An Identification of Ratio Ergodic Limits for Semi-Groups *

M. A. Akcoglu and J.Cunsolo

Summary. Let $L_{1}=L_{1}(X, \mathscr{F}, \mu)$, where (X, \mathscr{F}, μ) is a σ-finite measure space and let $T_{r}: L_{1} \rightarrow L_{1}, t \geqq 0$, be a strongly continuous semi-group of positive linear contractions and $U_{t}: L_{\infty} \rightarrow L_{\infty}$ be the dual of T_{t}. The purpose of this paper is to give an identification of the ratio ergodic limit

$$
(f / g)=\lim _{s \rightarrow \infty}\left(\int_{0}^{s} T_{t} f d t / \int_{0}^{s} T_{t} g d t\right)
$$

where f and g are in L_{1} and $g>0$. We construct a sub-Banach algebra \mathscr{A} of L_{∞} that contains $\mathscr{H}=$ $\left\{f \in L_{\infty} \mid U_{t} f=f\right.$ all $\left.t \geqq 0\right\}$ and define a transformation $\pi: \mathscr{A} \rightarrow \mathscr{H}$. With multiplication defined by $f g=\pi(f g), \mathscr{H}$ becomes a B^{*}-algebra which is isometrically * isomorphic under a mapping σ to $C(K)$, the space of complex valued continuous functions on the maximal ideal space K of \mathscr{H}. Let $M(K)$ denote the space of finite complex Baire measures on K. Define $\tau: \mathscr{A} \rightarrow C(K)$ where $\tau=\sigma \pi$ and $\lambda: L_{1} \rightarrow$ $M(K)$ where, for f in $L_{1}, \int f h d \mu=\int \sigma h d \lambda f$ for every h in \mathscr{H}. Then our identification for (f / g) in L_{∞} is $\tau(f / g)=d \lambda f / d \lambda g$.

Introduction

Let (X, \mathscr{F}, μ) be a σ-finite measure space and let $T_{t}, t \geqq 0$ be a strongly continuous semi-group of positive linear contractions on $L_{1}(X, \mathscr{F}, \mu)$. The existence of the ratio ergodic limits for such a semi-group has recently been proved in [5] and [3]. In [5] Berk has also obtained an identification for these limits on the conservative part of X, which is analogous to a result of Chacon [7], [2] for the discrete case. The purpose of this paper is to obtain a different identification of the ratio ergodic limits for semi-groups over the whole space X. The basic methods used are extensions of the methods in [4] to the continuous case and are different from those used to obtain the identification on the conservative part only [5, 7, 2]. The discrete analogue of our identification, although not stated, would follow from the results in [4].

Definitions and Preliminaries

Let $T=\left\{T_{t} \mid t \geqq 0\right\}$ denote a semi-group of positive linear contractions from L_{1} to L_{1} where L_{1} is the usual real Banach space of a σ-finite measure space (X, \mathscr{F}, μ). Hence for all $s, t \geqq 0, T_{t}: L_{1} \rightarrow L_{1},\left\|T_{t}\right\| \leqq 1, T_{0}=I, T_{t+s}=T_{t} T_{s}$ and $T_{t} L_{1}^{+} \subset L_{1}^{+}$ where L_{1}^{+}denotes the class of non-negative L_{1} functions. We shall further assume that T is strongly continuous which means that, for every $f \in L_{1}, T_{(\cdot)} f$ is continuous on $[0, \infty)$ with respect to L_{1} norm and hence is Riemann integrable on every finite interval of $[0, \infty)$.

[^0]For $t \geqq 0$ let $U_{t}: L_{\infty} \rightarrow L_{\infty}$ be the dual of T_{t} and for $\alpha \in L_{\infty}$ and $t \geqq 0$ define $T_{t}^{\alpha}: L_{1} \rightarrow L_{1}$ as $T_{t}^{\alpha} f=\alpha f+T_{t}(1-\alpha) f$ and let U_{t}^{α} be its dual. If for $E \in \mathscr{F}, \chi_{E}$ is the characteristic function we write T_{t}^{E} and U_{t}^{E} instead of $T_{t}^{X_{E}}$ and $U_{t}^{X_{E}}$.

The following partial ordering of L_{1}^{+}is the continuous extension of the one defined in [4].

Definition 1. For $f, g \in L_{1}^{+}, f \prec g$ if and only if there exists an integer $n \geqq 1$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in L_{\infty}$ and $t_{1}, t_{2}, \ldots, t_{n}$ such that $0 \leqq \alpha_{i} \leqq 1$ and $t_{i}>0$ for $i=1,2, \ldots, n$ and $g=T_{t_{n}}^{\alpha_{n}} \ldots T_{t_{1}}^{\alpha_{1}} f$.

This reflexive and transitive relation has the property that if $f<g$ then $\|f\|_{1} \geqq\|g\|_{1}$ and also, if $f<g, g=T_{t_{n}}^{\alpha_{n}} \ldots T_{t_{1}}^{\alpha_{1}} f$ then an induction argument shows that $g<T_{t_{1}+t_{2}+\cdots+t_{n}} f$. Hence it follows that $\left\{g \in L_{1}^{+} \mid f<g\right\}$ is upward directed by $<$.

Definition 2. For $f \in L_{1}^{+}$, and $E \in \mathscr{F}$ let

$$
\Psi_{E} f=\sup _{g \succ f} \int_{E} g d \mu \quad \text { and } \quad \Theta_{E} f=\lim _{g>f} \Psi_{E} g
$$

Lemma 1. For any fixed $t \geqq 0, E \in \mathscr{F}$ and any integer $n \geqq 1$, if $\alpha_{i} \in L_{\infty}, 0 \leqq \alpha_{i} \leqq 1$ for $i=1,2, \ldots, n$ then

$$
U_{t}^{\alpha_{n}} \ldots U_{t}^{\alpha_{1}} \chi_{E} \leqq\left(U_{t}^{E}\right)^{n} \chi_{E}
$$

Proof. Let $g \in L_{\infty}^{+}$satisfy

$$
\begin{gather*}
\chi_{E} U_{t} g \leqq \chi_{E} g \\
\chi_{E^{c}} U_{t} g \geqq \chi_{E^{c}} g \quad \text { for all } t \geqq 0 . \tag{*}
\end{gather*}
$$

Then, for all $\alpha \in L_{\infty}, 0 \leqq \alpha \leqq 1$ and all $t \geqq 0$,

$$
U_{t}^{\alpha} g=\alpha g+(1-\alpha) U_{t} g \leqq \chi_{E} g+\chi_{E^{c}} U_{t} g=U_{t}^{E} g .
$$

