant 72 < oo. Using the domination principle, it is easy to see 
that 

G1K<=73v (2.10) 

for a suitable constant 73 < oo. From (2.8) through (2.10) we have 

v < v~ exp(c~72 73). (2.11) 

Finally from (2.9) through (2.11) together with (2.6) we have 

G 1 < 72 73 exp (c~ 72 73)71 G~ 1~. (2.12) 

This completes the proof of the lemma. [] 

(2.7) 

v=P '{T<z} ,  

v, =E'{e-~T; T<z}  

be the capacitary potential and the e-capacitary potential, respectively, of K 
relative to D. Let e 1 =infKG~l K. Then e 1 >0. Let 71 = 1/El.  Then 

V ~ 7 1 G : I  K. (2.6) 

Now by Jensen's inequality applied to the function e -at, 
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Lemma 2.11. Suppose D is Green-smooth. Let xo6D. Then there is a constant 
C < ~ such that for any non-negative superharmonic function h in D, 

h(x) dx < Ch(xo). 
D 

Proof Let B be an open ball centred at x o and satisfying/3___D. Let qo=(1/b)l R 
where b is the Lebesgue measure of B. Then ~h(x)(p(x)dx<h(xo). Thus it 

D 

suffices to find a constant C, independent of h, such that 
~h(x)dx<CSh(x)q)(x)dx. Since D is Green-smooth, 3 C < c o  such that 
D D 

G1 <CGq). If h is of the form GO for some non-negative Borel function 0 in 
D, then 

Ih(x)dx=~GO(x)dx 
D D 

=fGl(x )  O(x)dx 
D 

< C j G q~(x) O(x) dx 
D 

= C f GO(x) q (x)dx 
D 

=C~h(x) p(x)dx. 
D 

But any non-negative superharmonic function h in D is the limit of an in- 
creasing sequence of such potentials G o . Thus we may complete the proof of 
the lemma by applying the monotone convergence theorem. [] 

Lemma 2.12. Suppose D is Green-smooth. Then there is a constant C< oo such 
that for all x6D and all ze~?D, 

EX;~{z} < C. (2.13) 

Proof We have EX;~{z}=G~l(x)=(1/K~(x))GK~(x) so what we must show is 
that 

GKZ< CKL (2.14) 
Now 

so it suffices to show that 

oo 

GK~-= ~ptK~dt 
0 

1 oo 

=~ptK=dt+ ~ptK"-dt 
0 1 

= <K~+Gp~K = 

GplKZ<C1K ~, 

for then we can take C =  1 + C 1. Now KZ(p,)= 1 so by Lemma 2.11, 

~KZ(x)dx < C 2. 
D 

(2.15) 

(2.16) 
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Hence 
pl KZ< C 3 (2.17) 

where C3=(27r) -a/2 C 2. Let H be a compact subset of D of strictly positive 
Lebesgue measure. By Harnack's inequality, 

lu< C4K z. (2.18) 

Consequently, on H we have 

Glu<= CsK ~. (2.19) 

But then by the domination principle, (2.19) holds throughout D. Since D is 
Green-smooth, 

G 1 __< C 6 G 1 u. (2.20) 

Now from (2.17), (2.20), and (2.19) we see that (2.15) holds with C 1 = C 3 C 6 C 5. 
This completes the proof of the lemma. [] 

Remark2.13. Whether or not D is Green-smooth, there exists a constant 
C 1 < oo such that 

gx {"c} ~ C 1 (2.21) 

for all xED. Indeed (2.21) holds whenever D has finite Lebesgue measure. See 
El0], p. 123, (9). K.L. Chung has observed that this immediately implies that 
for any ~ [ 0 ,  oo) we have 

infE ~{e ~} >0, (2.22) 
x~D 

since E~{e -~} > e  -~ex~ by Jensen's inequality applied to the convex function 
e -~t. In view of Lemma 2.12, if D is Green-smooth, then 

inf E~;~{e - ~ } > 0  (2.23) 
xED,z~SD 

for any c~[0, oo) by the same argument. 

