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On the Construction Problem for Markov Chains
By

Davip WiLLiaMs*

1. Introduction

Let P = {P(t):t = 0} be a substochastic transition function on a countable
get E. Then the (componentwise) derivative P’(0) = @ exists and satisfies the
conditions

—o00=gu=0, gy=20, ((ckE,jek,i+}) (1)
Ser =0, (ick).
keE

Conversely, suppose given a countable set £ and an £ X F matrix @ satisfying
the conditions (1). Denote by ¢ the class of all substochastic transition functions
P on E such that P’ (0) = @. One of the basic problems of Markov chain theory is:
given @, construct .#¢. In this paper, the problem is solved under the following
two assumptions.

Assumption A. Q is finite and conservative 1. e.
—oo < qu<0, qy=0, (tecl,jek,i+j7);
Zqik = 0, (ZGE)
keE
Under Assumption 4, the dimension d of the space of bounded vectors « on £ such
that (A — @)z = 0 (1 a positive number) is independent of 4.

Assamption B. The dimension d is finite.

Suppose that P € £ and that {X (¢): ¢ = 0} is a (stopped) Markov chain with
transition matrix P. In general, {X (f)} will reach infinity at some point of the exit
boundary induced by @ and our problem is essentially to analyse its possible
modes of return. Assumption 4 precludes pathological behaviour on the part of
{X(t)} when {X (t)} is not at the boundary and also guarantees that g is not
empty. The dimension d determines the number of “‘escape routes to infinity”
available to {X (f)}. Assumption B, by restricting the exit boundary to be finite
(in fact, of cardinality d) ensures that .#¢ can not be too large.

It goes without saying that our analysis will rely very heavily on the results of
FrLLER’s paper [3]. The method of proof of Theorem 2 was inspired by that used
by REUTER ([&]) in this complete solution for the case “d = 17.

As explained by the author in [10], all of the processes constructed by FrLLER
may be obtained by the method of first “‘extending the minimal process to the
boundary” and then “deleting the time spent on the boundary by the extended
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process”, a method first used by NuvevU ([6]) in this “absolute dominance con-
struction”. The same method yields all processes constructed here. It becomes
possible therefore to ignore probabilistic considerations until after Theorem 3 and
then suddenly derive a very complete and rigorous probabilistic interpretation.

We shall however discuss informally the heuristic arguments which provide the
motivation for Theorem 1. CHUNG ([2]) has recently explained how to make these
ideas precise and has succeeded in giving purely probabilistic proofs of many of
FELLER’s main results. The situation considered here is more general than that
considered by FEILER in two respects: the forward equations are not assumed and
there is no restriction on the size of the entrance boundary. It therefore scems
unlikely that purely probabilistic methods will lead to a solution unrless some
deeper reason is found for why the “absolute dominance construction’ works.

I wish to thank Professors K. L. Caung and D. OrxsTEIN for some helpful
comments on this work.

Notes. 1. The relation between the solution presented here and that announced
by JURKAT is not clear.

2. The most important case of our analytic construction is summarized in
§ 3.8 and the reader is advised to read that subsection before the earlier part of
Section 3.

3. Throughout the paper, “Markov chain” will mean what is, in strict ter-
minology, “Markov chain with stationary transition probabilities”.

2. Notation and prerequisites

A (standard) subsfochastic transition function P = {P(t):{=0} on E is
characterized by the following relations:

Ppis(t zpzk =1, Z_’pzk ) pri () = pij (s + 1),
keE keE
llmpi,(u) =p“(0) == 6;‘;’, (8, t=0; i,jGE) .
u—0
P is called stochastic if Zpik(t) =1,k t =0).
kel

Throughout the paper, {P(t):t = 0} will denole a substochastic transition
function with P'(0) = Q, Q satisfying Assumptions A and B, and {X (f):¢ = 0}
will denote @ Markov chain with {P (t) : t = 0} as its transition matriz. The shorthand
P;{M} will denote the probability of the event M conditional on the event
{X(0) = i} and, as usual, ¢; will denote — ¢y (i € E).

The matrix @ provides {X (f)} with a certain set of instructions: on entering
any state i, {X (t)} is to stay there for a random time o with P {& > ¢} = exp (— ¢;¢);
at the end of this time it is to jump to a randomly chosen state ¥ with P{Y = j}
= ¢5/¢i- The sequence { Yo, Y1, Y2, ...} of successive states visited by {X (t}:¢ = 0}
therefore forms a discrete parameter Markov chain (the “jump chain” of {X (#)})
with one-step transition matrix [(1 — d45)qi/g:]-

From this information it is possible to calculate the probability f;;(f) that,
starting at ¢, {X(-)} is at § at time ¢ having made in the meantime only finitely
many jumps. The functions fi; (#) are the elements of a substochastic transition
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function F' = {F(t):¢ = 0}, the minimal transition function associated with Q.
It is clear that py; (f) = fi;(¢) for ¢, j € ' and ¢ = 0; hence the name “minimal”’ for
F.If Fis stochastlc then it is the only element of Fo.

If P + F, then, with a positive probability, there will be a finite first time 7'
by which {X (¢)} has made an infinite number of jumps. FELLER’S theory allows us
to assert that at such a time, {X (£)} is at a certain point @ of the exit boundary A
induced by @ and, as one would hope, the set £ + 4 may be given a Hausdorff
topology in such a way that a is the limit of the sequence {¥,}. As already stated,
4 is of cardinality d.

