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An Identification of Ratio Ergodic Limits 
for Semi-Groups* 

M. A. AKCOGLU and J. CUNSOLO 

Summary. Let L 1 = L I(X, -Y, #), where (X, ~, p) is a a-finite measure space and let T~: L 1 -~ Lp t > 0, 
be a strongly continuous semi-group of positive linear contractions and U/L|  --,L~ be the dual of T t. 
The purpose of this paper is to give an identification of the ratio ergodic limit 

(f/g) = lira dt g dt 
s ~ m  ~ 0  I 0 

where f and g are in L I and g>0.  We construct a sub-Banach algebra ~4 of L| that contains J r =  
{fE L~lU~f=f all t>0} and define a transformation ~: d ~ A ~ .  With multiplication defined by 
fg  = ~(fg), Y becomes a B*-algebra which is isometrically * isomorphic under a mapping a to C(K), 
the space of complex valued continuous functions on the maximal ideal space K of ~ .  Let M(K) 
denote the space of finite complex Baire measures on K. Define z: d -~  C (K) where z = a ~ and 2: L1 
M(K) where, for f in L1, f f h  d/~ = ~a h d;~ f for every h in ~ .  Then our identification for (f/g) in L~ 
is z ( f  /g)=d2 f /d2 g. 

Introduction 

Let (X, J, /2) be a a-finite measure space and let Tt, t > 0 be a strongly continuous 
semi-group of positive linear contractions on L I(X, ~ #). The existence of the 
ratio ergodic limits for such a semi-group has recently been proved in [5] and [3]. 
In [5] Berk has also obtained an identification for these limits on the conservative 
part of X, which is analogous to a result of Chacon [7], [2] for the discrete case. 
The purpose of this paper is to obtain a different identification of the ratio ergodic 
limits for semi-groups over the whole space X. The basic methods used are exten- 
sions of the methods in [4] to the continuous case and are different from those 
used to obtain the identification on the conservative part only [5, 7, 2]. The 
discrete analogue of our identification, although not stated, would follow from 
the results in [4]. 

Definitions and Preliminaries 

Let T =  {Ttlt> O} denote a semi-group of positive linear contractions from 
L 1 to L1 where L~ is the usual real Banach space of a a-finite measure space 
(X, ~ #). Hence for all s, t => 0, Tt: L1 --, La, II Tt rl --< 1, To = I, T~ +s = Tt T~ and 77, L + c L~ 
where L + denotes the class of non-negative L1 functions. We shall further assume 
that Tis strongly continuous which means that, for every f ~  L1, T(.)f is continuous 
on [0, oo) with respect to L~ norm and hence is Riemann integrable on every 
finite interval of [0, oe). 

* This research is supported in part by N.R.C. Grant A-3974. 
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For  t > 0  let Ut: L~--+L~ be the dual of T, and for c(ELoo and t > 0  define 
Tt~: L1--* L1 as Tiff= c( f+ T , (1 -  e ) f  and let U, = be its dual. If for E e l ,  Z~ is the 
characteristic function we write T f  and U, ~ instead of T, ~ and Uff ~. 

The following partial ordering of L + is the continuous extension of the one 
defined in [4]. 

Definition 1. For  f, geLS, f-<g if and only if there exists an integer n >  1 and 
cq,% . . . .  , e ,  e L ~  and q, t2  . . . .  , t ,  such that 0 < ~ < 1  and t~>0 for i = l ,  2 , . . . , n  
and g = T?" ... 

This reflexive and transitive relation has the property that if f -<g  then 
IIf l[~ > II g I[1 and also, if f-<g,  g = T~"... T~ ' f  then an induction argument shows 
that g<(T~ +,~ +... +~, f. Hence it follows that {g ~ L+lf<g} is upward directed by -<. 

Definition 2. For  f~L~,  and Eeo~ let 

~ f = s u p  5gdt t  and OEf=limkU~g. 
g ~ f  E g ~ f  

Lemma 1. For any f ixed t>_O, E ~  and any integer n>= 1, if ~ieL~,O<=~i<= 1 
for i= 1, 2 . . . . .  n then 

u, ~-... u, ~ z~____ (u,~)" ~ .  

Proof. Let g e L  + satisfy 

XE Ut g < z e g  
(,) 

Z~ U,g>xEog for all t > 0 .  

