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Gaussian Sample Functions and the Hausdorff Dimension 
of Level Crossings 

STEVEN OREY 

Summary. Let Xt be a real Gaussian process with stationary increments, mean  0, a 2 = E [(Xs +t-Xs)Z] �9 
If cr~ behaves like t z~ as t,~ 0, 0 < e < 1, the graph of a.e. sample function will have Hausdorff  dimension 
2 -  c~. This leads one to feel that the set of zeros of Xt should have Hausdorff  dimension 1 -c~. This is 
shown to be true provided the process is stationary and satisfies additional assumptions.  

Introduction 

Our concern is with real Gaussian processes, and for the most  part  we assume 
that they are stationary or at least have stationary increments. The assumptions 
made will ensure that the processes are continuous with probabili ty one. In 
Section 1 we obtain a result on the Hausdorff  dimension of the graph of the sample 
functions. The corresponding result for Brownian motion was found by Taylor  [ 13], 
and indeed we simply apply his method. Taylor also found the dimension of the 
set of zeros of Brownian motion. Here the treatment of more general Gaussian 
processes appears much more difficult. For  a certain class of stationary processes 
we obtain a result in Section 4. In Section 2 it is shown that under mild conditions 
the time that the process (Xt, 0 <  t <  T) spends in a set E, considered as a function 
of E, is a measure which is, with probabil i ty one absolutely continuous with 
respect to Lebesgue measure. 

All processes are assumed to be separable. We visualize our sample curves as 
point sets in R2, with the time axis horizontal. We write a.s. for almost surely, 
that is, with probabili ty one. 

1. Dimension of the Graph 

Let (Xt) be a real Gaussian process with stationary increments, mean zero, 
covariance r(s, O. Write 

= E X f l ,  

and introduce the notations: 

c~*=sup{e: G=o(t~),  t,~0}, % =inf{c~: t~=o(o-~), t+0}. 

Then 0 < c~* _< e ,  =< ~ .  When e* = c% = ct we will say that at has index c~. We will be 
interested in the case in which a has index c~, 0 < ~ < 1. 

Remark 1. When 0 < e * <  1 ahnost every sample function obeys a uniform 
Lipschitz condition of order 2 for each 2 < e*. See Section 9.4 of [2] where much 
more is proved. 
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For  a linear set A define 

= {(t ,  t A}. 

Evidently C A is a (random) set in the Euclidean plane R 2, For  F ~ R  2 w e  write 
dim(F) for the Hausdorff  dimension of F. For  the case of Brownian motion 
dim [C(o ' ~)] was first calculated by Taylor  [13], and his method serves to prove: 

Theorem 1. Suppose a t has index ~ , 0 < c ~ < l .  Then a.s., d i m [ C ~ ] = 2 - ~  f o r  
every linear set A with positive inner measure. 

Remark  2. Note  that the exceptional set of probabil i ty zero does not depend 
on A. 

Proof. According to Remark  1 the sample functions satisfy uniform Lipschitz 
conditions of order 2, for each 2 < cc For  such functions Besicovitch and Ursell [1] 
showed that the dimension of the graph is at most  2 - 2 ,  and so dim [Ca] < 2 - ~ .  

For  the inequality in the opposite direction one uses the equivalence of Haus- 
dorff dimension and capacity dimension for compact  sets in Euclidean space. 
If A is compact  so is C A and then, if A has positive Lebesgue measure, dim [C~] > 
2 -  ~ will follow from 

I ~([(Xt--Xs)2-}(t--s)21�89 -)~dsdt<O0, 2<2-c~, (1.1) 
A A 

as is well known; see for instance Theorem B in [13]. It  remains to establish (1.1). 
Let 

R, = [ ( X , -  Xo) 2 + t2] ~. 