Since $\left\|U_{t}\right\| \leqq 1$ for all t then, for $E \in \mathscr{F}$, χ_{E} satisfies (*) and $U_{t}^{\alpha} \chi_{E} \leqq U_{t}^{E} \chi_{E}$. For a fixed t it follows by induction that $\left(U_{t}^{E}\right)^{n} \chi_{E}$ satisfies (*) for all $n \geqq 0$. Hence we have, again by induction, that

$$
U_{t}^{\alpha_{n}} \ldots U_{t}^{\alpha_{1}} \chi_{E} \leqq\left(U_{t}^{E}\right)^{n} \chi_{E} \quad \text { for } \quad \alpha_{i} \in L_{\infty}, 0 \leqq \alpha_{i} \leqq 1, i=1,2, \ldots, n
$$

We note that for any $g>f \in L_{1}^{+}, g=T_{t_{n}}^{\alpha_{n}} \ldots T_{t_{1}}^{\alpha_{1}} f$ and $\varepsilon>0$ it follows from the continuity of $T_{(\cdot)} h$ on ($0, \infty$) for any $h \in L_{1}$ and from an induction argument that there exists a set of positive rationals $r_{1}, r_{2}, \ldots, r_{n}$ depending on ε with the property that $\left\|g-T_{r_{n}}^{\alpha_{n}} \ldots T_{r_{1}}^{\alpha_{1}} f\right\|_{1}<\varepsilon$.

Lemma 2. For $f \in L_{1}^{+}, E \in \mathscr{F}$ and $\varepsilon>0$ there exists a positive rational r and a positive integer n such that

$$
0 \leqq \Psi_{E} f-\int_{E}\left(T_{\mathbf{r}}^{E}\right)^{n} f d \mu<\varepsilon
$$

Proof. Choose $\varepsilon>0$. There exists a $g>f, g=T_{t_{k}}^{\alpha_{k}} \ldots T_{t_{1}}^{\alpha_{1}} f$ such that $0 \leqq \Psi_{E} f-$ $\int_{E} g d \mu<\varepsilon / 2$. We can determine by induction a set of positive rationals $r_{1}, r_{2}, \ldots, r_{k}$
with the property that $g^{\prime}=T_{r_{k}}^{\alpha_{k}} \ldots T_{r_{1}}^{\alpha_{1}} f$ and

$$
\left|\int_{E} g d \mu-\int_{E} g^{\prime} d \mu\right| \leqq\left\|g-g^{\prime}\right\|_{1}<\varepsilon / 2
$$

Hence $0 \leqq \Psi_{E} f-\int_{E} g^{\prime} d \mu<\varepsilon$.
Let r denote the reciprocal of the least common denominator of $r_{1}, r_{2}, \ldots, r_{k}$; then $r_{i}=n_{i} r$ where n_{i} is a positive integer for $i=1,2, \ldots, k$. Using the fact that

$$
T_{m v}^{\alpha} f=T_{r}^{\beta_{m}} \ldots T_{r}^{\beta_{1}} f \quad \text { where } \alpha, \beta_{i} \in L_{\infty}
$$

$0 \leqq \alpha \leqq 1,0 \leqq \beta_{i} \leqq 1, i=1,2, \ldots, m$ and $\beta_{1}=\alpha_{1}$ and β_{j} is such that $T_{r}^{j-1}(1-\alpha) f=$ $\left(1-\beta_{j}\right) T_{r}^{\beta_{j-1}} \ldots T_{r}^{\beta_{1}} f$ for $j=2,3, \ldots, m$ and from Lemma 1 it follows that

$$
\int_{E} g^{\prime} d \mu=\int_{E} T_{r}^{\gamma_{n}} \ldots T_{r}^{\gamma_{1}} f d \mu=\int U_{r}^{\gamma_{1}} \ldots U_{r}^{\gamma_{n}} \chi_{E} f d \mu \leqq \int\left(U_{r}^{E}\right)^{n} \chi_{E} f d \mu=\int_{E}\left(T_{r}^{E}\right)^{n} f d \mu
$$

where $n=\sum_{i=1}^{k} n_{i}$ and the γ_{i}^{\prime} s, $\gamma_{i} \in L_{\infty}, 0 \leqq \gamma_{i} \leqq 1, i=1,2, \ldots, n$, are determined in a similiar fashion to the above β_{i} 's. Hence

$$
\Psi_{E} f-\varepsilon<\int_{E} g^{\prime} d \mu<\int_{E}\left(T_{r}^{E}\right)^{n} f d \mu \leqq \Psi_{E} f
$$

which completes the proof.
Note that it follows from Lemma 2 that $\Psi_{E} f=\Omega_{E} f$ defined in [3].
Definition 3. Let $\tau=\left\{0, \tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$ denote a finite partition of $[0, \infty)$ into intervals such that $\tau_{i-1}<\tau_{i}$ and τ_{i} is rational for $1 \leqq i \leqq n=n(\tau)$ and define $r_{i}=$ $\tau_{i}-\tau_{i-1}, i=1,2, \ldots, n$. Let \mathscr{P} denote the class of all such finite τ partitions on $[0, \infty)$. Then for $E \in \mathscr{F}$ define

$$
\psi_{E}^{\tau}=U_{r_{n}}^{E} \ldots U_{r_{1}}^{E} \chi_{E} \quad \text { where } n=n(\tau)
$$

and

$$
\psi_{E}=\sup _{\tau \in \mathscr{F}} \psi_{E}^{\tau} .
$$

Note that since $U_{r_{n}}^{E} \ldots U_{r_{1}}^{E} \chi_{E} \leqq\left(U_{r}^{E}\right)^{N} \chi_{E}$ where r denotes the reciprocal of the least common denominator of $r_{r}, r_{2}, \ldots, r_{n}$ and $N=\sum_{i=1}^{n} n_{i}$ where n_{i} is a positive integer such that $r_{i}=n_{i} r$ for $i=1,2, \ldots, n$ and $\left(U_{r}^{E}\right)^{n} \chi_{E} \uparrow$ as $n \uparrow$ (by induction for any fixed $r>0$) then it follows that $\left\{\psi_{E}^{\tau} \mid \tau \in \mathscr{P}\right\}$ is upward directed.

Lemma 3. Let $E \in \mathscr{F}$; then for $f \in L_{1}$

$$
\Psi_{E} f=\int \psi_{E} f d \mu
$$

Proof. It is sufficient to prove the lemma for $f \in L_{1}^{+}$. Choose $\varepsilon>0$; by Lemma 2 there exists a rational $r=r(\varepsilon)$ and an integer n such that

$$
\Psi_{E} f-\varepsilon<\int_{E}\left(T_{r}^{E}\right)^{n} f d \mu=\int\left(U_{r}^{E}\right)^{n} \chi_{E} f d \mu \leqq \int \psi_{E} f d \mu
$$

which implies that $\Psi_{E} f \leqq \int \psi_{E} f d \mu$.