Then, for all eeL~o,0_<c(___ 1 and all t>0 ,  

U,~g = ~ g +(  1 - ~ )  ~ g < ) ~  g + Z~ U,g= U,~g. 

Since IIU, LL<I for all t then, for E e l ,  ZE satisfies (.) and U~)~E< Uf)~> For  a 
fixed t it follows by induction that (Uf)" XE satisfies (.) for all n>0 .  Hence we have, 
again by induction, that 

Ut~"... Ut~)~E<(UtE)")~g for cqeL~, 0 < c q < l ,  i = l ,  2 , . . . , n .  

= T?" . Tt~f and e > 0  it follows from the We note that for any g~-f6L~, g t, .. 
continuity of T(.) h on (0, oo) for any h e l l  and from an induction argument that 
there exists a set of positive rationals q,  r2 . . . . .  r, depending on e with the property 
that I Ig-T?" . . .  T~'fl[l<e. rn 

Lemma 2. For f~L~,  E s ~  and e > 0  there exists a positive rational r and a 
positive integer n such that 

0<= ~PEf - ~ (T~)"f dl ~<e. 
E 

Proof. Choose 8>0.  There exists a g ~ f ,  g =  Tt~ k ... Tt~'f such that 0 <  7~ef - 
S g d# < e/2. We can determine by induction a set of positive rationals q,  r2 . . . .  , rk 
E 
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with the property that g' = T2k... T~' f and 

I ~ g dl~- ~ g' d~l<- IIg-g'[l~ <e/2. 
g E 

Hence 0=< ~Pef-  ~ g ' d # < e .  
E 

Let r denote the reciprocal of the least common denominator of q,  r2, ..., rk; 
then r,-=ni r where nl is a positive integer for i=  1, 2 . . . . .  k. Using the fact that 

T~ , f  = Tf" ... T~l f  where ~, fli~L~o 

0-<~-<1, O<-f l i<l , i=l ,2  . . . . .  m and il l=a1 and flj is such that T ~ J - ~ ( 1 - ~ ) f -  - 
(1 - f i j )  Tf~-l.. .  T f l f  for j = 2, 3, ..., m and from Lemma 1 it follows that 

~ g ' d ~ =  ~ T~"... T~l f d#=~ U71 ... UF" z E f  d~< ~ (Uff)" z ~ f  dl ~= ~ (Tf)~f  dl~ 
E E E 

k 

where n =  ~ n~ and the 7~'s, y, eL~ ,  0<7~< 1, i=  1, 2 . . . . .  n, are determined in a 
i=1 

similiar fashion to the above fii's. Hence 

~P~f - e  < ~ g ' d g <  ~ (T~E)"f dtz6 TEf  
E E 

which completes the proof. 

Note that it follows from Lemma 2 that ~ E f =  f2~f defined in [3]. 

Definition 3. Let z = {0, Zx, z2 . . . .  , %} denote a finite partition of [0, oo) into 
intervals such that z~_l < zi and zi is rational for 1 _< i_< n = n(z) and define r~= 
z~- z i_a, i=  1, 2, ..., n. Let ~ denote the class of all such finite z partitions on 
[0, oo). Then for E ~ f f  define 

~ = U~E... U~, E ZE where n = n (z) 
and 

~'E = sup O~. 

Note that since U~... U,f Z~<(U~) N )~ where r denotes the reciprocal of the 

least common denominator of G, r2 . . . . .  r, and N = ~ n i where n i is a positive 
i= l  

integer such that ri=n i r for i=  1, 2, ..., n and (U~)" Z~" as nT (by induction for any 
fixed r > 0 )  then it follows that {O)lzeN} is upward directed. 

Lemma 3. Let E ~ ~ ; then for f ~ L1 

~P~ f = I O ~ f d l~ . 

Proof. It is sufficient to prove the lemma for f~L~. Choose e>O; by Lemma 2 
there exists a rational r =  r(e)  and an integer n such that 

7SEf--e < 5 (T,e)"fd/~ = ~ (Uf)" zEfdp<=~ ~ f d #  
E 

which implies that ~Ef<=S OEfd#. 
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Since { O ) l z ~ }  is upward directed and countable then there exists a sequence 
~" mT and hence for any f~L~ ~ f T t p ~ f < f  a.e. By {~)'} such that Oe ~ 0k a.e. as 

the Monotone Convergence Theorem we have sup ~ O)"fd# =[. Oefd# but since 
m 

[, O)~fd#< ~ f  for all m then ~ ~ f d # <  ~ef  for any f e L  +. The lemma follows. 

