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On the Construction Problem for Markov Chains 
By 

DAVID WILLIAMS * 

1. Introduction 

Let P ~ {P(t) : t ~ 0} be a substochastic transition function on a countable 
set E. Then the (componentwise) derivative P '  (0) = Q exists and satisfies the 
conditions 

- - o o ~ q , ~ O ,  q i j ~ O ,  ( i ~ E , j ~ E , i + j )  (1) 

~q~ <_ o, (i eE).  
keE 

Conversely, suppose given a countable set E and an E • E matrix Q satisfying 
the conditions (1). Denote by JQ the class of all substochastic transition functions 
P on E such that  P '  (0) ~ Q. One of the basic problems of Markov chain theory is: 
given Q, construct JQ. In this paper, the problem is solved under the following 
two assumptions. 

Assumption A. Q is finite and conservative i. e. 

- - o o < q ~ < 0 ,  q l j ~ O ,  ( i e E , j e E ,  i=~j); 

~qi~----0,  ( i c E ) .  
k e E  

Under Assumption A, the dimension d of the space of bounded vectors x on E such 
that  (2 --  Q)x ~ 0 (2 a positive number) is independent of ),  

Assumption B. The dimension d is finite. 

Suppose that  P ~ ~Q and that  {X (t) : t ~ 0} is a (stopped) Markov chain with 
transition matrix P.  In general, {X (t)} will reach infinity at some point of the exit 
boundary induced by Q and our problem is essentially to analyse its possible 
modes of return. Assumption A precludes pathological behaviour on the part  of 
{X(t)} when {X(t)} is not at the boundary and also guarantees that  JQ is not 
empty. The dimension d determines the number of "escape routes to infinity" 
available to {X (t)}. Assumption B, by restricting the exit boundary to be finite 
(in fact, of cardinality d) ensures that  ~Q can not be too large. 

I t  goes without saying that  our analysis will rely very heavily on the results of 
FELLEr'S paper [3]. The method of proof of Theorem 2 was inspired by that  used 
by REVTna ([8]) in this complete solution for the case "d = 1". 

As explained by the author in [10], all of the processes constructed by FELLER 
may be obtained by the method of first "extending the minimal process to the 
boundary" and then "deleting the time spent on the boundary by the extended 
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process", a method first used by Nnv]~v ([6]) in this "absolute dominance con- 
struction". The same method yields all processes constructed here. I t  becomes 
possible therefore to ignore probabflistic considerations until after Theorem 3 and 
then suddenly derive a very complete and rigorous probabilistic interpretation. 

We shall however discuss informally the heuristic arguments which provide the 
motivation for Theorem 1. CHv~G ([2]) has recently explained how to make these 
ideas precise and has succeeded in giving pure]y probabflistic proofs of many of 
FELLEr'S main results. The situation considered here is more general than that  
considered by FELLER in tWO respects : the forward equations are not assumed and 
there is no restriction on the size of the entrance boundary. I t  therefore seems 
unlikely that  purely probabilistic methods will lead to a solution unless some 
deeper reason is ]ound /or why the "absolute dominance construction" works. 

I wish to thank Professors K. L. CHVN~ and D. O~ST~IN for some helpful 
comments on this work. 

N o t e s. 1. The relation between the solution presented here and that  announced 
by JUR~AT is not clear. 

2. The most important case of our analytic construction is summarized in 
w 3.8 and the reader is advised to read that  subsection before the earlier part of 
Section 3. 

3. Throughout the paper, "Markov chain" will mean what is, in strict ter- 
minology, "Markov chain with stationary transition probabilities". 