Since $\left\{\psi_{E}^{\tau} \mid \tau \in \mathscr{P}\right\}$ is upward directed and countable then there exists a sequence $\left\{\psi_{E}^{\tau_{m}}\right\}$ such that $\psi_{E}^{\tau_{m}} \uparrow \psi_{E}$ a.e. as $m \uparrow$ and hence for any $f \in L_{1}^{+} \psi_{E}^{\tau_{m}} f \uparrow \psi_{E} f \leqq f$ a.e. By the Monotone Convergence Theorem we have $\sup _{m} \int \psi_{E}^{\tau_{m}} f d \mu=\int \psi_{E} f d \mu$ but since $\int \psi_{E}^{\tau_{m}} f d \mu \leqq \Psi_{E} f$ for all m then $\int \psi_{E} f d \mu \leqq \Psi_{E} f$ for any $f \in L_{1}^{+}$. The lemma follows.

Remark. If $g>f \in L_{1}^{+}$then it follows from the definition that $\Psi_{E} g \leqq \Psi_{E} f$ for any $E \in \mathscr{F}$. Since, for fixed $t>0$ and all $n \geqq 1, T_{n t} f=T_{t}^{0} T_{(n-1) t} f \succ T_{(n-1) t} f$ where 0 denotes the zero L_{∞} function, then $\Psi_{E}\left(T_{n t} f\right) \downarrow$ as $n \uparrow$. Using this fact and Lemma 3 we have that for $E \in \mathscr{F}$ and fixed $t>0, U_{t}^{n} \psi_{E} \downarrow$.

Definition 4. Let $\tau \in \mathscr{P}, \tau=\left\{0, \tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$ and $r_{i}=\tau_{i}-\tau_{i-1}, i=1,2, \ldots, n=n(\tau)$ and $E \in \mathscr{F}$ then define

$$
\theta_{E}^{\tau}=U_{r_{n}} \ldots U_{r_{1}} \psi_{E} \quad n=n(\tau)
$$

and

$$
\theta_{E}=\inf _{\tau \in \mathscr{A}} \theta_{E}^{\tau}
$$

Note that since $U_{t}^{n} \psi_{E} \downarrow$ for fixed $t>0$ then $\left\{\theta_{E}^{\tau} \mid \tau \in \mathscr{P}\right\}$ is downward directed. Also, using the previous remark and the properties of \prec, it can be shown that $\left\{\Psi_{E} g|g\rangle f, f \in L_{1}^{+}\right\}$is downward directed which then yields $\Theta_{E} f=\lim _{g>f} \Psi_{E} g=$ $\inf _{g \succ f} \Psi_{E} g=\lim _{g \succ f} \sup \int_{E} g d \mu$.

Lemma 4. For $f \in L_{1}^{+}$, and $E \in \mathscr{F}$

$$
\Theta_{E} f=\int \theta_{E} f d \mu
$$

Proof. Choose $\varepsilon>0$. There exists a $g>f$ such that $\left|\Theta_{E} f-\Psi_{E} g\right|<\varepsilon$ where $g=T_{t_{n}}^{\alpha_{n}} \ldots T_{t_{1}}^{\alpha_{1}} f$. Let $t=t_{1}+t_{2}+\cdots+t_{n}$ and choose any rational $r \geqq t$. Then we have $T_{t} f \succ g$ and $T_{r} f=T_{r-t}^{0} T_{t} f \succ T_{t} f$. Hence $\Theta f \leqq \Psi_{E}\left(T_{r} f\right)<\Psi_{E}\left(T_{t} \tilde{f}\right) \leqq \Psi_{E} g$ and $\Theta f+\varepsilon>\Psi_{E}\left(T_{r} f\right)=\int \psi_{E} T_{r} f d \mu=\int U_{r} \psi_{E} f d \mu>\int \theta_{E} f d \mu$ which implies $\Theta_{E} f \geqq \int \theta f d \mu$.

Since $\left\{\theta_{E}^{\tau} \mid \tau \in \mathscr{P}\right\}$ is downward directed and $\int \theta_{E}^{\tau} f d \mu \geqq \Theta_{E} f$ for all $\tau \in \mathscr{P}$ then using the Monotone Convergence Theorem we have $\int \theta_{E} f d \geqq \Theta_{E} f$ which completes the proof.

Note. Using the first part of the above proof it can be shown that $\Theta_{E} f=$ $\lim _{r \rightarrow \infty} \Psi_{E}\left(T_{r} f\right)$.

Definition 5. For $E \in \mathscr{F}$ and a fixed positive rational r since $\left(U_{r}^{E}\right)^{n} \chi_{E} \uparrow$ then the limit exists and we define

$$
\psi_{E}^{r}=\lim _{n \rightarrow \infty}\left(U_{r}^{E}\right)^{n} \chi_{E} .
$$

Note that $\psi_{E}=\sup _{r \in R_{r}^{+}} \psi_{E}^{r}$ a.e. where R_{r}^{+}is the set of positive rationals.
Lemma 5. Let $F, E \in \mathscr{F}, F \supset E, f \in L_{1}^{+}$and $r \in R_{r}^{+}$then
and

$$
\int \psi_{E}^{r} f d \mu=\int \psi_{E}^{r}\left(T_{r}^{F}\right)^{n} f d \mu
$$

$$
\int \psi_{E}^{r} f d \mu=\lim _{n \rightarrow \infty} \int_{F} \psi_{E}^{r}\left(T_{r}^{F}\right)^{n} f d \mu
$$

Proof. Identical to the first part of proof of Lemma 2 [4].

Lemma 6. Let $F, E \in \mathscr{F}, F \supset E$. For any $f \in L_{1}^{+}$there exists a sequence of L_{1}^{+}functions $\left\{g_{n}\right\}$ with the following properties:
(i) $g_{n} \succ f$ all $n \geqq 1$.
(ii) $\lim _{n \rightarrow \infty} \int_{F} \psi_{E} g_{n} d \mu=\int \psi_{E} f d \mu$.
(iii) $\lim _{n \rightarrow \infty} \int_{E^{c}} \psi_{E} g_{n} d \mu=0$.
(iv) $\lim _{n \rightarrow \infty} \int_{E^{c}} \theta_{E} g_{n} d \mu=0$.