One verifies easily that 

e -x2/2 dx ,  E [R~-a] -  - a~-*- 0; X2 - ~ 7  

and noting that 
oo 
f e - X 2 / 2 ( x 2 + s ) - e d x < = 4 s  ~ ~ f i > l  
o 

one obtains for 2 > 1 

It follows that 

E [ R t  ~] < 4 at -1 t 1-a" 

T T  T T  E[~ ~([(X,-X~)2+(t-s)2]~)-~dsdt]<=4~ ~(t-s)'-~rlTI_~idsdt. (1.2) 

Since a t has index e the last term in (1.2) is finite when 2 < 2 -  e and then the random 
variable inside the expectation sign in the first term of (1.2) is finite with probabili ty 
one. Thus, outside a fixed null set of co's (!.1) will hold for every measurable A 
included in [0, T],  and this suffices to deduce the theorem. 

A much more difficult question seems to be the determination of the dimension 
of the set of zeros of X v We shall write 

L x = { ( t , x ) :  - oo < t < o o } ,  
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so that C a c~ L~ represents the set of intersections of the graph of X t with the level 
x during the time period A. We will investigate d i m [ C ~ L ~ ]  for stationary 
Gaussian processes. At least when the process is ergodic it is easy to see that the 
random variable dim [-C[0.oo)c~Lx] is constant with probabili ty one. What  does 
not seem evident is that this constant is independent of x. In Section 3 we will 
introduce a condition which will ensure that this is so. Using this condition we 
will solve the indicated problem in Section 4. The condition of Section 3 may  well 
be superfluous: it seems possible that for ergodic processes dim [C(o ' ~) c~ L~-I 
never depends on x. There is, in fact, good reason for conjecturing dim [C[o ' ~) c~ L~] 
= 1 - c~ when cr has index c~. Such grounds are provided by a result of Marstrand [10] 
which we cite now for later reference. We will write A s for s-dimensional outer 
Hausdorff  measure and L(p, O) for the line through the point p with slope tan 0, 
where p is a point in R2, 0 an angle. 

Theorem A (Marstrand). Let  F~_R 2 and suppose 0<AS(F)<  0% where 1 <s. 
Then for  all p ~ F outside some AS-null set, dim IF c~ L(p, 0)] -- s - 1 for  a. e. ( Lebesgue 
measure) O. 

We also seem to need some information about  the existence of sojourn time 
densities. These results have independent interest and will now be developed. 

2. Sojourn Time Density 

Let (Xt) be Gaussian, with mean zero and covariance r(s, t). Let A be a linear set 
of positive Lebesgue measure. Then the sojourn time is defined by 

%(e, ds, 
A 

where as usual I A is the indicator random variable corresponding to the event A. 

We will show that under reasonably general conditions 7J(.) is absolutely 
continuous with respect to Lebesgue measure. For  the case of Brownian motion 
this was first shown by Levy [8]; in that case the sojourn time density is known as 
the local time. 

The Lebesgue decomposition theorem allows us to write 

(El = ~ (El + % (~), 

where ~ and ~ denote the absolutely continuous and singular component of }/i. 
We will write qh(z) for the density of X,, that is the normal density with variance 
r(t, t), and we let Ds, t be the determinant of the covariance matrix of X S and Xt, 
that is Ds, t=r(s ,  s) r(t, t ) - r2 ( s ,  t). 

Finally, i fz  is a real number  E,(z)  is to denote the binary interval of length 2 - "  
containing z; this will be uniquely determined if we agree to take the intervals 
closed on the left and open on the right. 