Not all limit points of the sequence {¥,} are points of the exit boundary. For
the purpose of boundary theory, each recurrent class for {¥,}, equivalently, each
recurrent class under the minimal transition function {F(¢)}, must be identified
with a limit point of {¥,}. These recurrent classes, on which {F(¢)} is evidently
stochastic, play but a trivial réle in the theory and as they can be of nuisance value,
we shall adopt the usual course and eliminate them. We therefore assume that all
states are transient under the minimal transition function {F ()}, or, in other terms,

el

[fu®di <o, (icE).
0:

It is important to realize that we do not exclude the possibility that some or all states
are recurrent under the transition matriz {P(t)}.

Under the assumption of transience, the chain {Y,} must drift towards
infinity. The exit boundary is precisely the set of limit points of paths J =
(4o, 41, J2, -..) followed by {Y,} which may be traversed in a finite time by
{X ()}. We recall that the time taken by {X (f)} to traverse the path J is (almost
certainly) finite or infinite according as the mean path time Zq}} is finite or
infinite. The passive boundary consists of limit points of those paths followed by
{Y.} which would take {X (f)} an infinite time to traverse.

Let us now define:

L = Pi{X (Te) = a}, (teE, acA);
L?Z‘Pz{Too§t; X(To@):a}, ('L.EE, aEA,tz()).
We shall write L for the probability that, starting at ¢, no point of the exit boundary

is reached i. e. that the process {X (f)} approaches the passive boundary asymp-
totically.

The equations: Li=1-> 1%, (2)
acd
Dl + 2L =1, 3)
jeE aged

Li(s+¢) = > fij(s) (4)

jelE
L} — L& (s) = > fi(s) L, (5)

jekE
L =3 fu(s) LY, (6)

jeE
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express intuitively obvious facts. Also, it is clear from our discussion of the jump
chain {Y,} that

Slgula) Lé =LE,  (GeE, acd),
j*i
2.4l =0, (teE, acd). )
jeE
Equation (7) may also be derived from equations (2) — (6) and the fundamental
result:
F)=QF@t)=F({t)Q,* (8)
which properly belongs earlier in the exposition.

For our purposes, the above equations are more useful in their Laplace trans-
formed versions. The following notation will be used:

%) = fexp(— A0 F@®)dt, (1> 0):
0
2(2) = fexp(— ADdALE(®W), (ek, acd, 1>0).
0

The symbol 2% (1) will denote the vector on E with ith component z7 (1) and, from
now on, we shall write &% for Lf. The constant vector (1,1, 1,...) on E will be
denoted by 1 and the identity matrix on ¥ by I. We now have:

(from (2)) W0=1— zx“; 9)
acd
{from (3)) Zx“(/'l) =[I—29D(A)]1; (10)
aed
(from (4)) 2%(4) — 2%(u) = (u — A P 2% (p) = (u — 1) P (u) 2 (4); (11)
(from (5)) x®(A) = [I — 2D (L)) z2; (12)
(from (6)) 20 = AP ()20 (13)
(from (7)) Qur=0; (14)
(from (8)) (41— QPN =I=DA)(A—Q). (15)
It is easily deduced from (12), (14) and (15) that
(A — Q) ze(A) =0.%* (16)

Much more than this is known. For each 4 > 0, the vectors z¢(4) form an extreme
base for the solutions of the equation (A — @)y = 0. More exactly:

(Lemma 1) for A > 0, the extreme points of the convex set of those vectors y
satisfying .

* Unless otherwise stated, matrix equations are to be interpreted in a componentwise sense.
** Note. Some care must be shown in the manipulation of the above identities because
multiplication of infinite matrices is not always associative. Thus, for example,

[@®(A)Q]at = —x2(A) whereas D(A)[Qz?]=0.
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are precisely the x® (1) (@ € A), and, moreover, every bounded solution of the equation
(A — Q)y = 0 is a linear combination of the x%(1).
The extremal property of the x¢(1) rests on the following fact:

(Lemma 2) as © “converges” to the boundary point b
23 () — 0% and i —> 69, (17)

(From a state 7 “near” the boundary point b, X () will, with high probability, soon
reach b.)

As stated in the Introduction, the task of adding precision to the above heuristic
approach has been carried out by CauNe. The same ground may be covered by
adopting an analytic approach in the manner of FELLER’s paper.

Notice that Lemma 1 provides a completely algebraic characterization of the
x2(4), independent of the notion of “boundary”. Notice also that, once the x4 (1)
are defined, Lemma 2 suggests the way to adjoin the set A to the state-space E,
namely, by making sets on which {x%(1) > 1 — 5} (0 <% << 1) the typical
neighbourhoods of the point a. It was by using these considerations that FELLER
first defined the exit boundary.

The information required in the sequel is that there exist:

(1) a minimal transition function F(t) with resolvent matrix @ (4);
a finite set A adjoined to E in such a manner that B -+ A is a Hausdor(f
space and that each point of A is a limit point of K,

(iii) wvectors x®(A), z%, 29;
such that equations (9)—(16) and Lemmas 1 and 2 hold. This is proved both in
FrrLLer’s paper and in CHUNGS.

3. The analytic construction*
3.1. Some further prerequisites. We write ry; (1) for the Laplace transform of
i (t):
rij(A) = [exp(— A0 py(0)dt (2> 0) (18)
0

and R(A) for the £ x E matrix matrix with (¢, jtt component r;;(1). Then B(A)
satisfies:

(the resolvent equation ) R(A)— R{y)=(u— A) B(A) B(u); (19)
(the positivity condition ) R(A)=0; (20)
(the norm condition ) ARMN1I=X1; (21)
(the continuity condition) AR(A)—>1 as A—>oo (22)

Conversely, the relations (18)—(22) imply that {P(f): ¢ > 0} is a substochastic
transition function. {P ()} is stochastic if and only if A R (1)1 = 1. It is clear that,
in our situation,
EB)=2(4) (23)
and it is known that
- (= QRG)=1. (24)
* See Note 2 in the Introduction.
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Equation (16) is simply the Laplace transformed version of the Kolmogorov
backward equation:
Py=QPt (=0

which holds under Assumption 4.