Remark2.14. Let us now recall Young's inequality for convolutions: If p, q, 
reEl, oo] (this q is not our function q) with r -~ =p -~  + q - ~ - 1  and if g~LP(IRd), 
h~Lq(Nd), then g * h e E ( l R  d) and IIg*hll,<-_llgllpllhl[~, where �9 denotes convo- 
lution. (For a proof, see [14], pp. 37-38.) Using this it is easy to show that if n 
is an integer >d/2  and M is the operator of multiplication by a bounded Borel 
function in D, then (G~M)" is bounded as a linear operator from L~(D) into 
Lo~ 

Proof of Theorem 2.1. In the proof of this theorem we shall replace the 
hypothesis that the boundary of D is of class C 2 by the weaker hypothesis that 
D is Green-smooth. (The same replacement may be made in Corollaries 2.2 
through 2.5.) Choose ~e[0, oo) such that p = q + ~ > 0  in D and let M be the 
operator of multiplication by the bounded Borel function p. For z eSD, let 
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v~=E';:{e-~}. We have 

z cr 1 1: k 

= ~ E';~{ j" p(X~)...p(X~)dSk...dsle -~r 
k = 0  O < s l  < , , . < S k < Z  

= ~ (G~M)kv ~ (2.24) 
k = 0  

where the last step follows from the Markov property. Fix an integer n>d/2. 
From (2.24) we have 

E'~{exp[iq(X~)ds]} 

Now let H be a fixed compact subset of D of strictly positive Lebesgue 
measure. C~, C2, ... will denote finite constants >1. From Lemma2.12 (see 
(2.14)) it is clear that 

From (2.23) we have 

z 1 v + ~  ~ (G~M)kKZvZ< 
k = l  

v~>C~ ~. 

CI. (2.26) 

(2.27) 

We can therefore take A 1 to be C2 a. Since K : ( p , ) = l ,  Harnack's inequality 
implies that 

K~> Ca 1 1~. (2.28) 

Also, by Lemma 2.11, we have 

II K z H ~lcD) < C4. (2.29) 

From (2.27) through (2.29) we obtain 

C ~- I(G~ M)" i n < (G~ M )  n K ~ v-" < C 6" (2.30) 

Here C 5 = C  2C 3 and the right-hand inequality holds because n>d/2. Lem- 
ma 2,10 and (2.30) imply 

C; I (G~M) I <=(G,M)[(G~M)" KZv ~] <= C8(G~M) I. (2.31) 

From (2.1), (2.25), and the left-hand inequality in (2.31) we obtain 

[(G~ M) z (G~ M) 1 ] (Xo) < Go. (2.32) 
/ = 0  
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But by the method used to prove (2.24) we have 

u~ = ~ (G~M)kH~ 

29 

1 ~=o(G~M)I(G~M)[(G~M).K~v:] < C8_~ ~ (G~M)I(G~M)I 
~ - 1 ~  I=0 

k=0 

< C12K--T(G~M)1 

Thus we may take A 2 
rein.  [ ]  

Remark2.I6. It follows immediately from Theorem2.1 (in its version for 
Green-smooth D) that if D is Green-smooth and the gauge of D is finite, then 
there are constants A1, A2e(0, oo) such that for all non-negative Borel functions 
f on c3D, 

A 1H s < uf < A2H f. (2.37) 

Proof of Corollary 2.4. Since #x(dz) = K(x, z) #(dz), 

~lu~(x)ldx=~ [.f(z)U ;~ exp q(Xs)ds K(x,z)#(dz) dx<C[lf ld# 
D OO k aD 

where C =A 2 C4, A 2 is as in (2.2), and C 4 is as in (2.29). [] 

(from (2.31)) 

(from (2.35)) 

1 1 < C13~-G 

< C14 (from (2.36)). 

---CI+Ca4. This completes the proof of the theo- 

k ~O 

< 1 + ~ (G~M)~(G~M)I. (2.33) 
I=0 

From (2.32) and (2.33) we find that ul(Xo)<Oo. But then by Theorem 1.2 of 
Chung and Rao [43, 

u 1 < C 9. (2.34) 

Now H~ > C 21 (see (2.27)) so from (2.33) and (2.34) we obtain 

(G~ M)k 1 < Clo. (2.35) 
k=0 

As we saw in the proof of Lemma 2.12 (see (2.20) and (2.19)), we have 

G 1 < C 11K-". (2.36) 
Therefore 



30 N. Fa lkne r  

3. Connections with PDE Theory 

We begin this section with a discussion of when and in what sense u: solves 
the boundary value problem (1.2). These questions have been considered by 
other authors (Khas'minskii [8], Chung and Rao [41, Aizenman and Simon 
[1]) so we shall be brief. Our main purpose will be to indicate the sense in 
which (1.2b) may be interpreted when f is not continuous. Following that we 
shall give an application of Corollary 2.2 to PDE theory. Let us mention that 
in Propositions 3.1 and 3.2 below our blanket assumption that D is bounded 
can be replaced by the assumption that D has finite Lebesgue measure. 