Remark. Ifg>-f6L + then it follows from the definition that 7~eg< ~ e f  for any 
E ~ .  Since, for fixed t > 0  and all n > l ,  T, tf=Tt~ where 0 
denotes the zero L~o function, then ~(T,,f),[, as n~. Using this fact and Lemma 3 
we have that for E s f f  and fixed t>0,  U~" ~ $ .  

Definition 4. Let z s ~ ,  r =  {0, "q, %, ..., z,} and ri=ri-'ci_~, i=  1, 2 . . . . .  n = n('c) 
and E e ~- then define 

0~= U, . . .  U~, ~9~ n=n(r )  
and 

0k = inf 0~. 

Note that since Ut" OE+ for fixed t > 0  then {O)lz~} is downward directed. 
Also, using the previous remark and the properties of -<, it can be shown that 
{7~eglg~f,f~L-~} is downward directed which then yields O ~ f = l i m  TEg= 

g ~ - f  inf 7J~ g = l i m  sup ~ g d#. 
g ~ " f  g > " f  E 

Lemma 4. For f e  L +, and E ~ g 

O~f=~O~fd#. 

Proof. Choose e>0.  There exists a g>-f  such that IOEf-~egl<e where 
g=Tt~"...Tt~lf. Let t=h+t2+. . .+t ,  and choose any rational r>t. Then we 
have Tt f~ -g  and T~f= Tf t  Ttf~-Ttf  Hence Of< ~g~(T~f)< ~/'E(Tt f ) <  N~ g and 
Of+ ~ > ~(Tv f)  = ~ ~E T~ f d# = ~ U~ Ok f d~ > ~ Ok f d# which implies OE f > ~ Of d#. 

Since {0) I~N} is downward directed and ~ O)fd~t>OEf for all z E ~  then 
using the Monotone Convergence Theorem we have ~ OEfd> OEf which com- 
pletes the proof. 

Note. Using the first part of the above proof it can be shown that Ok f =  
lira ~'E (T~ f) .  
r-., oo 

Definition 5. For Eel ,  ~ and a fixed positive rational r since (Uf)" ZeT then the 
limit exists and we define 

~ = lim (Uf) ~ Z~. 
~- .oo  

Note that 0 k =  sup ~9~ a.e. where R + is the set of positive rationals. 
r ~ R ~  + 

Lemma 5. Let F, E ~ ,  F ~ E, f EL + and r~R~ + then 

and 
~ f d~ =~ O~(Tf)"f d# 

~tp)fd#= lim ~ O~(T~)"fd#. 
n ~ o v  F 

Proof. Identical to the first part of proof of Lemma 2 [4]. 
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Lemma 6. Let F, E ~ ~ F ~ E. For any f ~ L~ there exists a sequence of L + func- 
tions {g,} with the following properties: 

(i) g , ~ f  all n> 1. 
(ii) lira ~ ~ g , d # = ~  ~befdtt. 

n-~oo F 

(iii) lira J" ~ g, d/~ = 0. 
?t---~ ct3 EC 

(iv) lim ~ 0~ g, d/~ = 0. 
n ~  oO Ec 

Proof Since, for any hsL  +, z~h=h, ~ h d p =  ~hdp then ~b~=l a.e. on E. 
E 

By definition, for each n >  1, there exists a g,>-f g, depending on l/n, such that 
O< ~g~ f - ~ gn d# < 1/n. Hence, by construction, we have that 

E 

lim S ~ g , d / t = l i m  ~g, d p = ~ f  
n ~  E n ~  E 

and since S ~ g, d p <  S ~b E g, d p <  7J~f then (i) and (ii) are satisfied. 
E F 

Also 

0<= ~ ~b~g. dlz<= ~ ~ g . d t ~ = ~  ~ g ,  d t t -  ~ ~Eg. dtt<=Tt~f - ~ ~Eg, dt~-~O 
F c E c E E 

as n-~ ~ which satisfies (iii). 

Since 0 =< O (ZEc gn) =< ~ (Z~o g,) for all n => i then (iv) follows. 