Suppose now that r(t, t) is a continuous function of t, positive for t>0 .  For  
each real number  z, introduce the random variables 

~ , (z)=2" 7J(E,(z)), n =  1, 2, ~ (z )= l im inf~,,(z). 
n ~ o : ?  
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According to a basic differentiation theorem (see for example [4], Theorem 2.5 
of the supplement) one actually has 

O(z): zCN, 

where N is a Lebesgue null-set, which may depend on co, and ~ (z) is a version of 
the Radon-Nikodym derivative of 7"c with respect to Lebesgu e measure. Note 
also that O(z, co) is measurable in the pair (z, co). By Fatou's lemma and Fubini's 
theorem 

E [~ (z)] < lim E [~,  (z)] = lira 2" E [7'(E, (z))] = lim 2" ~ P IX S e E,(z)] ds 

=  os(z) d s .  
A 

(2.1) 

Let the Lebesgue measure of A be 6 > 0. Suppose now that the inequality in (2.1) 
were an equality. Then one could integrate with respect to z to obtain 

e [0 (z)] d z :  
-oo --oo A 

and since the first member is equal to E [ ~ ( ( - o o ,  oo))] while evidently (5= 
E[7"((-o% oo))] one concludes that with probability one 7"c= 7". Now equality 
will, in fact, obtain in (2.1) if and only if ~,  (z) is uniformly integrable dP. A sufficient 
condition for this is that E [~2 (z)] be bounded uniformly in n, and since 

E[~2 (z)] =2  2" ~ ~ P[XsEE.(z), XtEE.(z)] ds dr, 
A A 

one sees easily that 
~ D[,,~ ds dt < oQ, 

A A 

(2.2) 

suffices, so we have proved the following result. 

Theorem 2. Suppose r (t, t) continuous and r (t, t)> 0 for t > O. Then condition (2.2) 
implies that 7"(" ) is a.s. absolutely continuous with respect to Lebesgue measure, and 
there exists a version of the Radon-Nikodym derivative ~O(z, co) jointly measurable 
in the pair (z, co). 

Remark 3. Suppose the process is stationary, with mean zero. Then r(s, t)= 
r(]t-s[) and r(t)=r(O)-~l at2, where a~ z has the same significance as in Section 1. 
Observe that if a .  < 1 the conditions of Theorem 2 will be satisfied. It seems 
plausible that for Gaussian process with mean zero the conclusion of Theorem 2 
always holds, excepting only the degenerate case Xt= X o for all t, but we have 
no proof. 

3. Equivalence under Translation 

Consider two stochastic processes defined on the same parameter interval, say 
(Xt, teA) and (Yt, teA). There is then a natural isomorphism between the Borel 
field generated by the (Xt) and that generated by the (Yt), with [Xt~ < '~1, Xt2 < 22,.-., 
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Xt, ' < 2,] corresponding to [Yt~ < 22, Y~ < 22, . . . ,  Yr, < 2,]. Call the processes 
equivalent if this isomorphism has the property that the event corresponding to 
an event A is an event of probability zero if and only if A has probability zero. We 
will be interested in the case when X t is stationary Gaussian with mean 0 and 
Y~ = X t + mr, where mt is a non-random function. If we knew for instance that 
( X t , O < t < T )  and ( X , + x , O < t < T )  are equivalent, it would follow that 
P [dim [ C[o ' T] (') L~] > 2] > 0 if and only if P [dim [C[o ' TIn Lo] > 2 ] >  0. This will 
suffice for now as motivation for the lemma of this section. 

Let then (Xt) be real, stationary Gaussian, with mean 0 and covariance 
r(s, t) = r(I t -  sl). Then r (t) has the representation 

r(t)= ~ e ira F(d2), 
- - 0 0  

where F is a distribution function, the spectral distribution of r ( ' ) ;  since r( .)  is 
real the measure corresponding to F is symmetric around the origin. 

Lemma. Let F'(2 ) be the almost everywhere defined derivative of F. Suppose there 
exist e > 0  and N such that F' (2)>g( l+[2[)  -N holds a.e. Then for every finite 
positive T and every infinitely often differentiable function ht, 0 < t < T, the process 
(X,, 0 < t < T) is equivalent to the translated process (X t + hi, 0 < t < T). 