Proof. Since, for any $h \in L_{1}^{+}, \chi_{E} h=h, \int \psi_{E} h d \mu=\int_{E} h d \mu$ then $\psi_{E}=1$ a.e. on E. By definition, for each $n \geqq 1$, there exists a $g_{n} \succ f, g_{n}$ depending on $1 / n$, such that $0 \leqq \Psi_{E} f-\int_{E} g_{n} d \mu<1 / n$. Hence, by construction, we have that

$$
\lim _{n \rightarrow \infty} \int_{E} \psi_{E} g_{n} d \mu=\lim _{n \rightarrow \infty} \int_{E} g_{n} d \mu=\Psi_{E} f
$$

and since $\int_{E} \psi_{E} g_{n} d \mu \leqq \int_{F} \psi_{E} g_{n} d \mu \leqq \Psi_{E} f$ then (i) and (ii) are satisfied.
Also

$$
0 \leqq \int_{F^{c}} \psi_{E} g_{n} d \mu \leqq \int_{E^{c}} \psi_{E} g_{n} d \mu=\int \psi_{E} g_{n} d \mu-\int_{E} \psi_{E} g_{n} d \mu \leqq \Psi_{E} f-\int_{E} \psi_{E} g_{n} d \mu \rightarrow 0
$$

as $n \rightarrow \infty$ which satisfies (iii).
Since $0 \leqq \Theta\left(\chi_{E^{c}} g_{n}\right) \leqq \Psi_{E}\left(\chi_{E^{c}} g_{n}\right)$ for all $n \geqq 1$ then (iv) follows.
Lemma 7. Let $E_{i} \in \mathscr{F}, E=\bigcup_{i=1}^{m} E_{i}$ for $i=1,2, \ldots, m$ and $f \in L_{1}^{+}$. Then there exists a sequence of L_{1}^{+}functions $\left\{g_{n}\right\}$ such that $g_{n}>$ f all $n \geqq 1$ and $\lim _{n \rightarrow \infty} \int_{E} \psi_{E_{i}} g_{n} d \mu=\int \psi_{E_{i}} f d \mu$ for $i=1,2, \ldots, m$.

Proof. It is sufficient to prove the lemma for $m=2$. We shall show that for any $\varepsilon>0$ there exists a $g=g(\varepsilon), g>f$ with the property that $0 \leqq \int_{E_{E_{i}}} f d \mu-\int_{E} \psi_{E_{i}} g d \mu<\varepsilon$ for $i=1,2$ where $E=E_{1} \cup E_{2}$.

Choose $\varepsilon>0$. There exist positive rationals r_{1}, r_{2} and positive integers n_{1}, n_{2} such that

$$
0 \leqq \int \psi_{E_{i}} f d \mu-\int_{E_{i}}\left(T_{r_{i}}^{E_{i}}\right)^{n_{i}} f d \mu<\varepsilon / 2 \quad i=1,2 .
$$

Let r denote the reciprocal of the least common denominator of r_{1} and r_{2}. Then it follows that $\left(U_{r_{i}}^{E_{i}}\right)^{n_{i}} \chi_{E_{i}} \leqq\left(U_{r}^{E_{i}}\right)^{n} \chi_{E_{i}}$ for $i=1,2$ where $n=\max \left\{n_{1}, m_{1}, n_{2} m_{2}\right\}$ where $r_{i}=m_{i} r, i=1$, 2. Hence

$$
\int \psi_{E_{i}} f d \mu-\varepsilon / 2<\int_{E_{i}}\left(T_{r_{i}}^{E_{i}}\right)^{n_{i}} f d \mu \leqq \int_{E_{i}}\left(T_{r}^{E_{i}}\right)^{n} f d \mu \leqq \int \psi_{E_{i}}^{r} f d \mu \leqq \int \psi_{E_{i}} f d \mu
$$

for $i=1,2$.
By Lemma 5 there exist integers p_{1} and p_{2} such that

$$
0 \leqq \int \psi_{E_{i}}^{r} f d \mu-\int_{E} \psi_{E_{i}}^{r}\left(T_{r}^{E}\right)^{p_{i}} f d \mu<\varepsilon / 2 \quad \text { for } i=1,2
$$

Letting $p=\max \left\{p_{1}, p_{2}\right\}$ we have

$$
\begin{aligned}
& \int \psi_{E_{i}} f d \mu \geqq \int \psi_{E_{i}}\left(T_{r}^{E}\right)^{p} f d \mu \geqq \int_{E} \psi_{E_{i}}\left(T_{r}^{E}\right)^{p} f d \mu \geqq \int_{E} \psi_{E}^{r}\left(T_{r}^{E}\right)^{p} f d \mu>\int \psi_{E_{i}}^{r} f d \mu-\varepsilon / 2 \\
&>\int_{E_{i}} f d \mu-\varepsilon \quad \text { for } i=1,2 .
\end{aligned}
$$

Defining $g(\varepsilon)=g=\left(T_{r}^{E}\right)^{p} f$ we have $g \succ f$ and

$$
0 \leqq \int \psi_{E_{i}} f d \mu-\int_{E} \psi_{E_{i}} g d \mu<\varepsilon \quad \text { for } i=1,2 .
$$

Define $g_{n}=g(1 / n), n \geqq 1$. Then by construction we have $g_{n} \succ f, n \geqq 1$ and $\lim _{n \rightarrow \infty} \int_{E} \psi_{E_{i}} g_{n} d \mu=\int \psi_{E_{i}} f d \mu$ for $i=1,2$ which completes the proof.

Lemma 8. If a_{i} is real and $E_{i} \in \mathscr{F}$ for $i=1,2, \ldots, m$ and $E=\bigcup_{i=1}^{m} E_{i}$ then $\chi_{E} \sum_{i=1}^{m} a_{i} \psi_{E_{i}} \geqq 0$ implies $\sum_{i=1}^{m} a_{i} \psi_{E_{i}} \geqq 0$ and $\sum_{i=1}^{m} a_{i} \theta_{E_{i}} \geqq 0$ a.e.

Proof. Choose any $f \in L_{1}^{+}$. By Lemma 7 there exists a sequence $\left\{g_{n}\right\} g_{n} \succ f$ all $n \geqq 1$ and $\lim _{n \rightarrow \infty} \int_{E} \psi_{E_{i}} g_{n} d \mu=\int \psi_{E_{i}} f d \mu$ for $i=1,2, \ldots, m$. Hence $0 \leqq \sum_{i=1}^{m} a_{i} \int \psi_{E_{i}} g_{n} d \mu \rightarrow$ $\sum_{i=1}^{m} a_{i} \int \psi_{E_{i}} f d \mu$ as $n \rightarrow \infty$. Since $\sum_{i=1}^{m} a_{i} \int \psi_{E_{i}} f d \mu \geqq 0$ for all $f \in L_{1}^{+}$then $\sum_{i=1}^{m} a_{i} \psi_{E_{i}} \geqq 0$ a.e.