Lemma 7. Let Eis~,  E = ~ E i for i= 1, 2 ... .  , m and f~L~. Then there exists a 
i ~ l  

sequence of L~; functions {g,} such that g, >-fall n >= 1 and lim ~ ~ ,  g, dtt = ~ ~b~, f d l~ 
f o r i = l ,  2, ...,m. " ~  ~ 

Proof It is sufficient to prove the lemma for m = 2. We shall show that for any 
e > 0 there exists a g = g (e), g >-f  with the property that 0 < ~ ~E~ f d l~ -  ~ ~E~ g dt~ < e 
for i= 1, 2 where E=E~ uE2.  

Choose ~> 0. There exist positive rationals q, r2 and positive integers nx, n2 
such that 

O < ~ E ~ f d k t -  ~(Tf ')" ' fdp<e/2 i=1 ,2 .  
Ei  

Let r denote the reciprocal of the least common denominator of fi and r z. Then 
it follows that (Ufg"' Z~,<(Ufg" g~, for i=  1, 2 where n =max  {nl, ms, n2 m2} where 
ri = rni r, i=  1, 2. Hence 

Oe, f d # - e / 2 <  ~ (T~f')"'fdt~< I (TfO"fdl~<~ O}, fd#<~ Og~fdt z 
Ei  E i  

for i=1,  2. 

By Lemma 5 there exist integers Pl and P2 such that 

O<-5~,},fdlz- ~ , ( T f ) P ' f d p < e / 2  for i=1 ,2 .  
E 
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Letting p = max {p~, p~} we have 

O~,f d#>_~ ~9~,(T~Z)P f d#>= ~ OE,(T~)P f d#> ~ ~O~(T~Z)~fd#> ~ ~ , f  d#-~/2  
E E 

> ~ f d # - e  for i = 1 , 2 .  
Ei 

Defining g (e) = g = (T~)~f we have g > - f  and 

O<~,fd#-~q%gd#<e for i=1,2.  
E 

Define g ,=g(1/n) ,  
lim ~ ~be, g, d# = ~ ~b~ f d #  for i = 1, 2 which completes the proof. 
n ~ o  E 

n > l .  Then by construction we have g.>-f,  n > l  and 

E= U E i then 
i = 1  

L e m m a 8 .  I f  a~ is real and E i s ~  for / = 1 , 2  . . . .  ,m and 

?tl ~ m 

)~e ~ ai 0~, > 0 implies a~ 05, > 0 and ~ a~ Oe~ ~ 0 a. e. 
i ~ l  i = 1  i = 1  

Proof. Choose any feL~.  By L e m m a  7 there exists a sequence {g,} g, ,>f  all 

n > 1 and lim ~ ~9E, g, d# = i Of, f d #  for i--  1, 2 . . . .  , m. Hence 0 < ~ a~ I OE~ g, d# 
n ~ a o  E i = 1  

2 a~ ~ O~ f d #  as n ~ oo. Since ~ a~ ~ t)5~ f d #  > 0 for all f E  L~ then a~ 0~, > 0 a.e. 
i = 1  i = 1  i = 1  

For  f~L'[ 

O=<lim s  ~ai~in}[~pe, gd#= ai(Oe~fd # 
g ~ f  i = 1  i = 1  i = 1  

which implies that  ~, ai Of, > 0 a. e. 
i = l  

Definition 6. For E, F c ~  let 

OEr=OE+~br - -OE . r  and O E F = O E - ~ O F - - O E ~ F  . 

~e~ and Oep, the functionals on L 1 defined by the L~ functions Off  and 0EF 
are monotone  and subadditive in each index. 

Lemma  9. I f )~ 5 0 5 > a ZE a. e. where E c ~ and a a real number then Of > a ~b ~ a. e. 

Proof. It  is sufficient to assume a > 0. Choose f e L  + and c > 0. There exist g > f  
such that ~ g d#> ~ s f - e / a .  Since O f f =  lira ~E g ' = O E g  for any g ~ f  then we 
have ~ g' > f 

0 5 f  = Of g= ~ 0 E g d#>= ~ 05 g d#> a ~ g d#> a(7~sf - e/a) 
E E 

or f 0 E f d # -  a ~ tpe f d #  > - ~ which implies that 0 e > a q)5 a..e. on X. 