In view of the above results, the problem of constructing £ ¢ is equivalent to that
of constructing all matriz functions R (1) satisfying (19), (21), (23) and (24).

On comparing equations (15) and (24), we observe that each column of the
matrix R(1) — @(4) is a solution of the equation (A — @)y = 0 and hence, by
Lemma 1, is a linear combination of the vectors x(1). This proves the first part
of the following theorem.

Theorem 1. R(2) has the decomposition:
rig(2) = @i (2) + 2, & () yf (A) - (25)

acd
The (row) vectors y¢ (1) (a € 4, 1 > 0) are non-negative and satisfy:
(resolvent condition ) Yo (A) —y2(u) = (g — Ay (4) B (u); (26)

(norm condition) A =1. (27)
jeE

{P(t):t = 0} is stochastic if and only if
AW =1 (acd, i>0).

jeE

Analytically, the non-negativity of the y's and the equations (26) and (27)
follow from Lemma 2 and (respectively) (23), (19) and (21). However, equation
(25) has a simple probabilistic interpretation which implies the rest of Theorem 1.

Interpretation of Theorem 1. Suppose that the Markov chain {X (-)} started at .
If it is at j at time ¢, then either it has reached j without hitting the exit boundary
or else it first hit the exit boundary at some point ¢ during some time neighbour-
hood (s, s + ds) (with 0 < s < ¢) and then moved from a to j in the remaining
time ¢ — s. We therefore expect a decomposition:

¢
sl = J5) + 3, [dLE)E(E—9) (28)
acd 0
where

£(0) = P{X (T + v) = j| X (Te) = a}.

A rigorous proof of (28) using these ideas and based on the Strong Markov Theorem
is given in CHUNG [2; Theorem 5.1]. A completely different proof will be given in
Section 4. Equation (25) is simply the Laplace transform of equation (28) and
y?(A) is therefore identified with the Laplace transform of &% (f).

3.2. Last exit decomposition of the y#(1). Our purpose in this section is to
decompose the y%(2) into simpler elements. We shall see eventually that what is
obtained is a decomposition modulo the last visit to the boundary though why the
analytic method described below leads to probabilistically meaningful results, I
do not know. What is clear however is that the behaviour of {X (-)} after its last
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visit to the boundary will be governed by “entrance solutions™ of the type we now
introduce.

Entrance solutions. By an entrance solution we shall mean a set of non-negative
functions v;(*) (¢ € E) on (0, oo) satisfying the equation:

20 ful) =vs+t) @E)FE) =v(s41)).

i€l

An entrance solution for {v;(-)} is said to be bounded if for some T > 0, equivalently,
for all 7' > 0,

T
[ Dwi(t)dt < oo
0 ickE

The Laplace transform:

= Texp(— Aty (t)dt
0

sets up a one-to-one correspondence between the set of bounded entrance solutions
v(-) and the set of (row) vector functions #(-) such that, for 1, y > 0,

7)) —nw) = (uw—NnA)Du); > ni(k) <eo. (29)

jeE
See, for example, NevEU [6; Theorem 2.1.4]. REUTER has shown (Lemma 2.2 of
[8]) how the solutions of (29) may be constructed. (See Lemma 7.)
Notation. We shall write [ for the Banach space of row vectors y on £ such
that |y]1 = > |yi| < oo. The scalar product > y;a; of a row vector y on £ and a

ieE i€l
column vector z on ¥ will be denoted by (y, >. Lastly we introduce the matrix
function

AQp =TI+ A—wPp) (ALp>0)
which satisfies the equation
A, v)=A4, )4 (u,») (A, p,v>0).
With this notation, (29) becomes:
nw) =nA)A@ p; n@)el. (30)

Lemma 1. There exist o non-negative matriz function { M (1) : a,be A); 1 > 0}
and non-negative vector functions n® (-} (@ € A) satisfying conditions (30) such that

y.(A)=M@)n-(4).
Proof. On expanding (26), we obtain
(e — ) [y2 (A) D (w) + 2, <y*(A), 2¢ (1)) ye ()] = y*(2) — y*(u) »

ced
which may be arranged as:
2, [09¢ 4 (@ — 2) <y (A), @ ()>1ye (u) = y* () A (4, 1) - Gl
ced
Hence,
2) = 2 [6% 4 (u — A) <yr (A), @ () 1ye () A (u, 2) . (32)

ced
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Now ye(u)4 (u, ) is always non-negative. In fact,

ye(u)Ap, 2) = yo(p) for A=y,
y* () A (u, ) = y*(u) — (A — @ y*(p) P(A) =

Zy () — (A — py(p) B(A) =y*(4) for i>p.
Define
Y (w) A (p,4)

n* ks u) = 92 (1) A (s, 1) l2 (83)
and observe that, by virtue of equation (32), we may write

Yy (A) =M@ )y (A; u)

where M (4; p) is an A X A matrix whose elements are non-negative if 1 << u.
From (27) and (33), it follows that

1259 (1) =2 ML),  (u>0).
jeE bed

By a disgonalization procedure, we may choose a sequence {u,} with u, — oo
such that the limits:

Mab(1) = lim Ma>(1; uy) (@,be 4); (34)
n
(1) =limnf(l; ua) (acd, jeB); (34)
n
exist. Clearly,
2. M) =3 4 (1), (35)
bed jeE

while, by FaTou’s Lemma, each 72(1) is a non-negative I-vector whose norm does
not exceed unity. But