2. 5Totation and prerequisites 

A (standard) substochastic transition /unction P =~ ( P ( t ) : t  > O} on E is 
characterized by the following relations: 

pij(t) ~= O, ~p~k( t )  ~ l ,  ~p~k(s)pkj ( t )  =- pij(s ~- t), 
b e e  b e e  

lira p~j (u) : p~  (0) : (~j, (s, t > 0; i, j e E) . 
u----~O 

P is called stochastic ff ~ p i k ( t )  = 1, (i e E, t > 0). 
k e E  

Throughout the paper, { P ( t ) : t  > O} will denote a substochastic transition 
/unction with P'(O) = Q, Q satisfying Assumptions A and B, and { X ( t ) : t  > O} 
will denote a Markov chain with { P (t) : t > O} as its transition matrix. The shorthand 
Pi {M} will denote the probability of the event M conditional on the event 
{X (0) ----- i} and, as usual, qt will denote -- qi/(i r E). 

The matrix Q provides {X (t)} with a certain set of instructions: on entering 
any state i, {X (t)} is to stay there for a random time ~ with P {~ > t} = cxp (-- qt t) ; 
at the end of this time it is to jump to a randomly chosen state Y with P { Y  -~ j} 
= q~i/q~. The sequence { Yo, Y1, Y 2 , . .  -} of successive states visited by {X (t) : t ~ 0} 
therefore forms a discrete parameter Markov chain (the "jump chain" of {X (t)}) 
with one-step transition matrix [(1 --  ~ij)q*i/qi]. 

From this information it is possible to calculate the probability f~i (t) that,  
starting at i, {X (.)} is at j at time t having made in the meantime only finitely 
many jumps. The functions f/j (t) are the elements of a substochastic transition 
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function F ~ {F(t):  t ~ 0}, the minimal transition ]unction associated with Q. 
I t  is clear that  p~ (t) ~ ]~i (t) for i, j c E and t ~ 0; hence the name "minimal" for 
F. I f  F is stochastic, then it is the only element of ~r 

I f  P ~: F, then, with a positive probability, there will be a finite first time Too 
by which (X (t)} has made an infinite number of jumps. FELLEr'S theory allows us 
to assert that  at such a time, {X(t)} is at a certain point a of the exit boundary A 
induced by Q and, as one would hope, the set E ~- A may be given a ttausdorff 
topology in such a way that  a is the limit of the sequence (Yn}. As already stated, 
A is of cardinality d. 

Not all limit points of the sequence (Yn} are points of the exit boundary. For 
the purpose of boundary theory, each recurrent class for (Yn}, equivalently, each 
recurrent class under the minimal transition function {F(t)}, must be identified 
with a limit point of { Yn}. These recurrent classes, on which {F(t)} is evidently 
stochastic, play but  a trivial r61e in the theory and as they can be of nuisance value, 
we shall adopt the usual course and eliminate them. We there]ore assume that all 
states are transient under the minimal transition ]unction (F (t)}, or, in other terms, 

o o  

f/~(t)dt < oo, ( icE) .  
O: 

I t  is important  to realize that  we do not exclude the possibility that some or all states 
are recurrent under the transition matrix (P(t)). 

Under the assumption of transience, the chain (Yn} must drift towards 
infinity. The exit boundary is precisely the set of limit points of paths J 
(jo,j l , j2 . . . .  ) followed by (Yn} which may be traversed in a finite time by  
(X (t)}. We recall that  the time taken by (X(t)} to traverse the path J is (almos~ 
certainly) finite or infinite according as the mean path time ~ qj-~ is finite or 
infinite. The passive boundary consists of limit points of those paths followed by 
(Y.} which would take (X(t)} an infinite time to traverse. 

Let  us now define: 

L?-= P~{X(To~)=a}, ( i cE ,  acA);  

L a = p t { T ~ t ;  X(Too)=a},  ( i cE ,  a c A ,  t ~ O ) .  

We shall 0 write L i for the probability that,  starting at i, no point of the exit boundary 
is reached i. e. that  the process (X(t)} approaches the passive boundary asymp- 
totically. 