L e m m a l 0 .  For E , F ~ ,  IIOEIIo~= I[Z~0~ll~=0 or 1 and jl0~ihl~= IIZE0~FIL~= 
IIZF 0EFII~ = 0  or 1. 
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Proof For  f e L  + there exists a sequence {g.} of L + functions such that  g .~ f ,  
n > 1 and 0 (Xf~ g.) ~ 0 as n ~ oo. Then  Of ( f )  = OE (g.) = OE (Zf g.) + Of ( )~  g.) shows 
that  II0fll | - - I l z f  OEII,o. 

For  f E L  + and a rat ional  r > 0  there exists a sequence {g,(r)} of L-~ functions 
such that  g,  (r) > T, f ,  n > 1 and satisfying L e m m a  6. Hence  

O f ( f ) :  Of(Tr f ) =  OE(g.(r))= Jim 1, ira Of(), E g.(r)) 

_< lim lim IlO~il~ ]I)~E g,(r)lia -- lim I10~1]~ 7Jr(T, f )  = IlOflloo Oe(f) 

this completes the first par t  of the p roof  since II Of II oo < 1. 

For  the second par t  let {g.} and {g,(r)} be the same as above;  since 

0 < OfF (;~Fo g.) < Oe OlEo g.) ~ 0 as n ~ oQ 

then it follows that IIOE~II oo = II~E OfFl[oo. 

N o w  

OE( f ) - OE()~ g, (r) ) = O~(zf g, (r)) < O~ ~ F()s g~ (r) ) < IIzE g,(r)ll a =< 7sf (T, f )  

and Of(f)<= lim Of~v(Zf g.(r))< 7XE(T~ f ) .  
n - ~  o o  

Lett ing r--+ oo we have OE ( f ) =  lim lira O~ ~v (Xf g.(r)). Since 
r ---~ oo n - - ,  oo 

o~F (z~ g.  (r)) = (o~ + oF - o~  ~ F)(z~ g.  (r)) 

then, first letting n---, oe then r ~ o% we have 

o,,(s)-- o.(s) + }Lm g.(r))- g.Ir)) 
and 

O~.(f)=!im }im Or(Z. g.(r)). 
also 

Ofv(f)  = lim lira O~F()~f g.(r)) 
r ~ c o  n--+ o~ 

< II0frll~ lira lira II)~fg.(r)lll 
r ---~ oo n ~ o o  

< IlOEvl[oo lim ~f(T~f)  
r ~ o 9  

< If0~Fll ~ O E ( f ) .  
Hence  

O F(i): !im g.(r)) 
= < II0~FII ~ lira lim OF(x~g.(r)) 

r ~ o o  n ~ o o  

< IIOEFII | OEF(f) 

which completes the p roof  since IIOErll ~ < 1. 

Definition 7. Z = { E ~ W I  0e~c = 0}.  
15 Z.  W a h r s c h e i n l i c h k e i t s t h e o r i e  v e r w .  G e b . ,  Bd.  15 
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Note that since O~OGGe~OG(EeuFc)~OGEC"~OGFc~_OEEc-~OFFc:O for E, F e S  
and G = E c~ F then X is a field. 

Definit ion 8. d is the L~ closure of X-simple functions. 

d is a sub-Banach space of L| 

Theorem 1. For f sLo~ the following conditions are equivalent: 

(i) fe~r 
(ii) lira S f g d# exists for all goeL-[. 

g;~go 

(iii) for all real numbers c~ and e>0,  0Ee=0 where E = { x l f ( x ) < ~  } and 
F={xI f (x)>_~+~}.  

Proof The proof for (i) ~ (ii) and (iii) ~ (i) is identical to the proof of Theorem 1 
[4]. 

For (i i)~ (iii) suppose that E and F are as in (iii) but that 0EF=~0 then 
II0zFII 0o= 1 and for all 6 > 0  there exists a gosL + with I]golll = 1 and S 0Eego d # >  
1 - 6. Hence O~ go > 1 - 6 and OF go > 1 -- fi and lim sup ~ f g  d# > (1 - ~)(~ + e) and 

g~'go 

lira i n f ~ f g  d # < e +  Ilfll~ 8. If 3 is chosen sufficiently small then l i m f g  d# does 
g~'go g ~ g o  

not exist. 

Identification of  a Ratio  Ergodic Limit  

For any f, g e L1 with g > 0 it was proved in [5] and [3] that the limit 
s 

~ T t f d t  
( f /g)  = lim o 

5 

s-,o~ ~Ttgdt  
0 

exists a.e. We shall identify this limit function (f/g). 