Yy (1) =bZAM“”(1)n§’(1),

and, on summing this equation over j and comparing the result with equation (35),

we see that

>ni)=1 (bed). (36)
jeE

(Note. Strictly speaking, equation (36) follows only for those b with the
property that for some a,
lim sup Me¢(1; u)+ 0.
p—rco
This difficulty is easily avoided in the following manner.
For fixed @ and ¢ in A, the function
lim sup M@e¢(1; p)

pn—oco

= lim sup (6% + (u — 4) <y*(A), =*(u)>1] y° () 4 (1, 1} |1

H—> 00

is a non-negative, non-increasing function of 4 (because y#(4) is). Hence, we may
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find a number v such that, for every pair ¢ and ¢ in 4, either

(i) lim sup M#¢(-; u) =0 or

e (37)
(i) lim sup Mec(y; u) = 0.

u—>o00

We now redefine the 3's, using » instead of 1 as the value at which to normalize and
adjust M (1; u) accordingly. It is easily checked that the new M (4; u) has the
properties described at (37). It does no harm to suppose that 1 is a suitable ».

If, for some b, lim sup Mab(-; u) = 0 for every a, then 7? plays a completely

H—>00
superfluous role and we may for the present choose for ? any non-negative solution
of (30) which also satisfies (36). But see the discussion following equation (39).)
From (34) and (36), it follows, by a well-known theorem on I-spaces, that

[792(1) —72(1; )1 =0 as n—>oo.
Define 52 (4) = 4%(1) A (1, 2). Then, in the strong topology of I,

N (4; tn) = n2(1; pn) A (1, 2) = n2(1) A(1, 1) = n*(2)
and so #%(2) is non-negative. For fixed 4,
y2(2) = 2 M (2; wa) P (45 pim)
bed
and we know that [ 92(%; pn) |1 — |9 (4)] * 0. Hence, in a suitable subsequence
of {pn}, M (2; pin) — M*(1) and

yo(A) = 3 Mab(2)nb ()
bed
as was to be shown.

3.3. Some identities. Returning to the definition (33) of 5%(4; ), we see now
that

2 My () A (s 2)
0 (hs ) = 75
’ 4!0§A1W““(u)n“(u)x4 (e, )1

Since n®(u) 4 (u, A) = n%(4) and |52(1)|; = 1, (¢ € 4), we may write the above
equation as

n(A; ) = 2 He® () p?(2), (38)

bed
where H (i) is the stochastic matrix with elements
Hev () = M (u)] > Mo (u). (39)
ced

In a suitable subsequence of {u,}, H% (u) ~ H*® where H is a stochastic matrix.

It follows from (38) that for this subsequence, which we may as well take to be

{pn} itself, lim 4 (1; u,) exists in the strong topology of I for every a in A and
n

every 2 > 0. We may therefore define y®(A) = lUim 9%(; ua) for every a and every A
without affecting any of the foregoing results. Then, from (38),
Hn () =9 (1) forevery 1>0. (40)
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Many identities in the sequel are most conveniently expressed in terms of the

matrix function {U?(1);b,ce A; A > 0} defined by
Ube(2) = A<LnP(2), 2 -
A similar function was used by FELLER. The importance of U (/) rests on the
identity
(A —p) nP(A), ao(u)y = Ube(d) — Ube(u) 41)

which is a consequence of equations (11), (12) and (30).

Other properties of U (4) which will be needed are:

UM =U(u) for Az=zu>0; (42)
HUQA)=U@A) for 1>0; (43)
2, 2 Mab(u)Ube(u) <1, (44)
bed ced

The relations (42) and (43) are implied by equations (41) and (40) (respectively).
The inequality (44) follows from the norm condition (27) and the fact that

at(u) = L.

ced

3.4. Redundancy. We may have defined more %’s and #’s than is good for us.
Notice that if the boundary points a; and as are indistinguishable, i. e. if y™ (1)
= y*(2) for some (and then all) A > 0, then we may combine a1 and @z into a single
exit boundary point a, writing

@ () =" (A) +-2™(A); ¥ (A) =y"(A) =y A).

(For a detailed discussion, see CHUNG’s paper.) It therefore does not restrict the
generality to assume that all the yo(-) are distinct.

Even after indistinguishable boundary points have been merged, there may
still be “too many” y's. A method of making a suitable selection from among them
will now be described and then the probabilistic significance of our choice will be
discussed.

For a moment, let 4 > 0 be fixed. The convex hull of the set {0} U {y?(1) :acA}
is a compact convex polyhedron in the space I. The vertices (extremal points) of
this polyhedron may be written {0} U {y%(1):d e A} where 4 is a subset of A.
It follows from the Krein-Milman Theorem that every y%(4) (¢ € 4) may be
written:

ye(A) = 2, Goaya(2) (45)
acd
where G4% = 0, > Go@ <1 (a € 4) and G% =1 (@€ 4).

acd

The matrix G may appear to depend on 1 but, on post-multiplying equation

45) by I — (u — A) B(u), we obtain:
yo(u) = > Goaya(u) for every u>0. (46)

acd

{There may however exist other substochastic matrices @ for which (46) holds.
Throughout the remainder of the paper, @ will denote one fixed such matrix.) A
similar argument shows that, for each g > 0, the extremal points of the set
{0} U {y*(u) : @ € A} are precisely {0} U {y%(u): @ € A}i. e. Aisindependent of 4.
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Probabilistically, equation (46) may be interpreted as stating that, on reaching
ac A — A, {X()} decides to jump immediately to a point of 4, choosing @ with
probability Gz,