Proof We will exploit the fact that a necessary and sufficient condition for the 
equivalence of (Xt, - m < t < ~ v )  and (Xt+m t, - o o < t < m )  is known; see [6] or 
[5, 12]. The condition is that m has a representation 

rot= ~ g(2)[cos 2 t + s i n  2t]  F(d2), (3.1) 
- - o 0  

with g a real valued function satisfying 

(g(2)) 2 F(d2)< m. (3.2) 

For  given infinitely often differentiable h t defined on [0, T] there exists an infinitely 
often differentiable function m t defined on ( - o r ,  ~ )  which agrees with h on 
[0, T] and which has compact support. Evidently (Xt, 0 < t < T) will be equivalent 
to (Xt+ht,  O<t< T) if ( X t , - o v < t < ~ )  is equivalent to ( X t + m t , - ~ < t < ~ ) .  
The Fourier inversion formula provides an integrable function w(2) such that 

mr= ~ w(2)[cos 2 t+s in  2 t] d2, (3.3) 
- - r  

and the assumptions on m t imply w(2)=O(2-"),  n =  1, 2 . . . .  as 1 2 L - ~ .  One may 
evidently suppose that w vanishes on the null set which is the set of increase of the 
singular part of F, and then (3.3) implies (3.1) with g=w/F' .  The assymptotic 
behaviour of w and the assumptions on F' imply that g satisfies (3.2), which is all 
that was needed. 
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4. Dimension of the Level Crossings 

In  this section X t is to be  a s ta t ionary,  real Gauss in  process with mean  zero, 
covar iance  r(s, t)= r([ t - s  I), and  F is to be  the cor responding  spectral  dis t r ibut ion 
function. The  significance of  a t and  L~ is the same as in Section 1. The  following 
result  will be  established. 

Theorem 3. Let a t have index ~, 0 < c~ < 1. Suppose F is continuous and that the 
almost everywhere defined derivative F' satisfies F' (2) > ~ (1 + 12 I)N for some e > 0 and 
some N for a.e. A. Then, for every x, dim [Cto ' ~o) c~ L~] = 1 - ~ with probability one. 

Remark 3. The  cont inui ty  of  F is equivalent  to the ergodici ty of  Xt; see [7, 113. 

Remark 4. The  a s sumpt ion  on F '  is certainly undesirable  and p robab ly  un- 
necessary.  Examples  where  all condi t ions  of  the t heo rem are known  to be  satisfied 
are given by  r(t)=e -It12", 0 < c ~ <  1. 

Our  p r o o f  will m a k e  use of results of  Mars t rand .  One of these was cited in 
Sect ion 1 as T h e o r e m  A. We  will also need the following result  f rom [10], where  
actual ly m u c h  m o r e  is p roved ;  A ' denotes  f i -dimensional  H a u s d o r f f o u t e r  measure.  

Theorem B (Marstrand) .  Let F ~_R 2. I f  At3(L~c~F) is positive for a set of x' s 
of positive Lebesgue measure then A ~ + ~ (F) > O. 

Proof of Theorem 3. Firs t  it will be shown tha t  

P [ d i m [ L ~ C r o , ~ ) ] < l - e ] = l  , - o o < x < o o .  (4.1) 

Evident ly  it suffices to show tha t  for each fixed T, T <  0% and each x, 

d i m  [L~ c~ Cto ' T]] ~ 1 -- 

a. s. F r o m  T h e o r e m  1 we k n o w  tha t  a. s. d im [C~o ' r~] = 2- -  C~, and  then T h e o r e m  B 
implies d im [L  x c~ CLo ' rl] < 1 -  e for a.e. x, where  the except ional  null set m a y  
depend  on co. Suppose  now tha t  for some x, P [d im [Lx ~ C~o ' T1] > 1 -- ~] > 0. The  
same  would  then be t rue  for every x, since according  to the L e m m a  of Section 3 
(X~, 0 < t < T) and  (X~+ y, 0 < t < T) are equivalent  for every y. I t  is not  ha rd  to 
justify the appl ica t ions  of  Fubini ' s  theorem,  which tells us tha t  with posit ive 
p robabi l i ty  {x: d im [L x c~ Cto" rl] > 1 -- ~} has  posit ive Lebesgue measure .  This is 
a contradict ion,  and  (4.1) is established. 

