
Z. Wahrscheinlichkeitstheorie verw. Gebiete 33, 215- 217 (1975) 
�9 by Springer Verlag 1975 

Construction of Strictly Ergodic Systems 
III. Bernoulli Systems 

Christian Grillenberger ~ and Paul Shields 2 

1 The University of Toledo, Department of Mathematics, 2801 W. Bancroft Street, Toledo, Ohio 43606, 
USA 
2 Institut ftir Mathematische Statistik, D-3400 G6ttingen, LotzestraBe 13, Federal Republic of Germany 

In 1-2] a K-system M was constructed as the intersection o f a  decreasing sequence 
of mixing subshifts of finite type M~. In each step so many  blocks of irregular 
frequencies were excluded that the intersection became strictly ergodic, but so 
many blocks were left over that from entropy inequalities and good weak con- 
vergence one could conclude that the unique measure on M = (~M~ was K-mixing. 
In this paper we use the tools of Ornstein's theory of Bernoulli processes to show 
that the same method with more rapid convergence gives even an M carrying 
a measure which is isomorphic to a Bernoulli shift. We use the results of Ornstein 
and Friedman as they can be found in [4]. 

As far as we know, this is the first application of the fact that the class of 
Bernoulli systems is closed in the d-metric. 

It is not clear whether the K-systems of [2] might always be Bernoulli, but 
it seems possible that a combination of the methods of [-2] and [5] will construc- 
tively determine strictly ergodic K-systems which are not Bernoulli. 

Tools 

We mainly use the notations of [2]. g2 A = A  ~ is the shift space over the finite 
alphabet A, T: ff~A ~ ~'~A the shift t ransformation 

T: co=(coi)i~-~--,(coi+ l )i~ ~. 

B~ is the set of blocks of length / over the alphabet A, and 

s iP ]  = {col(co . . . . . .  cos+,_1) = P }  

i f  P ~. B l. For  a T - invar ian t  subset N ~ O A, B~ (N) = {P ~. B~I o [ P ]  (~ N =f= ~}. Fo r  a 
measure/~ on f24 and a block P we write # (P)=#(o[P] ) .  (All measures are sup- 
posed to be T-invariant Borel probabili ty measures.) If P~.B~, Q =(ql . . . . .  q,.)~.B. 
and r > l, then 

/~e(P)=(r- l+ 1) -1 I{il 1 < i < _ r - I +  1, (qz . . . . .  q i+ ,_l )=P}t .  
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For the definition of strictly ergodic sets and mixing subshifts of finite type 
(m.s.f.t.'s) see e.g. [2, parts I and II]. For  a strictly ergodic set K ~ 0 A, #~ is the 
unique invariant measure on K, and for an m.s.f.t. M c f2 A, #M is the unique 
measure of maximal entropy (Parry measure) on M. This #,u can be computed 
explicitly for all cylinders o[P] and is positive if P~. U B~(M). h(S) denotes the 

l 

topological entropy of the T-invariant closed set So_ ~A, and h(#) the measure 
theoretic entropy of the measure #. 

What  we use from [2, part  II]  is only the simple 

Lemma 1. Let M be an m.s.ft., sEN, 6 > O. Then there exists (constructicely) an 
m.s.ft. M ~ M  and a t c N  such that 

1. if Q~.B,(m), P~.B~(M), then I#Q(P)--#M(P)I <b, and hence 12(P)-#M(P)I < 3  
jbr ecery measure 2 o17 M. 

2. O < h ( M ) - h ( M ) < 6 .  

For a measure # on O A we have in a natural way a process in Ornstein's sense, 
namely ((o[a])a~A, T, #), and since we only consider processes of this kind on the 
same shift space, we simply may write # for the process as well as for the measure. 

A Bernoulli process is a measure # such that (O A, #, T) is isomorphic to a shift 
space with a product measure. 

The 2t-metric between processes (see [3, 4]) is always defined for our processes. 
We need the following facts about  it: 

Theorem 2 (Ornstein). I f  #, (#i)isa are Bernoulli processes and d(#, #i) ~ O, then 
# is a Bernoulli process. 

This is Theorem 6.1 of [4]. 

Definition. The process # is constructively finitely determined (C.F.D.) if, for 
given e>0,  there can be computed n e N  and 6 > 0  such that for any process 2 with 
Ih(2)-h(#)l  < 3  and ~ 12(P)-#(P)[  <3,  2t(2, # ) < e  holds. (See [4], Section 3.) 

P~Bn 
Theorem 3 (Friedman-Ornstein)i I f  M is an m.s.ft., then #~u is C.F.D. 

Proof This follows from Theorem 8.1, Lemma 7.1, and Proposition 7.2 of [4]. 
What  we have to check in addition to the assertions there, is 

1. #M is very weak Bernoulli in a constructive sense, i.e. the number M of 
Theorem 8.1 is computable . . . . .  

2. In Lemma 7.1, u and 6 are computable. 
These points follow directly from the proofs in [4]. 

Construction 

We begin with an m.s.f.t. Mj c O  A and assume for the induction that we have 
m. s. f. t.'s M 1 ~ M 2 ~ . . .  ~ M i , #j = #u j, 1 = t I < t 2 < . . .  < t i ~.N; 62 < 2 - j (1 < j  < i) with 
62+ 1 <�89 62 and 6j <�89 min {#2(P)I P~.B~j(M2) } such that for 1 < j  < i 

a) ~ [#Q(P)-# j (P) [<6j  for every Q~.B,j+.(M2+I), 
P~Btj 
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b)  h (#j + 1) > h (#j)  - 1 ~j .  

Now we want to construct Mi+ 1 which reproduces a) and b). First we apply 
Theorem 3 to M = M i (# = #i) with e = 2-i. Enlarging if necessary t i we obtain 

6i < 1(c5, -1/x min {#i (P)[ P e Bt, (M~)}) 

such that 

c) [h(2)- h(#~)l < ~, } 
d) ~ 12(P)-#~(P)I<~5~ ~ 2 t ( 2 ' # i ) < 2 - z  

P~Bt i 

When 6i is found, Lemma 1 gives us M i + l c M i  and t i+l>t  ~ such that 
Q~.B~,+~ (Mi+l), a) and b) hold with j =  i, hence 

d) is valid for any 2 on M~+ 1 , and in particular, 

e) for any measure 2 on Mi+ 1 and P~.Bt,(Mi), 2(P)>0. 

When all the M i are constructed, we put K = 0 M~. The strict ergodicity of K 
i 

follows immediately from condition a) for all j. We note that B,,(K)=B,, (Mi) for 
all i because of e). Since h(#i)= h(M~)',~ h(K)=h(#K ), b) yields Ih(#K)-h(#~) j <c5~, 
so we have c) for 2=#K, and d) also holds for #K because #K is supported by M~+ 1 . 
Therefore d(#K, #i) < 2-~" Theorem 2 now implies that #~: is a Bernoulli process. 
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