3.5. Interchanging 4 and g in equation (31), we obtain

Yo (u) A (p, 2) = 2, [6% 4 (A — p) <y2(2), 2 (AD]y° (7). (47)

ced
Equations (47), (33) and (41) and Lemma 1 lead to the following formula for
7% (4; p): o
h) [ 000 31 Moo () [U(7) — chwn] X 6%y (A)

(s ) = 3 B4 ()
4

(Convention: symbols a, b, c, d, ¢ elc. range over A; “barred” symbols such as @ and €
range over A.) Hence, by definition of H (u),

oA ) =2, 2 H®(u) Ube(2) 2, G2y () + 2, T4 (u) y¥ (), (48)
where e N ’ ) i
S ISR U () 6%
Tt = ;M‘;t(ﬂ)
The inequality (44) implies that
g 2, 2, M () Ube () Gee < 1. (49)

It will now be shown that
(Lemma 2) if T denotes any subsequential limat of T (un), then T is finite.
Proof. We may as well suppose that 7' = lim 7'(u,). Notice that if, for some
a, T@% = 0, then, by (49), 7@ = 0 for all ¢. If 7% + 0, define
8 () = — T (u)[T%(u)  (E+d, p>0).
Then > S%(y) < 1 and hence, in a suitable subsequence of {u,}, 8@ (u) — Sae

c*a
with > Sa < 1. If 742 = oo, we obtain, on dividing (48) through by 72 () and
lettincg 7‘ — oo suitably,
yo(2) = 2 8%yE(d),
T *a
contradicting the choice of ¢ (-) as an extremal point. Lemma 2 is therefore proved.
In the limit as g — oo through the sequence {u,}, equation (48) becomes

(D) =[HUQ) G+ T1§A) =[U7) G+ T15(A) (50)

where 77 (1) and 7(A) denote the restrictions of 5-(2) and y-(4) to 4 and where A
and U (1) denote the restrictions of H and U (1) to 4 x 4.
Tt it easily checked that each off-diagonal term of the matrix U (1) G + T is
non-positive. Also, it follows from equation (50) that for @ in 4 and 1 > 0,
0> 2n%(2), 1> = 2 [U(2) G+ TP AP (A), 1) (51)

[
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The matrix with (4, )* component
AU (2) G + TTee<y(2), 1)

therefore has a non-negative inverse and so the same is true of the matrix

[U(2) G + T1]. Hence
(Lemma 3) y(2)=GIUA) G+ T11q(4).
3.6. The norm condition and positivity. Define
0= 1nP(2),2%  (@ed),

the definition being independent of A because of equation (13). Substituting
1=2a0+ Z % in the left hand side of equation (51) and using the norm condition

ALye(4), 1b>e% 1, we obtain ,
2UPDA =267+ =3 1%, (1>0). (52)
b ¢ .

By (42), U(A) 1 U(o0) as 4 —> oo, where the matrix U(co) may contain infinite
elements. It is clear that (52) is equivalent to the statement:

> Ub(o0) [1 — _Z G¥] - 78 < Z Tac (53)
b [ ¢

Since, for every 2 > 0, U () G + T is non-positive off diagonal, we also obtain the
condition:
00 > — T =% Uib(co) ¢ (@ + ). (54)
b

Conditions (53) and (54) imply that
(Lemma 4) U (co) is finite if b= a (@ A, b e A). Equivalently:
lim (A5%(4),1 — 2%) < o0 @ed).

A->00
Proof. If U2b(co) = oo for some @ in 4 and b in 4 with b + @, then, from (53),
Z G¥ = 1, while, from (54), G¥¢ = 0 for ¢ + d. Hence
¢

y°(u) = y%(u) for every u,
a possibility we have already ruled out.

3.7. The general solution. The above relations among the vectors x#(:), #%(-)
and the matrices G and T provide sufficient (as well as necessary) criteria that the
function {P(t)}, defined via Lemma 3 and Theorem 1, belongs to .#¢. This is the
content of Theorem 2, which may be regarded as a complete, though clumsy,
solution to our problem. We shall see in the next subsection that the construction
of the strictly stochastic members of .# may be described in somewhat simpler
terms.

The introduction of the set €' in the statement of Theorem 2 is merely a device
to cover the case of indistinguishable boundary points.

Theorem 2. Let E be a countable set and let Q be an E X E matrix such that

gy =0; — oo <<qgu<<O; quzo (i,jEE,i#j).
kel
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Let @ () = {@u;(-)} denole the resolvent matrix of the minimal transition function F
assoctated with Q. Assume that for some (equivalently, for every) A > 0, the space
of bounded vectors x on E such that

Ar=Qux

ts of finite dimenston. The exit boundary A induced by Q then consisis of a finite
number of points.

Choose any disjoint partition:

A=\J4s A¢()4°=0 (a=+c; a,ce0)
aeC

of A and, for a € C, let x®, x9 () denote respectively the sojourn solutions of Qx = 0,
(A — @)z = 0 corresponding to the boundary set A®. Let 20 =1 — Zxa denote the
mazimal passive element. ael

Next, choose any subset C of C and, for each @ in C, choose any non-negative
l-valued function n%(-) which satisfies both

N (A) = @) = (= AN D) (hp>0)
and
lim (277 (4), 1 — a® < oo.
A—>o0
For ¢ in C and b in O, define
U (3) = An%(A), «*) (2> 0)
and
7@ = QA (A), 2% .
7% i3 independent of 1. Let U8 (c0) = lim U (}).
A—>o00