For $f \in L_{1}^{+}$

$$
0 \leqq \lim _{g \succ f} \sum_{i=1}^{m} a_{i} \int \psi_{E_{i}} g d \mu=\sum_{i=1}^{m} a_{i} \lim _{g \succ f} \int \psi_{E_{i}} g d \mu=\sum_{i=1}^{m} a_{i} \int \theta_{E_{i}} f d \mu
$$

which implies that $\sum_{i=1}^{m} a_{i} \theta_{E_{i}} \geqq 0$ a.e.
Definition 6. For $E, F \in \mathscr{F}$ let

$$
\psi_{E F}=\psi_{E}+\psi_{F}-\psi_{E \cup F} \quad \text { and } \quad \theta_{E F}=\theta_{E}+\theta_{F}-\theta_{E \cup F}
$$

$\Psi_{E F}$ and $\Theta_{E F}$, the functionals on L_{1} defined by the L_{∞} functions $\psi_{E F}$ and $\theta_{E F}$ are monotone and subadditive in each index.

Lemma 9. If $\chi_{E} \theta_{E} \geqq a \chi_{E}$ a.e. where $E \in \mathscr{F}$ and a a real number then $\theta_{E} \geqq a \psi_{E}$ a.e.
Proof. It is sufficient to assume $a>0$. Choose $f \in L_{1}^{+}$and $\varepsilon>0$. There exist $g>f$ such that $\int_{E} g d \mu>\Psi_{E} f-\varepsilon / a$. Since $\Theta_{E} f=\lim _{g^{\prime}>f} \Psi_{E} g^{\prime}=\Theta_{E} g$ for any $g>f$ then we

$$
\Theta_{E} f=\Theta_{E} g=\int \theta_{E} g d \mu \geqq \int_{E} \theta_{E} g d \mu \geqq a \int_{E} g d \mu>a\left(\Psi_{E} f-\varepsilon / a\right)
$$

or $\int \theta_{E} f d \mu-a \int \psi_{E} f d \mu>-\varepsilon$ which implies that $\theta_{E} \geqq a \psi_{E}$ a:e. on X.
Lemma 10. For $E, F \in \mathscr{F},\left\|\theta_{E}\right\|_{\infty}=\left\|\chi_{E} \theta_{E}\right\|_{\infty}=0$ or 1 and $\left\|\theta_{E f}\right\|_{\infty}=\left\|\chi_{E} \theta_{E F}\right\|_{\infty}=$ $\left\|\chi_{F} \theta_{E F}\right\|_{\infty}=0$ or 1 .

Proof. For $f \in L_{1}^{+}$there exists a sequence $\left\{g_{n}\right\}$ of L_{1}^{+}functions such that $g_{n}>f$, $n \geqq 1$ and $\theta\left(\chi_{E^{c}} g_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then $\Theta_{E}(f)=\Theta_{E}\left(g_{n}\right)=\Theta_{E}\left(\chi_{E} g_{n}\right)+\Theta_{E}\left(\chi_{E^{c}} g_{n}\right)$ shows that $\left\|\theta_{E}\right\|_{\infty}=\left\|\chi_{E} \theta_{E}\right\|_{\infty}$.

For $f \in L_{1}^{+}$and a rational $r>0$ there exists a sequence $\left\{g_{n}(r)\right\}$ of L_{1}^{+}functions such that $g_{n}(r) \succ T_{r} f, n \geqq 1$ and satisfying Lemma 6 . Hence

$$
\begin{aligned}
\Theta_{E}(f) & =\Theta_{E}\left(T_{r} f\right)=\Theta_{E}\left(g_{n}(r)\right)=\lim _{r \rightarrow \infty} \lim _{n \rightarrow \infty} \Theta_{E}\left(\chi_{E} g_{n}(r)\right) \\
& \leqq \lim _{r \rightarrow \infty} \lim _{n \rightarrow \infty}\left\|\theta_{E}\right\|_{\infty}\left\|\chi_{E} g_{n}(r)\right\|_{1}=\lim _{r \rightarrow \infty}\left\|\theta_{E}\right\|_{\infty} \Psi_{E}\left(T_{r} f\right)=\left\|\theta_{E}\right\|_{\infty} \Theta_{E}(f)
\end{aligned}
$$

this completes the first part of the proof since $\left\|\theta_{E}\right\|_{\infty} \leqq 1$.
For the second part let $\left\{g_{n}\right\}$ and $\left\{g_{n}(r)\right\}$ be the same as above; since

$$
0 \leqq \Theta_{E F}\left(\chi_{E^{c}} g_{n}\right) \leqq \Theta_{E}\left(\chi_{E^{c}} g_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

then it follows that $\left\|\theta_{E F}\right\|_{\infty}=\left\|\chi_{E} \theta_{E F}\right\|_{\infty}$.
Now

$$
\Theta_{E}(f)-\Theta_{E}\left(\chi_{E^{c}} g_{n}(r)\right)=\Theta_{E}\left(\chi_{E} g_{n}(r)\right) \leqq \Theta_{E \cup F}\left(\chi_{E} g_{n}(r)\right) \leqq\left\|\chi_{E} g_{n}(r)\right\|_{1} \leqq \Psi_{E}\left(T_{r} f\right)
$$

and

$$
\Theta_{E}(f) \leqq \lim _{n \rightarrow \infty} \theta_{E \cup F}\left(\chi_{E} g_{n}(r)\right) \leqq \Psi_{E}\left(T_{r} f\right)
$$

Letting $r \rightarrow \infty$ we have $\Theta_{E}(f)=\lim _{r \rightarrow \infty} \lim _{n \rightarrow \infty} \Theta_{E \cup F}\left(\chi_{E} g_{n}(r)\right.$). Since

$$
\Theta_{E F}\left(\chi_{E} g_{n}(r)\right)=\left(\Theta_{E}+\Theta_{F}-\Theta_{E \cup F}\right)\left(\chi_{E} g_{n}(r)\right)
$$

then, first letting $n \rightarrow \infty$ then $r \rightarrow \infty$, we have

$$
\Theta_{E F}(f)=\Theta_{E}(f)+\lim _{n \rightarrow \infty} \Theta_{F}\left(\chi_{E} g_{n}(r)\right)-\lim _{n \rightarrow \infty} \Theta_{E \cup F}\left(\chi_{E} g_{n}(r)\right)
$$

and

$$
\Theta_{E F}(f)=\lim _{r \rightarrow \infty} \lim _{n \rightarrow \infty} \Theta_{F}\left(\chi_{E} g_{n}(r)\right)
$$