The equations : o i i = 1 -- ~ i ~ ,  (2) 
a e A  

~]ij(t) -[- ~ La(t) = 1, (3) 
j e E  a e A  

L~ (s ~- t) -- L a (s) = ~ ]ij (s) L~ (t), (4) 
jeE 

L~ -- L~ (s) = ~ ]ij (s) L~, (5) 

L ~ ---- ~ / i j  (s) L ~ , (6) 
i ce  
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express in tui t ively  obvious facts.  Also, i t  is clear f rom our  discussion of the j u m p  
chain (Yn} t h a t  

~ (qii/q~)L~-~ L a, ( l e E ,  a e A ) ,  

i . e .  

~ q ~ j L ~ = O ,  ( l e E ,  a e A ) .  (7) 

Equa t ion  (7) m a y  also be der ived f rom equations (2) - -  (6) and the fundamenta l  
result :  

F ' ( t )  = Q F (t) -~ F (t) Q ,* (8) 

which proper ly  belongs earlier in the  exposition. 
Fo r  our purposes,  the  above equations are more  useful in their  Laplace trans-  

formed versions. The  following nota t ion  will be used:  

o o  

~b (2) ~ f exp (--  2 t) F (t) dt, (2 > O) ; 
0 
o o  

xa(2) ~" f e x p ( - -  2t )dL~(t) ,  ( l e E ,  a e A ,  2 > 0 ) .  
0 

The symbol  x a (2) will denote  the vec tor  on E with  ith componen t  x a (2) and, f rom 
now on, we shall wri te x a for L a. The  cons tant  vector  (1, 1, 1 . . . .  ) on E will be 
denoted by  1 and  the  ident i ty  ma t r ix  on E b y  I .  We now have:  

(from (2)) x0 

(from (3)) ~. x a (2)  --~ 
a e A  

(from (4)) x a (2) --  x a (l~) : 

(from (5)) x a (2) ~- 

(from (6)) x ~ ----- 

(from (7)) Q x a = 

(from (8)) (2 - Q) ~b (2) = 

I t  is easily deduced f rom 

1 - - ~ x a ;  (9) 
a e A  

[ I  - -  2 ~b (2)] 1; (10) 

(I ~ --  2)qb(2)xa(#) -~ (l* --  2) r  (11) 

[I - 2 r (2)] xa; (12) 

2 ~5 (2) x~ (13) 

0; (14) 

I : ~5(2)(2 - -  Q).  (15) 

(12), (14) and  (15) t h a t  

(2 --  Q) x a (2) -~ 0 .** (16) 

Much more  t h a n  this is known. For  each 2 > 0, the vectors  X a (2) form an extreme 
base for the  solutions of  the  equat ion (2 - -  Q)y -~ 0. More exact ly :  

(Lemma  1) for ~ > O, the extreme points o/ the convex set o] those vectors y 
satis/ying 

0 ~ y ~ l ,  ( 2 - Q ) y = O  

* Unless otherwise stated, matrix equations are to be interpreted in a componentwise sense. 
** Note .  Some care must be shown in the manipulation of the above identities because 

multiplication of infinite matrices is not always associative. Thus, for example, 
[qS(~)Q]xa=-xa(~) whereas qo(~)[Qxa]=O. 
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are precisely the x a (4) (a ~ A), and, moreover, every bounded solution o/the equation 
(2 -- Q)y = 0 is a linear combination o/the xa(2). 

The extremal property of the x a (4) rests on the following fact: 

(Lemma 2) as i "converges" to the boundary point b 

xa(2)-->~ ab and xa-->(~ a~ (17) 

(From a state i "near" the boundary point b, X(t)  will, with high probability, soon 
reach b.) 

As stated in the Introduction, the task of adding precision to the above heuristic 
approach has been carried out by C~v~G, The same ground may be covered by 
adopting an analytic approach in the manner of FELLER'S paper. 

Notice that  Lemma 1 provides a completely algebraic characterization o/ the 
xa (2), independent of the notion of "boundary".  Notice also that,  once the x a (2) 
are defined, Lemma 2 suggests the way to adjoin the set A to the state-space E, 
namely, by making sets on which {xa(2)>  1 -  ~} (0 < ~ < 1) the typical 
neighbonrhoods of the point a. I t  was by using these considerations that  FS, LLS, R 
first defined the exit boundary. 