Using the fact that 7JE f =  f2~ (f)  for any f s L  1 and Theorem 1 in [3] it follows 
that ifc~<=(f/g)<_fl a.e. on E E ~  then a_< ~PEf/TJEg.~fi (cf. [6, 1]). 

Theorem 2. I f  f, g ~ L-~ with g > 0 and E = { x[( f  /g) (x) <= a}, F -  {x l ( f  /g ) (x) > a + e} 
then O~F = 0 for all a >= 0 and e > O. 

Proof Identical to the proof of Theorem 3 [4]. 

Corollary. I f  f g ~ L1, g > 0 and (f/g) ~ L~ then (f/g) ~ ~r 

Theorem3. I f  ( f /g)~L| f , g ~ L  1, g > 0  and h ~ d  then l i m S h T t f d # =  
lim ~ h(f/g) T, g d#. 

Proof Recall that (f/g) e ar Choose e > O. There exists a S partition of X {E~j}, 
I < i, j < k such that II h - E hi ZE,jll ~ < ~ and II(fig) - E as ze,s I{ ~ <e  for suitable 

ij  i j  
real hi, ~j with Ih,I < IIhH oo 1~31 < II(f/g)ll ~o. Since for E s S  lira .f T~ g d # =  O~ g then 

t--+ oO 

I~imoo~h(f/g) T~gd#-~. h,c~s~ina ~ ~ T~gd#l 
tJ Eij 

= ]lirn ~ h(f/g) T~ g d# --~.. h, ~, 0~, s gl <g Ilglll (lih]l ~o + II(f/g)ll ~). 
tJ 
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, > Let 6 > 0  be fixed and set Eij={xrOE,~(x)=l-g}nEij. From the proof of 
Theorem 2 and from Lemma 9 we have that 0Eli = 0E,j and 0 ~  > (1 - 6 )  OE~- Also, 
if I c~j- (f/g) l < ~ on E~j then [e j -  q'E,j f / ~ j  g f < e. Note that we shall only consider 
those EiSs with 0E,j �9 0. Thus 

~ hi~j6)E,~g-- ~. hi 7JE'*Jf OEijg <el]hlloollgl[a. 
O E i j * O  

Also 

hi ~E~jf O~.j g - ~ h l  7JE,~jf <-_ I[h[l~ IIf[[1 (~k2. 
OE~j,O 7*E~jg ' i j  

Finally, 
I~ hl ~E~jf - -~  hi OE~jT[ <-Ilhll o~ [I f lll k2 t5 
U ij 

and 
[Y" h i OE ~f - lim (. h T~f dlaI<e IIf{l~. 

�9 . L t -+O0 
t J  

Combining these inequalities we obtain the result. 

D e f i n i t i o n  9 .  ~*~ = { f ] fe  L ~, f - -  U, f all t > 0} is the class of invariant functions 
of {Utlt=>O}. 

We assume that W:~ {0}. Note that 3(f is a sub-Banach space of L~ and if 
h e w  and g'~-geL~ then by the definition of W we have ~ hg' d#=~ hgd# which 
yields the existence of lim [ h g'd#. Hence ~vf~ag. Also, we note that for 

g ' ~ g  ~ 

f~ag lim ~fg'dl~= lim ~fTt g d#=!im~fT~ g d#= lim ~ U~fg d/~ exists for all 
g ' ~ g  t ~  ~ t - + a )  

geL1 and IUtf]< [Ifll:o a.e. on X for all t>0.  Hence {Utf},> o has a l imit/7(f) 
in the co* topology of Loo and/7 ( f )e  ~ so H: ag--+ ~ is a positive linear contrac- 
tion. 

By the definition of/7 and Theorem 3 it follows that 

S/7(h).fdl~=f/7(h(f/g))gd~t if heag and (f/g)eL~o. 

We now introduce complex valued functions in order to apply the Gelfand- 
Naimark representation theorem which will lead to an identification of (f/g). 

Let Ea=E,(X,o~,t ~) and E~ denote the usual Banach spaces of complex 
valued/~-integrable functions and complex valued/~-measurable functions bounded 
a.e. respectively. Defining X as in Definition 7, we let ag' denote the Eoo closure of 
the simple complex-valued functions and ~ ' =  { f l f e E ~ ,  Ut R e ( f  ) = R e ( f )  and 
U, I m ( f ) = I m ( f )  for all t_>_0} where Re(f )  and Ira(f) denote the real and imagi- 
nary parts o f f  respectively. 