also

$$
\begin{aligned}
\Theta_{E F}(f) & =\lim _{r \rightarrow \infty} \lim _{n \rightarrow \infty} \Theta_{E F}\left(\chi_{E} g_{n}(r)\right) \\
& \leqq\left\|\theta_{E F}\right\|_{\infty} \lim _{r \rightarrow \infty} \lim _{n \rightarrow \infty}\left\|\chi_{E} g_{n}(r)\right\|_{1} \\
& \leqq\left\|\theta_{E F}\right\|_{\infty} \lim _{r \rightarrow \infty} \Psi_{E}\left(T_{r} f\right) \\
& \leqq\left\|\theta_{E F}\right\|_{\infty} \Theta_{E}(f) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\Theta_{E F}(f) & =\lim _{r \rightarrow \infty} \lim _{n \rightarrow \infty} \Theta_{E F}\left(\chi_{E} g_{n}(r)\right) \\
& \leqq\left\|\theta_{E F}\right\|_{\infty} \lim _{r \rightarrow \infty} \lim _{n \rightarrow \infty} \Theta_{F}\left(\gamma_{E} g_{n}(r)\right) \\
& \leqq\left\|\theta_{E F}\right\|_{\infty} \Theta_{E F}(f)
\end{aligned}
$$

which completes the proof since $\left\|\theta_{E F}\right\|_{\infty} \leqq 1$.
Definition 7. $\Sigma=\left\{E \in \mathscr{F} \mid \theta_{E E^{c}}=0\right\}$.

Note that since $0 \leqq \theta_{G G^{c}} \leqq \theta_{G\left(E^{c} \cup F^{c}\right)} \leqq \theta_{G E^{c}}+\theta_{G F^{c}} \leqq \theta_{E E^{c}}+\theta_{F F^{c}}=0$ for $E, F \in \Sigma$ and $G=E \cap F$ then Σ is a field.

Definition 8. \mathscr{A} is the L_{∞} closure of Σ-simple functions.
\mathscr{A} is a sub-Banach space of L_{∞}.
Theorem 1. For $f \in L_{\infty}$ the following conditions are equivalent:
(i) $f \in \mathscr{A}$.
(ii) $\lim _{g>g_{0}} \int f g d \mu$ exists for all $g_{0} \in L_{1}^{+}$.
(iii) for all real numbers α and $\varepsilon>0, \theta_{E F}=0$ where $E=\{x \mid f(x) \leqq \alpha\}$ and $F=\{x \mid f(x) \geqq \alpha+\varepsilon\}$.

Proof. The proof for (i) \rightarrow (ii) and (iii) \rightarrow (i) is identical to the proof of Theorem 1 [4].

For (ii) \rightarrow (iii) suppose that E and F are as in (iii) but that $\theta_{E F} \neq 0$ then $\left\|\theta_{E F}\right\|_{\infty}=1$ and for all $\delta>0$ there exists a $g_{0} \in L_{1}^{+}$with $\left\|g_{0}\right\|_{1}=1$ and $\int \theta_{E F} g_{0} d \mu>$ $1-\delta$. Hence $\Theta_{E} g_{0}>1-\delta$ and $\Theta_{F} g_{0}>1-\delta$ and $\limsup _{g>g_{0}} \int f g d \mu>(1-\delta)(\alpha+\varepsilon)$ and $\liminf _{\mathrm{g} \succ \mathrm{g}_{0}} \int f g d \mu<\alpha+\|f\|_{\infty} \delta$. If δ is chosen sufficiently small then $\lim _{g>g_{0}} f g d \mu$ does not exist.

Identification of a Ratio Ergodic Limit

For any $f, g \in L_{1}$ with $g>0$ it was proved in [5] and [3] that the limit

$$
(f / g)=\lim _{s \rightarrow \infty} \frac{\int_{0}^{s} T_{t} f d t}{\int_{0}^{s} T_{t} g d t}
$$

exists a.e. We shall identify this limit function (f / g).
Using the fact that $\Psi_{E} f=\Omega_{E}(f)$ for any $f \in L_{1}$ and Theorem 1 in [3] it follows that if $\alpha \leqq(f / g) \leqq \beta$ a.e. on $E \in \mathscr{F}$ then $\alpha \leqq \Psi_{E} f / \Psi_{E} g \leqq \beta$ (cf. $[6,1]$).

Theorem 2. If $f, g \in L_{1}^{+}$with $g>0$ and $E=\{x \mid(f / g)(x) \leqq a\}, F=\{x \mid(f / g)(x) \geqq a+\varepsilon\}$ then $\theta_{E F}=0$ for all $a \geqq 0$ and $\varepsilon>0$.

Proof. Identical to the proof of Theorem 3 [4].
Corollary. If $f, g \in L_{1}, g>0$ and $(f / g) \in L_{\infty}$ then $(f / g) \in \mathscr{A}$.
Theorem 3. If $(f / g) \in L_{\infty}, f, g \in L_{1}, g>0$ and $h \in \mathscr{A}$ then $\lim _{t \rightarrow \infty} \int h T_{t} f d \mu=$ $\lim _{t \rightarrow \infty} \int h(f / g) T_{t} g d \mu$.

Proof. Recall that $(f / g) \in \mathscr{A}$. Choose $\varepsilon>0$. There exists a Σ partition of $X\left\{E_{i j}\right\}$, $1 \leqq i, j \leqq k$ such that $\left\|h-\sum_{i j} h_{i} \chi_{E_{i}}\right\|_{\infty}<\varepsilon$ and $\left\|(f / g)-\sum_{i j} \alpha_{j} \chi_{E_{i j}}\right\|_{\infty}<\varepsilon$ for suitable real h_{i}, α_{j} with $\left|h_{i}\right| \leqq\|h\|_{\infty}\left|\alpha_{j}\right| \leqq\|(f / g)\|_{\infty}$. Since for $E \in \Sigma \lim _{t \rightarrow \infty} \int_{E} T_{t} g d \mu=\Theta_{E} g$ then

$$
\left|\lim _{t \rightarrow \infty} \int h(f / g) T_{t} g d \mu-\sum_{i j} h_{i} \alpha_{j} \lim _{t \rightarrow \infty} \int_{E_{i j}} T_{i} g d \mu\right|
$$

$$
=\left|\lim _{t \rightarrow \infty} \int h(f / g) T_{t} g d \mu-\sum_{i j} h_{i} \alpha_{i} \Theta_{E_{i j}} g\right| \leqq \varepsilon\|g\|_{1}\left(\|h\|_{\infty}+\|(f / g)\|_{\infty}\right) .
$$