I t  remains  to prove  

P [d im [L  x c~ Cto ' T1] > 1 -- ~] = 1, -- ~ < X < o0. (4.2) 

Our  first concern  will be to p rove  tha t  for T <  0% e' > ct 

P [d im [Lx c~ Cto ' r l ]  > 1 - e ' ]  > 0. (4.3) 

So let e'e(c~, 1) and define 

C'={p~C[o,T]: d im[L(p ,  0)c~ CrO, T~]> l --C( for a.e. 0}. 
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Then, a.s., dim [C~o, r3 - C']  < 2 -  ~' < 2 - e. F o r  suppose otherwise. Then there 
exists cr such that  c~ < e " <  c( and A 2-~'' (C~o, r3-  C')> 0. Then it is known,  see [3], 
that  there exists a set D such that  

D~CEo, r j - C '  , 0 < A 2 - = " ( D )  < oo. 

To this set D we m a y  apply Mars t rand ' s  Theorem A (see Section 1). The conclusion 
of  this theorem is not  consistent with D_~ C[o ' r ~ -  C', and this is the desired con- 
tradiction. 

We are dealing with sets such as C', which are point  sets in R 2 . For  such sets 
we will write Proj l  (-) for the project ion onto  the (horizontal) time-axis, Proj2 (.) 
for the perpendicular  projection. 

Since a.s. d i m [ C ~ 0 , r l - C ' ] < 2 - c ~  it follows from Theorem1 that  a.s. 
Pr~ T1- C') is a null set (Lebesgue measure). Bearing in mind the definition 
of  C' and making  a justifiable application o f  Fubini 's  theorem one deduces the 
existence of  a 0 such that  0 < 0 < re/2 and a.s. 

dim[L(Xt,  O)c3Cro, r 3 ] > l - e "  for a.e. t~[0,  T ] .  (4.4) 

N o w  in (4.4) one m a y  take 0 =0 .  To see this consider what  (4.4) tells us about  the 
translated process ( X t - t  tan 0, 0__<t< T) and use the L e m m a  of  Section 3. We 
now introduce 

B = {p E C[o ' T]: dim [L(p, 0) ~ C[o ' TI] ~" i - a'}. 

W h a t  we have shown is that  a.s. Projl(C[o, r j - B  ) is a null set. That  is, if ~0, r~ 
denotes the sojourn time, as in Section 2, then ~o, r~(B) = T. N o w  Proj2 (B) can be 
seen to be measurable  and it follows now from Theorem 2 that  it is a set of  positive 
Lebesgue measure. That  is, with probabil i ty one {x: dim (L x c~ C~o" T~) > 1 --e '}  has 
positive measure. Again  it is no t  hard  to justify application of  Fubini 's  theorem 
to obtain  the existence of  an x such that  (4.3) holds. Using once again that  by  the 
L e m m a  of  Section 3 (X~, 0 < t < T) and (X t + y, 0 < t < T) are equivalent, it follows 
that  (4.3) holds for all x. 

Let E,  be the event [dim[Lxc~Cr, r,(,+l~r~]>l-cg ]. Then (4.3) asserts 
P [Eo]  > 0. Since we have stat ionari ty we m a y  use the ergodic theorem. Accord ing  

N 
to R e m a r k 4  we have ergodicity. So N - t ~ E , ~ P [ E o ]  a.s. as N ~ o o .  This 

implies (4.2) with ~' for e. Since c~' is an arbi t rary number  greater than ~, (4.2) 
follows. 

I wish to thank Professor S.J.Taylor for several interesting conversations on the topic of this 
paper, and particular for drawing my attention to the work of Marstrand [9], [10], of which I make 
substantial use. 
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