Choose a non-negative C X C matriz G such that

> G <1 (@c0); Gia =1 (ae0).
aed

Now choose any (finite) matrix T on C x C such that

— Tac = Z Ub (o0) G° (@ =+ @)
belC
> T = 78 4 > Uib(oo)[1 — 3 GV7].
belC

cel cel

and

Then, for every A > 0, the matrix
K(A)=G[UW)G + T
(on C x O) exists and is non-negative. Lastly, define
rag(A) = @i () + 2, > 2 (A) K@ () ns (7).
aeC ceC
Then R(+) == {ry(-)} is the resolvent of a substochastic ransition function P(-) on
B X E with initial derivative matriz Q. Conversely, every substochastic transition
function with initial derivative matriz @ may be constructed in the above manner.
R (*) is the resolvent of a strictly stochastic transition function if and only if
>G@ie=1 (acC) and  T%=r1% (3eC().

cel ecC
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Proof of the sufficiency of the conditions. Suppose that the vectors x#, x4 (1),
7% (1) (@ € C, @ € C) and the matrices G and 7 have been defined in accordance with
the conditions of the theorem. Then equation (52) holds for all A, and hence

0 < Ane(2), 1> <[UA) G-+ T)15, (55)

15 denoting the vector (1,1, 1,...) on C. The relations (54) and (55) imply that
U(4) @ -+ T has a non-negative inverse. On multiplying (55) by K (1) we obtain

QyeA), 1 =1,  (ael) (56)

the norm condition for R(4). The resolvent equation for R (1) follows from the
equation

E() — K@ =KMW)[0@— UMK @.
This equation, which is equivalent to the matrix Riccati equation
K (p)y=—KwU (u) K,
plays a central réle in all construction problems.

Notes. 1. We have deduced equation (56) from our explicit formula for K (1).
In the cases studied by FELLER and CHUNG, one may proceed in the opposite
direction, first proving equation (56) from the resolvent equation and then deducing
from it the form of K (1). Incidentally, this method yields the shortest proof of
FELLER’s construction theorem. The reason that the same method does not work
here is that our #’s may be linearly dependent.

2. Theorem 2 simply rests on the fact that the resolvent R (-) to be constructed
is related to a known resolvent @ (-) by an equation of the type

rig(A) = @ig(A) + 2 2 (A) y3(2)

where the non-negative vectors x® and 2 satisfy respectively the relations (9)—(13)
and (26)—(27). There are many problems in Markov chain theory where a similar
situation obtains and to which therefore Theorem 2 provides the answer. Suppose,
for example, that {X(f)} is any Markov chain (with or without instantaneous
states) on a countable set K. Suppose that we know the “taboo’ transition
function {pP ()} which determines the behaviour of {X (£)} prior to its first entry
into a certain finite subset D of E. To what extent can we reconstruct the transi-
tion function {P(t)} of {X (¢)} ? This problem has already been solved by NEvEy
([6], [6]). Theorem 2 confirms his solution.

3.8. The strictly stochastie case; detailed construetion. @ will continue to denote
an E X E matrix satisfying Assumptions 4 and B. The purpose of this subsection
is to describe, in as direct a manner as possible, the complete procedure for con-
structing the most general strictly stochastic element of £ from the matrix €.
No topological considerations will be used in the following formulation and the
concept of an “‘exit boundary” will be replaced by that of a perfectly arbitrary para-
metrizing sef.

First, let us recall some known results.

Lemma 5 (FELLER [3; Theorem 4.17). For 4, > 0, define the matriz A (1) by the

relation

A3 () = qi3/ (4 + @)



On the Construction Problem for Markov Chains 241

and let

S() =2 [AM)".
Then
@i () = S (A)/(A + q7) -
Lemma 6 (FELLER).
20 =lim AP (1)1.
a0

This follows from equations (9) and (10).

Lemma 7 (Reurer [8; Lemma 2.2]). To construct the most general l-valued
function 5 (-) on (0, oo) satisfying

np)=nA)Auw)  (4u>0),
where
ALp=I+A—-wop  (Lp>0),

choose (1) a non-negative vector w on B such that w® (1) €l for every 4 > 0;

(il) @ positive number v and a non-negative l-vector 5 satisfying n(vI — Q) =0
and define

nA)=wd@)+nd(»1).

The set B in the following theorem corresponds to the set €' in Theorem 2 and the

vector z% to Zx“ G2, When these substitutions have been made, Theorem 3
a

becomes an immediate corollary of Theorem 2.

Theorem 3. Let E be a countable set and let @ be an E X E matriz satisfying
Assumptions A and B. Define the minimal resolvent @ (1) as in Lemma 5 and the
vector 20 as in Lemma 6.

Let B denote any finite set disjoint from E. Choose non-negative vectors zb (b € B)
on B such that

Qz>=0 (beB), >z=1-—af,
and, for 2 > 0, define beB
20 (A) =20 — AD(A)2 =0 (beB).
For each b in B, choose an l-valued function n®(-) on (0, o) satisfying

n(w) =" () A p) (4 p>0)
(see Lemma T) and also
lim {(An?(A), 1 — 28> < o0 (be B).

A—co

Define
Vab(1) = (A ne(4), 2% (a,be B),
Vab(co) = lim Vab (1) (a,be B)
and (independently of 1) o
7 = {An* (1), 2% (ae B).
Next, choose a matriz T on B X B such that
— Tab = Jab (@a+b; a,be B),

ZTW:T“ (ae B).
ceB

Z. Wahrscheinlichkeitstheorie, Bd. 3 17
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Then the matriz

K@) =[V)+ T
exists and is non-negative. Now set

() = gy + 2, 22D E® D)7} (2).
aeB aqeB
Then R(-) = {ry(-)} is the resolvent of a strictly stochastic transition function {P(t)}
with P'(0) = Q. Conversely, every such resolvent may be constructed in the above
MAnner.