The information required in the sequel is that  there exist: 
(i) a minimal transition/unction iv (t) with resolvent matrix q5 (2); 

(ii) a finite set A adjoined to E in such a manner that E + A is a Hausdorff 
space and that each point o / A  is a limit point o /E;  

(iii) vectors xa(2), x a, x~ 
such that equations (9)--(16) and Lemmas 1 and 2 hold. This is proved both in 
F~LL~n's paper and in CHv~G's. 

3. The analytic construction* 

3.1. Some further prerequisites. We write rij (4) for the Laplace transform of 
pij (t): 

o o  

r~j(2) = f e x p ( - -  2t)ptl(t)dt (4 > 0) (18) 
0 

and R (2) for the E • E matrix matrix with (i, j)th component r# (4). Then R (4) 
satisfies: 

(the resolvent equation) 

(the positivity condition) 

(the norm condition) 

(the continuity condition) 

R(2) -- R(/z) = (/~ --  2) R(2) R(/~); (19) 

R (4) ~ o; (20) 

2R(2) 1 _< 1; (21) 

2 R (4) --> I as 2 --> oo (22) 

Conversely, the relations (18)--(22) imply that  ( P ( t ) : t  > O} is a substochastic 
transition function. {P (t)} is stochastic if and only if 2 R (2) 1 = 1. I t  is clear that,  
in our situation, 

R (2) ~ ~b (2) (23) 
and it is known that  

(4 - Q)R  (4) = I .  (24) 

* See n o t e  2 in the  In t roduct ion .  



232 DAVID WILLIAMS : 

Equation (16) is simply the Laplace transformed version of the Kolmogorov 
backward equation : 

P '  (t) = Q P (t) (t >= O) 

which holds under Assumption A. 
In view of the above results, the problem o/constructing JQ is equivalent to that 

o/ constructing all matrix/unctions R (~) satis/ying (19), (21), (23) and (2Q. 
On comparing equations (15) and (2Q, we observe that  each column of the 

matrix R (X) -- ~b (~) is a solution of the equation (2 -- Q)y = 0 and hence, by 
Lemma 1, is a linear combination of the vectors x a (2). This proves the first part 
of the following theorem. 

Theorem l. R (~) has the decomposition: 

r~.(~) = ~j(~) + ~ x? (~) y~ (~). (25) 
a e A  

The (row) vectors ya (~) (a ~ A~ ~ > O) are non-negative and satis]y: 

(resolvent condition) ya (2) -- ya (/~) = (/., __ ~) ya (~) R (#) ; 

(norm condition) 

{P (t) : t ~ O} is stochwstie i/ and only i/ 

,~ ~ y ~ ( ~ )  = 1 
j e E  

X~y~(~) < 1 
~'EB 

(aeA,  2 > 0 ) .  

(26) 

(27) 

where 
~(u)  ~ P{X(T~  + u) :jIX(T~) = a}. 

A rigorous proof of (28) using these ideas and based on the Strong Markov Theorem 
is given in C g ~ G  [2; Theorem 5.1]. A completely different proof will be given in 
Section 4. Equation (25) is simply the Laplace transform of equation (28) and 
y~ (~) is therefore identified with the Laplace transform of ~ (t). 

3.2. Last exit decomposition of the ya()~). Our purpose in this section is to 
decompose the ya (A) into simpler elements. We shall see eventually that  what is 
obtained is a decomposition modulo the last visit to the boundary though why the 
analytic method described below leads to probabifistically meaningful results, I 
do not know. What  is clear however is that  the behaviour of {X(.)} after its last 

Analytically, the non-negativity of the y's and the equations (26) and (27) 
follow from Lemma 2 and (respectively) (23), (19) and (21). However, equation 
(25) has a simple probabilistie interpretation which implies the rest of Theorem 1. 