Let $\delta>0$ be fixed and set $E_{i j}^{\prime}=\left\{x \mid \theta_{E_{i j}}(x) \geqq 1-\delta\right\} \cap E_{i j}$. From the proof of Theorem 2 and from Lemma 9 we have that $\theta_{E_{i j}^{\prime}}=\theta_{E_{i j}}$ and $\theta_{E_{i j}} \geqq(1-\delta) \psi_{E_{i j} .}$. Also, if $\left|\alpha_{j}-(f / g)\right| \leqq \varepsilon$ on $E_{i j}^{\prime}$ then $\left|\alpha_{j}-\Psi_{E_{i j}^{\prime}} f / \Psi_{E_{i j}} g\right| \leqq \varepsilon$. Note that we shall only consider those $E_{i j}$'s with $\theta_{E_{i j}} \neq 0$. Thus

$$
\left|\sum_{i j} h_{i} \alpha_{j} \Theta_{E_{i j}} g-\sum_{\theta_{E_{i j} \neq 0}} h_{i} \frac{\Psi_{E_{i j}} f}{\Psi_{E_{i j}^{\prime},} g} \Theta_{E_{i j}} g\right| \leqq \varepsilon\|h\|_{\infty}\|g\|_{1} .
$$

Also

$$
\left|\sum_{\theta_{E_{i j}} \neq 0} h_{i} \frac{\Psi_{E_{i j}^{\prime}} f}{\Psi_{E_{i j}^{\prime}} g} \Theta_{E_{i j}} g-\sum_{i j} h_{i} \Psi_{E_{i j}^{\prime}} f\right| \leqq\|h\|_{\infty}\|f\|_{1} \delta k^{2} .
$$

Finally,

$$
\left|\sum_{i j} h_{i} \Psi_{E_{i j}^{\prime}} f-\sum_{i j} h_{i} \Theta_{E_{i j}} f\right| \leqq\|h\|_{\infty}\|f\|_{1} k^{2} \delta
$$

and

$$
\left|\sum_{i j} h_{i} \Theta_{E_{i j}} f-\lim _{t \rightarrow \infty} \int h T_{t} f d \mu\right| \leqq \varepsilon\|f\|_{1} .
$$

Combining these inequalities we obtain the result.
Definition 9. $\mathscr{H}=\left\{f \mid f \in L_{\infty}, f=U_{t} f\right.$ all $\left.t \geqq 0\right\}$ is the class of invariant functions of $\left\{U_{t} \mid t \geqq 0\right\}$.

We assume that $\mathscr{H} \neq\{0\}$. Note that \mathscr{H} is a sub-Banach space of L_{∞} and if $h \in \mathscr{H}$ and $g^{\prime}>g \in L_{1}^{+}$then by the definition of \mathscr{H} we have $\int h g^{\prime} d \mu=\int h g d \mu$ which yields the existence of $\lim _{g^{\prime} \geq g} \int h g^{\prime} d \mu$. Hence $\mathscr{H} \subset \mathscr{A}$. Also, we note that for $f \in \mathscr{A} \lim _{g^{\prime}>g} \int f g^{\prime} d \mu=\lim _{t \rightarrow \infty} \int f^{g^{\prime}>g} T_{t} g d \mu=\lim _{r \rightarrow \infty} \int f T_{r} g d \mu=\lim _{t \rightarrow \infty} \int U_{t} f g d \mu$ exists for all $g \in L_{1}$ and $\left|U_{t} f\right| \leqq\|f\|_{\infty}$ a.e. on X for all $t \geqq 0$. Hence $\left\{U_{t} f\right\}_{t \geqq 0}$ has a limit $\Pi(f)$ in the ω^{*} topology of L_{∞} and $\Pi(f) \in \mathscr{H}$ so $\Pi: \mathscr{A} \rightarrow \mathscr{H}$ is a positive linear contraction.

By the definition of Π and Theorem 3 it follows that

$$
\int \Pi(h) \cdot f d \mu=\int \Pi(h(f / g)) g d \mu \quad \text { if } \quad h \in \mathscr{A} \quad \text { and } \quad(f / g) \in L_{\infty} .
$$

We now introduce complex valued functions in order to apply the GelfandNaimark representation theorem which will lead to an identification of $(\mathrm{f} / \mathrm{g})$.

Let $L_{1}^{\prime}=L_{1}^{\prime}(X, \mathscr{F}, \mu)$ and L_{∞}^{\prime} denote the usual Banach spaces of complex valued μ-integrable functions and complex valued μ-measurable functions bounded a.e. respectively. Defining Σ as in Definition 7, we let \mathscr{A}^{\prime} denote the L_{∞}^{\prime} closure of the simple complex-valued functions and $\mathscr{H}^{\prime}=\left\{f \mid f \in L_{\infty}^{\prime}, U_{t} \operatorname{Re}(f)=\operatorname{Re}(f)\right.$ and $U_{t} \operatorname{Im}(f)=\operatorname{Im}(f)$ for all $\left.t \geqq 0\right\}$ where $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ denote the real and imaginary parts of f respectively.

Note that \mathscr{A}^{\prime} and \mathscr{H}^{\prime} are sub-Banach spaces of L_{∞}^{\prime} and $f \in \mathscr{A}^{\prime}$ if and only if $\operatorname{Re}(f)$ and $\operatorname{Im}(f) \in \mathscr{A}$. (Similarly for \mathscr{H}^{\prime} and \mathscr{H}.) By the definitions and Theorem 1 we have that $\mathscr{H}^{\prime} \subset \mathscr{A}^{\prime}$. The mapping $\Pi: \mathscr{A} \rightarrow \mathscr{H}$ induces a positive bounded linear operator $\Pi^{\prime}: \mathscr{A}^{\prime} \rightarrow \mathscr{H}^{\prime}$ defined by

$$
\Pi^{\prime} f=\Pi(\operatorname{Re}(f))+i \Pi(\operatorname{Im}(f))
$$

Definition 10. $\mathscr{A}_{0}=\operatorname{ker} \Pi^{\prime}$ where ker $\Pi^{\prime}=\left\{f \mid f \in \mathscr{A}^{\prime}, \Pi^{\prime} f=0\right\}$.
Hence $\mathscr{A}^{\prime} / \mathscr{A}_{0} \cong \mathscr{H}^{\prime}$ is a canonical isomorphism.

Note that \mathscr{A}^{\prime} is a B^{*}-Algebra with the usual operations. We now show that \mathscr{A}_{0} is a closed ideal.

Lemma 11. \mathscr{A}_{0} is a closed ideal.
Proof. Clearly \mathscr{A}_{0} is a subspace of \mathscr{A}^{\prime} and \mathscr{A}_{0} is closed since Π^{\prime} is bounded.
Let $f \in \mathscr{A}_{0}$ and assume f is real. We shall show that for any $h \in \mathscr{A}, h \neq 0, f h \in \mathscr{A}_{0}$. It is sufficient to assume that h is real.