Theorem 3 is now in the most convenient form for the type of probabilistic
interpretation described in Section 4. I am convinced that the general case of
Theorem 2 may be reduced in a similar manner and think it better that the inter-
pretation of Theorem 2 be postponed until this has been done. An analysis of
Theorem 2 in its present form would involve complicated calculations very like
those needed to prove Theorem 2 in [10)].

4. Probabilistic interpretation

4.1. A theorem on time substitution. This subsection, which is a slightly
modified form of § 1 of the author’s paper [10], is independent of the preceding
results. Various technical conditions (e. g. that Z (¢, w) be “Borel measurable, well-
separable, ...”") essential for a rigorous proof of Theorem 4, while of mere academic
interest in the present context, are included for the sake of completeness. What is
important is that these conditions do not restrict the generality in any real sense
because every Markov chain with standard transition matrix has a version with
the properties assumed of Z (-, -). (For the relevant terminology and for a proof of
this result, see CHUNG’s book [1].)

Suppose that (2, ¢, P) is a complete probability triple. Let E be a countable
set and let B be a finite set disjoint from E. Suppose that {Z(f, w):t > 0, w € 2}
is a Borel measurable, well-separable, right lower semicontinuous Markov chain
with minimal state-space B 4 B and with standard transition function

{N(t;3,5):t=0;4,5€ E 4 B}.

(The set  + B with the discrete topology is assumed compactified by one-point
compactification, the adjoined point being denoted by “co”. In general, oo will
belong to the range of Z (-, w) for almost every w.)

The process {ZZ(*)} on E induced by {Z(-)} is obtained from the process {Z(-)}
by ignoring the time spent by the latter in B. Thus Z® (-) represents the position of
Z(-) when the time spent by Z(-) in E is exactly ¢. (Similarly for {Z5(-)}, the process
on B.) We assume that B is not an absorbing set so that Z (-) will spend an infinite
time in B, i. e., Z%(-) will be everywhere defined. On the other hand, Z2(f, w) will
be defined only for ¢ < ' fi(co, w) = oo, so that {Z7(-)} will be a stopped process

i€eB
in the case when the states in B are transient. These ideas will now be made precise.

Let yu denote Lebesgue measure on the real line and, for {4= 0, w € 2 and

ie B+ B, let
Bitt,w) = uf{s:is < §,Z(s, ) =1};
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in other words, ,8@ is the time spent by {Z ()} in i before time t. Define:
B(t, w) =inf{s: > Pi(s, w) > };

1€l
ZE(t, ) = Z(E(t, o), 0) i Z(E( o) o) ¢B,
= o0 if Z(7%({t, ), w)e B;
w) =1inf{s: > Bi(s, w) > t};
teB

ZE(t, ) =Z (73 (t, w), w).

It is known (see WiLLIAMS [9; Theorem 1.1]) that both {Z#(-)} and {Z2(-)} are
(Borel measurable, well-separable, right lower semicontinuous) Markov chains. Let
{NE(t;4,7):¢ =2 0;4,je Byand {N2(¢t; ¢, j) : t = 0; 7,j € B} denote their respective
standard transition functions. For 2 > 0, we write N,(,j), N% (i, j) for the
Laplace transforms:

Ni(i,j) = [exp(— AN (t; i,5)dt; NE(i,j) = fexp AONE(;4,5)dt
0

of N(-;1,5) and NZ(-;4,7).
With the transition function {N(f;¢,j):¢ = 0} is associated the strongly
continuous semigroup {N():¢ = 0} of operators on the Banach space lg1p of

vectors y such that
Iyl =21y@)| <o

ieE+ B
The operator N (f) (t > 0) is defined by

YNWO}) =Dy@N(t;4.j)  (yelgss, jeE -+ B).
teE+ B

In a similar fashion, we define the resolvent operator Nz (1 > 0) by the equation
YN () =296 Na@j)  (yelprs, je B+ B).
i€eE+ B
1t will be recalled that the infinitesimal generator o7 of the semigroup {N(f): ¢ = 0}
is defined as follows: a vector y in Igz1p belongs to the domain 2 (/) of < if and
only if there is a vector z in lp.p such that

[y N @) —yilt —2] -0 as ¢]0;

and then y.o/ = z . o7 is therefore the strong derivative of N (-) at zero. In exactly
analogous fashion, we introduce the generator 2% of the semigroup {NZ(t): ¢ = 0}
(on the space Iz) associated with the transition function {N¥(¢; 7, j)}. One of the
important properties of the operator o7 is that it uniquely determines the transition
function {N (¢; 3, j)}. (Reason. Each N;(1 > 0) is precisely the operator inverse to
(A — 7) and so is certainly determined by /. LErRcH’s theorem on the uniqueness
of the determining functions of Laplace transforms completes the proof.)

Our sequence of definitions is completed with the introduction of the ‘“taboo’
transition function {pN (;4,4):t = 0; 4,j € B}:

sN(t;4,5) =P{Z({t)y=j; Z(s)¢ B, 0 <x <t|Z(0)=i}.

{8N (t; i, j)} therefore determines the behaviour of Z(-) up to its first entry into B.

The Laplace transforms and generator associated with {gN (¢; ¢, §)} will be denoted
by {8N:(¢,7)} and o/ respectively.

17*
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The interrelations among the transition matrices described above are sum-
marized in the following theorem.

Theorem 4.
(D). NPC,)=DNi(, )+ > 2N, a) Iafa, D) Na(b, )

a, beB
on E X E, where

I''t=i'—N, on BxB.