We begin our discussion by pointing out that if u is any locally L 1 function 
in D which satisfies (1.2a) in the sense of distribution theory, then u may be 
modified on a set of Lebesgue measure 0 in D so as to become continuous. 
This was shown by Aizenman and Simon [1], Theorem 1.5. In our case where 
q is bounded, a very simple proof can be given using Weyl's lemma and the 
smoothing properties of Green-potential operators in relatively compact open 
subsets of D. We leave it to the reader to work this out if he so desires. 

Proposition3.1. Suppose the gauge of D is finite and f :  ~D-MR is Borel and 
bounded. Let u=uf.  Then u is bounded and continuous in D, satisfies (1/2)du 
+ q u = 0  in D in the sense of distributions, and satisfies u = f  on OD in the sense 
that for each x~D, l imu(Xt)=f(X ~) PX-a.s. 

tTz 

Proof. That u is bounded in D was proved by Chung and Rao [43, Theo- 
rem 1.2. Applying the Markov property to the identity 

[i ] [! ] exp q(Xs)ds = 1 +  q(Xs)ex p q(Xt)dt ds 
0 

after multiplying by f(X~) and taking expectations, yields 

u=H:+G(qu).  (3.1) 

In doing this an interchange in order of integration is performed whose 
validity follows from the finiteness of G(lqlul:l), which in turn follows from the 
boundedness of ul: I. As is well known, AH:=O while AG(qu )=-2qu  in D so 
(1/2)Au+qu=O in D (in the sense of distributions). Finally for each x~D we 
have limH:(Xt)=f(X~) PX-a.s. (see [5]) and limG(qu)(X~)=O P~-a.s. (see [10], 

ttT t t~ 

Theorem 5.4.5 and Proposition 6.1.2). This completes the proof of the proposi- 
tion. [] 

Now let us fix an increasing sequence (Dn) of open connected relatively 
compact subsets of D satisfying ~ D , = D .  For each n, let %=inf{t>O:Xt(sD,}. 

n 

Let us also fix a point xoeD o. If v and f are Borel functions in D and on ~D 
respectively, then the event F =  {limv(X~) exists and is equal to f(X~)} satisfies 

t"z  

0~ 1 [ F ] = F  for each n, where 0~n is the usual translation operator, so P'{F} is 
harmonic in D. Thus if limv(X~)=f(X~) P~-a.s. for some xeD, then it is so for 

t t~ 
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all x~D. Similarly, if lim v(X~)=f(X~) PX-a.s. for some xeD, then it is so for 
n ~ o o  

all x~D. Finally, it is clear that if l imv(Xt)=f(X~) P~-a.s., then limv(X~) 
tT~ n ~ o o  

=f(X~) P~-a.s. 

Proposition 3.2. Suppose the gauge of D is finite and f :  6D--*~ is Borel and 
bounded. Assume v is bounded and continuous in D, satisfies (1/2)A v +qv =0 in 
D in the sense of distributions and satisfies v = f  on ~?D in the sense that 
lira v(X~,)= f {X~) P~~ Then v =u I. 

n ~ o o  

Proof. Let w=G(qv). Then A v = - 2 q v = A w  so by Weyl's lemma (see [11], 
p. 5.21, Lemma 1) there is a harmonic function h in D such that v = h + w  a.e. in 
D. By continuity, v = h + w  throughout D. It is easy to see that h is bounded 
and then that h = Hz. Thus 

v =Hf + G(q v). (3.2) 

Using the Markov property, it is easy to check that 

Hf=H~f +c~G~H f. (3.3) 

From (3.2), (3.3), and the resolvent equation, we deduce 

v = H} + G~(p v). (3.4) 

Here ~e[0, o~) is chosen so that p=q+c~ is non-negative. Let M be the 
operator of multiplication by p. By successive substitution from (3.4) we find 

,] v= (G~M)kH +(G~M)"+~o. (3.5) 
k _  

Now by hypothesis, ua < vo. But 

u 1 = ~ (G~M)kH~ (3.6) 
k = O  

and by (2.21), infH] >0. Therefore (G~M)"+lv~O as t1~oQ. Thus 
D 

v= ~ (G~M)kH~f. (3.7) 
k ~ 0  

That is, v=uf.  This completes the proof of the proposition. [] 