Choose $\varepsilon>0$ and set $E=\{x \mid f(x) \geqq \varepsilon\}$. We may assume $E \in \Sigma$. Suppose $\theta_{E} \neq 0 ;$ then for any $\delta>0$ there exists a $g \in L_{1}^{+}$such that $\|g\|_{1}=1$ and $\Theta_{E}(g)>(1-\delta)$.

Thus

$$
\begin{aligned}
0=\lim _{t \rightarrow \infty} \int U_{t} f \cdot g d \mu & =\lim _{t \rightarrow \infty} \int f \cdot T_{t} g d \mu \\
& \geqq \varepsilon \lim _{t \rightarrow \infty} \int_{E} T_{t} g d \mu-\|f\|_{\infty} \lim _{t \rightarrow \infty} \int_{E^{c}} T_{t} g d \mu \\
& \geqq \varepsilon(1-\delta)-\|f\|_{1} \delta
\end{aligned}
$$

since $E \in \Sigma$ which yields $\lim _{t \rightarrow \infty} \int_{E} T_{t} g d \mu=\Theta_{E}(g)$ and $\Theta_{E}(g)+\Theta_{E^{c}}(g)=\Theta_{X}(g) \leqq\|g\|_{1}$. This inequality is false for small δ so $\Theta_{E}=0$. Then if $E=\{x| | f(x) \mid \geqq \varepsilon\}$ it follows that $\theta_{E}=0$. Now set $F=\{x| | f(x) h(x) \mid \geqq \varepsilon\}$. Then since $F \subset\left\{x||f(x)| \geqq \varepsilon\}\|h\|_{\infty}\right.$ we have $\theta_{F}=0$. Thus

$$
\begin{aligned}
\left|\lim _{t \rightarrow \infty} \int U_{t}(f h) g d \mu\right| & \leqq\|f\|_{\infty}\|h\|_{\infty} \lim _{t \rightarrow \infty} \int_{F} T_{t} g d \mu+\varepsilon\|g\|_{1} \quad \text { if } g \in L_{1}^{+} \\
& \leqq \varepsilon\|g\|_{1} \quad \text { for all } \varepsilon>0 .
\end{aligned}
$$

Hence $f h \in \mathscr{A}_{0}$ and then for any $h \in \mathscr{A}^{\prime} f h \in \mathscr{A}_{0}$ which completes the proof.
Since \mathscr{A}_{0} is a closed ideal then $\mathscr{A}^{\prime} / \mathscr{A}_{0}$ and hence \mathscr{H}^{\prime} are B^{*}-algebras. Note that multiplication on \mathscr{H}^{\prime} is given by $\Pi^{\prime}\left(h_{1} \cdot h_{2}\right)$ where $h_{1}, h_{2} \in \mathscr{H}^{\prime}$. Also, since Π^{\prime} is linear and $\Pi^{\prime 2}=\Pi^{\prime}$ it follows that $\Pi^{\prime}\left(h \cdot \Pi^{\prime} f\right)=\Pi^{\prime}(h \cdot f)$ where $h \in \mathscr{H}^{\prime}$ and $f \in \mathscr{A}^{\prime}$.

Let K denote the maximal ideal space of \mathscr{H}^{\prime}; we note that K is a compact Hausdorff space. By the Gelfand Naimark Theorem, $C(K)$, the B^{*} algebra of continuous complex valued functions on K, is isometrically * isomorphic to \mathscr{H}^{\prime} under the mapping $\sigma: \mathscr{H}^{\prime} \rightarrow C(K)$. Also, by the Riesz Representation theorem, we have that $M(K)$, the space of finite complex Baire measures on K, is isomorphic to the conjugate space of $C(K)$.

We now define the following mappings:

$$
\tau: \mathscr{A}^{\prime} \rightarrow C(K) \quad \text { where } \tau=\sigma \Pi^{\prime}
$$

and

$$
\lambda: L_{1}^{\prime} \rightarrow M(K)
$$

such that for $f \in L_{1}^{\prime}, \int_{X} f \cdot h d \mu=\int_{K} \sigma h \cdot d(\lambda f)$ for any $h \in \mathscr{H}^{\prime}$.
Theorem 4. (An identification of (f / g)).
Let $f, g \in L_{1}^{\prime}, \operatorname{Im}(f)=\operatorname{Im}(g)=0, g>0$ and $(f / g) \in L_{\infty}$ then

$$
\tau(f / g)=\frac{d(\lambda f)}{d(\lambda g)}
$$

Proof. Let $h \in \mathscr{H}^{\prime}$; then we have to show that

$$
\int_{K} \sigma h \cdot d(\lambda f)=\int_{K} \sigma h \cdot \tau(f / g) d(\lambda g) .
$$

Hence

$$
\begin{aligned}
\int_{K} \sigma h \cdot \tau(f / g) & d(\lambda g)=\int_{K} \sigma h \cdot \sigma \Pi^{\prime}(f / g) d(\lambda g) \\
& =\int_{K} \sigma\left(\Pi^{\prime}\left(h \cdot \Pi^{\prime}(f / g)\right)\right) d \lambda g=\int_{X} \Pi^{\prime}\left(h \cdot \Pi^{\prime}(f / g)\right) g d \mu=\int_{X} \Pi^{\prime}(h \cdot(f g)) g d \mu \\
& =\int_{X} \Pi^{\prime} h \cdot f d \mu=\int_{X} h \cdot f d \mu=\int_{K} \sigma h \cdot d(\lambda f)
\end{aligned}
$$

where the fifth equality follows from Theorem 3.

References

1. Akcoglu, M. A.: An ergodic lemma. Proc. Amer. math. Soc. 16, 388-392 (1965).
2. - Pointwise ergodic theorems. Trans. Amer. math. Soc. 125, 296-309 (1966).
3. - Cunsolo, J.: An ergodic theory for semi-groups, to appear.
4. - Sharpe, R.W.: Ergodic theory and boundaries. Trans. Amer. math. Soc. 132, 447-460 (1968).
5. Berk, K. N.: Ergodic theory with recurrent weights. Ann. math. Statistics 39, $1107-1114$ (1968).
6. Brunel, A.: Sur un lemme ergodique voisin du lemme du Hopf. C. r. Acad. Sci. Paris 256, 5481 - 5484 (1963).
7. Chacon, R.V.: Identification of the limit of operator averages. J. Math. Mech. 11, 961 - 968 (1962).
8. - Ornstein, D. S.: A general ergodic theorem. Illinois J. Math. 4, 153-160 (1960).

Prof. M.A. Akcoglu
University of Toronto
Dept. of Mathematics Toronto 5, Canada

Prof. J. Cunsolo
University of Guelph
Dept. of Mathematics
Guelph, Canada

[^0]: * This research is supported in part by N.R.C. Grant A-3974.