(IN). For each A > 0 there exist uniquely defined matrices Ly on E X B and Gy,
on B X E (first-entrance and last-exit functions for the set B) and a matriz II; on
B x B such that:

Nﬂ.(','):HZ('s') on B X B;
Nﬂ(‘,')SZHz(',b)Gz(b,') on BxE,

beB
N},(‘,'):ZL;'(',(I)HA((I/,') on EXB;
beB
Na(, )= Na(, )+ > > Li(, a) [T (a, b) Ga(b, -)

a, beB

on E X E.
(II1). In terms of Gy and Ly, NEZ(-, ) may be expressed:
NEC, ) =8Nl )+ 2 > La(, a) Azla, b) Gab, )
a,beB
on E x E, where

AAZH;,[I— AH;,]_I on BXxB.

(IV). rexp 1) PArB () eds; ZB(f) = -} = exp[t V4]
0
on B X B, where
YV, = — Hzl .
Hence NB(t) = exp(Q5t) where
QF = — lim IT;".
210
(V). Ax(a, b) = [exp(— A1) dBq B (75 (1))
0

E,{-} denoting the conditional expectation E{-|Z(0) = a}.

(VI). The generators o7, /% and pst are related as follows:

() y € 2(AE) if and only if there exists a vector y* on B + B such thai

=yt on E,y eD(H) and (y*Z)=0 on B;
then
yAE =yt on E;
(i) y € () if and only if the vector 0, with
W=yon B and y°=0 on B,
belongs to Z (L) and then
yopd =yd-of on E.

Comments and References. For a proof of Part T of Theorem 4 see
“An extension to Theorem 3.2’ in the author’s paper [9].
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An analytic proof of Part II is given in NEVEU [9; Theorem 4]. As stated by
NEevEy, the intuitive content of the result is clear, though, as usual, the heuristic
arguments are rather difficult to rigorize. Let us write

ap = inf{u:Z(u) e B}
and L{s; ¢,a) (s =0, ¢ € E, a € B) for the probability
L(s; i,a) = Pi{apg < s; Z(ap) = a}.

Decomposition of the event {Z(f) = b} (b€ .B) according to the time (xp) and
place of first entry into B leads to the formula:

¢
N(t;6,b)=> [di(s;t,a)N(t—s;a,b) (icE, beB).
aecB 0
The second and fourth equations of Part II involve a decomposition of N (¢; a,j)
{a € B, j € E) according to the time and place of the last exit of Z(-) from B. It may
be shown that G;(b,j) (b€ B, j € E) is the Laplace transform of the continuous
function G'(¢; b, j) defined by the equation:

G(t;4,5) = lim (Lju)Pp{Z(t) = j; Z(s)¢ B, u < s <1}.
%0

The discussion of last-exit decompositions relative to a single state in the Appendix
to CHUNG [I] extends with obvious modifications to the case we are now conside-
ring and the reader will find there (see especially Theorem 2) a basis for further
interpretations of G(¢; b, j).

Parts I and II of Theorem 4 imply Part III. The formula for the transition
function

N3, ., M) = fexp(— 28)PAzE(t) eds; ZP(t) =}
0

on B X Bis due to NEVEU (Theorem 5 in [5]). It is also possible to calculate the
transition function

NE@; -+ ) = rexp(— 2)P.{zE(t)eds; ZE(t) =}
0

on B X B (see WiLL1aMs [9]). From either result, one may deduce Part V.

The formulae for the generators o/* and g/ (see Lemmas 3.3 and 3.4 in [9])
were included because they provide the most concise and natural expression ot the
relations among the various transition functions.

4.2. Applieation to preceding results.

Theorem 5. Let the sets E and B be as in Theorem 3 and let R (1) be the resolvent
there constructed. Then there exists a strictly stochastic transition function {N (t; 1,7)}
on the set B -- B such that Theorem 4 holds with

NEG) =ry(l)  (Gjeh), BN1(.J) = gy(d)  (,jek)
G.b,5) =7n2(4) (beB, jek), L0, a) = 224(2) ticE, acB)
Ay=K()) , QF=—T1.

The matrix

I =+ V(@) + T
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on B X B exists, is non-negative and defines N, (and hence N (f)) via the equations
of Part I1 of Theorem 4.

Particular attention is drawn to the representation of K (1) given by Theorem 4,
Part V.

The verification of Theorem 5 is straightforward and will be left to the reader.

Comments. The solution to the construction problem afforded by Theorems
3 and 5 certainly has the merit of simplicity and yet it is unsatisfactory in some
respects. The chief drawback is that our solution assigns the central probabilistic
role to an arbitrary well-behaved Markov chain {Z(f)} on E 4 B with transition
matrix {N{(t; ¢,5)}. (In the present context, “‘well-behaved” means “Borel
measurable, wellseparable and right lower semicontinuous™.) In a systematic
probabilistic treatment of the subject, the main rble should be taken by an
arbitrary well-behaved Markov chain {X(f)} on E with transition matrix
{P(t; 4, )} The distinction is of little importance from a “‘practical’” standpoint
because in calculating any function of {X (£)} which depends only on the transition
function of {X (t)}, we may replace {X (1)} by a process {Z%(1)}. However, a rigorous
proof that every (well-behaved) {X (£)} is of the form {ZE(§)} for a suitable {Z(;)}
would add considerable insight into the structure of Markov chains. Progress
towards such a proof has been made by LévY ([4]) and NEVEU ([7]) but it is not
yet possible to define Z(-, w) for every w.

Another possible objection is that the use of non-extremal exit solutions
obscures the role of the exit boundary as the set of limit points of traversible jump
chains. Comparison of Theorem 5 with Theorem 2 of [10] inclines the author to the
view that what the present approach gains in simplicity more than justifies the
sacrifice of some fine probabilistic detail.
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