We now turn to an application of Corollary 2.2 to PDE theory. Observe 
that a solution of the boundary value problem (1.2) need not be non-negative 
even if f is non-negative. (For example, if d =  1, D=(~z/4, 7~z/4), q _  1/2, and 
f~ - l ,  then (1.2) has a unique solution, namely u(x)=-2~/2cosx; but then 
u(Tr)<0. Of course in this example the gauge of D must be infinite for other- 
wise we would have a contradiction of Proposition 3.2.) Our application of 
Corollary 2.2 concerns the existence of non-negative solutions of (1.2). We state 
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it for c?D of class C 2 but it is true if D is just Green-smooth, provided ~D is 
taken to be the Martin boundary of D if this differs from the Euclidean 
boundary (in which case X~ should be taken to be l imX,  with the limit being 
taken in the Martin topology), tt~ 

Proposition 3.3. Assume the boundary of D is of class C 2. Suppose v is non- 
negative, continuous, and satisfies (1/2)Av+qv=O in D in the sense of distri- 
butions. Then there is a non-negative Borel function g on OD such that limv(Xt) 

=g(X~) P~~ I f  p~o {g(X~)>0} =~0, then for each bounded non-negative Borel 
function f on OD there is a unique bounded continuous function u in D which 
satisfies (1/2)Au+qu=O in D in the sense of distributions and satisfies u = f  on 
OD in the sense that for each x~D, limu(Xt)=f(X~) P~-a.s.; moreover, u is non- 
negative, t?~ 

Proof. For 0 < t < z, let 

Yt=exp q(Xs)ds v(Xt). (3.8) 

By the repeated substitution method of the proof of Proposition 3.2 it is easy 
to show that for each n 

v > E" { Y~,} in D,. (3.9) 

The non-negativity of v is crucial here. If v vanishes at some point of D,, then 
E'{ Y J  also vanishes there and hence vanishes throughout D,. Thus either v-= 0 
in D or v>0  throughout D. In the former case there is nothing more to prove. 
Therefore let us assume that v>0  throughout D. Then infv>0 so from (3.9) the 
gauge of D, is finite so in fact 0D, 

v = E" { Y~,} in D, (3.10) 

by Proposition 3.2 applied to D,. From (3.10) and the strong Markov property, 
for each x~D, (Yt) is a continuous non-negative local martingale under P~ on 
the stochastic time interval [0, ~); it is a uniformly integrable martingale under 
px on [0, %) for each n. Hence there is a random variable Z such that lim Y~ = Z 

tSz F 1 

PX~ Let V = e x P l - ~ q ( X s ) d s l Z .  Then limv(Xt)=V PX~ and hence px_ 
k 0 A tT~ 

a.s. for each xsD (see the discussion preceding Proposition3.2). We may 
assume V is measurable relative to the a-field 

~=(-]a(X~k : k~n  ). (3.11) 

Let h,=E'{VAn}  in D. Then O<=h,<n and h, is harmonic in D. As 0D is 
Lipschitz, the Martin boundary of D may be identified with 0D according to 
Hunt and Wheeden [7]. Hence by Theorem 9.1 of Doob [6] (with the h there 
equal to 1), there is a bounded non-negative Borel function g, on 6D such that 
limh,(X~)=g,,(X~) P~-a.s. for x~D. But by the martingale convergence theorem, 
t ' ~  

l imh,(X~k)=VAn PX-a.s. for x~D. Let g=supg, .  Then V=g(X~) px-a.s, for 
k~oo rt 
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x6D. Now from (3.10) and Fatou's lemma we have 

v>u  in D. (3.12) 

If W~ then by Corollary2.2 the gauge of D is finite. The re- 
maining assertions then follow from Propositions 3.1 and 3.2. [] 

4. Concluding Remarks 

In closing, let us mention some open problems. First, can one relax our 
requirement that q be bounded, say along the lines considered by Aizenman 
and Simon [1]? Second, can one relax significantly our requirement that c?D be 
of class C27 In connection with this, it would be desirable to find a weaker 
form of "Green-smoothness" which would still be adequate to establish our 
main results. 

Since this paper was written, Zhongxin Zhao has shown that (2.2) holds for 
q of the class considered by Aizenman and Simon, provided D is a ball with 
finite gauge. He is thus very close to providing an affirmative answer to the 
first open question stated in the preceding paragraph. 
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