Note that ag' and J r '  are sub-Banach spaces of L'~ and feag '  if and only if 
Re( f )  and Im(f)eag. (Similarly for ~ '  and ~.) By the definitions and Theorem 1 

l / " - - -9 .  " we have that ~ <ag .  The mapping/7: ag ~ reduces a positive bounded linear 
operator F/': ag '~  Jig' defined by 

/7 ' f  =/7 (Re (f)) + i/7 (Im (f)). 

Definition 10. ag o =ker /7 '  where ker /7 '=  { f l f~ag ' , /7 ' f=  0}. 

Hence ag'/ago -~ ~ '  is a canonical isomorphism. 
1 5 "  
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Note that d '  is a B*-Algebra with the usual operations. We now show that ago 
is a closed ideal. 

Lemma 11. do is a closed ideal. 

Proof. C_learly ag o is a subspace of ag' and do  is closed since 17' is bounded. 
Let f ~ a g  o and assume f i s  real. We shall show that for any heag', h+O, f h e a g  o . 

It is sufficient to assume that h is real. 
Choose g>0  and set E =  {xlf(x)>=~}. We may assume EeZ.  Suppose 0~4:0; 

then for any 6 > 0  there exists a geLS; such that IIgN1 = 1 and O~(g)> (1-6).  

Thus 
O=l im 5 U t f ' g  d/~= lirn 5f" T,g d# 

e t--+ oolim ~ T, g d# - f[ f I[ oo ,-~lim Eol Tt g d/, 

>e(1-a)-  Ilfll,a 

since E e Z  which yields lim 5 T,g d/~=OE(g ) and Oe(g)+O~c(g)=Ox(g)_< IIg[[1. 
t~eo  E 

This inequality is false for small a so OE=0. Then if E =  {x] ]f(x)]_>-a} it follows 
that 0~ = 0. Now set F = {x]] f (x)  h (x)]>_ ~}. Then since F c {x }1 f(x)l _>- e} Jl h[J o~ we 
have 0 F = 0. Thus 

Ilim~ Ut(fh)gd#[< IlfHoo IIh]l~oli+na 5 T, gd/~+eHgll~ if g~L~ 
F 

<~ Ilg]ll for all e>0 .  

Hence f h eag  o and then for any h e d '  f h ~ d  o which completes the proof. 

Since do  is a closed ideal then d ' / d o  and hence 3(r ~' are B*-algebras. Note 
that multiplication on W' is given by/7 '(hl  �9 h2) where ht, hzff~ a'. Also, since H' 
is linear and/7 '  2 =/7, it follows that H'(h. H' f )=/7 ' (h .  f )  where h ~ Je '  and f e d ' .  

Let K denote the maximal ideal space of W';  we note that K is a compact 
Hausdorff space. By the Gelfand Naimark Theorem, C(K), the B* algebra of 
continuous complex valued functions on K, is isometrically * isomorphic to H '  
under the mapping a: Jr'--+ C(K). Also, by the Riesz Representation theorem, 
we have that M (K), the space of finite complex Baire measures on K, is isomorphic 
to the conjugate space of C(K). 

We now define the following mappings: 

z: d'--o C (K) where ~ = a H' 
and 

2: Et--+M(K ) 

such that for f sE1, ~ f " h d#= ~ a h . d()~ f )  for any heW' .  
X K 

Theorem 4. (An identification of (f/g).) 

Let f, g~E1, I m ( f ) = I m ( g ) = 0 ,  g > 0  and (f/g)~L~ then 

d().f) 
z(f /g)= d(2 g)" 
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Proof Let he Jr ' ;  then we have to show that 

a h- d (2 f )=  ~ a h. r(f/g) d(2 g). 
K K 

Hence 

I a h. z(f/g) d(2 g)= I a h. a / / ' ( f /g)  d(2 g) 
K K 

= S a(II'(h. IT(f/g))) d2 g = I / / ' (h .  ~~'(f/g)) g dl~ = ~// '(h. (fg)) g dl~ 
K X X 

= ~ H ' h . f d g =  ~ h . f d # =  ~ a h . d ( 2 f )  
x x K 

where the fifth equality follows from Theorem 3. 
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