Interpretation o/Theorem 1. Suppose that  the Markov chain {X (.)} started at i. 
I f  it is a t j  at time t, then either it  has reached j without hitting the exit boundary 
or else it first hit the exit boundary at some point a during some time neighbour- 
hood (s, s -~ ds) (with 0 < s < t) and then moved from a to j in the remaining 
time t -- s. We therefore expect a decomposition: 

t 

p~ (t) =--/~j (t) + ~ 5 dLa (s) ~ (t -- s) (28) 
ae A  0 
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visit to the boundary  will be governed by  "entrance solutions" of the type  we now 
introduce.  

Entrance solutions. By an entrance solution we shall mean  a set of non-negative 
functions v~(.) (i ~ E) on (0, oo) satisfying the equat ion:  

v~ (s) hJ (t) = vj (s + t) (v (s) F (t) = v (s + t ) ) .  
i c e  

An entrance solution for {v~ (.)} is said to be bounded if  for some T > 0, equivalently,  
for all T > 0, 

T 

f ~ v i ( t ) d t  < oo. 
0 i ~ E  

The Laplace t ransform:  
o o  

7(2) = f e x p ( - -  2t)v( t )dt  
0 

sets up a one-to-one correspondence between the set of bounded entrance solutions 
v (-) and the set of (row) vector  functions ~ (-) such that ,  for 2, # > 0, 

(2) - ~ (~) = (~ - 2) ~ (2) ~ (~);  ~ ~s(2)  < o o .  (29) 

See, for example,  N~vEg [6; Theorem 2.1.4]. I%~UTEI~ has shown (Lemma 2.2 of 
[8]) how the solutions of (29) m a y  be constructed. (See Lemma 7.) 

N o t a t i o n .  We shall write I for the Banach space of row vectors y on E such 
t ha t  I[ Y H1 = Z [ Y ,  [ < o o .  The scalar product  5 y,x,  of a row vector  y on E and a 

i c e  i c e  

column vector  x on E will be denoted by  <y, x}. Last ly  we introduce the mat r ix  
funct ion 

A (2, it) ~ I + (2 - -  tt) ~ (tt) (2, ,u > 0) 

which satisfies the equat ion 

A (~, ~) = A (2, ~) A (~, ~) (2, ~,  v > 0).  

With  this notat ion,  (29) becomes: 

(/*) = ~ (2) A (2,/~); ~ (2) e 1. (30) 

Lemma 1. There exist anon-negative matrix/unction { Mab ( 2 ) : a, b ~ A) ;~  > 0} 
and non-negative vector/unctions ~a(.) (a ~ A) satis/ying conditions (30) such that 

y. (2) = M(2) 7" (2). 

Pro@ On expanding (26), we obtain 

(t* - 2) [y~ (2) ~ (t*) + ~ (Y~ (2), x* (tt)) yC (/~)] = ya (2) -- ya (#),  
e e A  

which m a y  be arranged as: 

[(~ac + (# __ 2) (ya (2), x c (/~))] y* (/*) = ya (2) A (2, / t ) .  (31) 
e~A  

I - Ienee~ 

ya (2) ---- ~ [(~ac + (# _ 2) (ya (2), x c (/t)}] yC(#) A (/t, ~). (32) 
e e A  
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Now y a ( # ) A  (/a, 2) is always non-negative. In fact, 

y a ( # ) A ( / ~ , 2 ) ~ y a ( # )  for 2 ~ ,  

ya ([~) A (lu, 2) = ya (#) __ (2 --  #) ya (~) ~b (2) 

ya (/~) __ (2 --  ~a) ya (su) R ().) = ya (2) for 2 > /~ .  
Define 

Ya(~)A(~'2) (33) ~ ( 2 ; # )  = lly~(~)A(~,l)ll ~ 

and observe that, by virtue of equation (32), we may write 

y" (2) --~ M(2; ~) ~" (~; #) 

where M (2 ; #) is an A • A matrix whose elements are non-negative if 2 </~.  
From (27) and (33), it follows that  

1 ~ y ~ ( 1 ) = ~ M a b ( 1 ; # ) ,  ( # > 0 ) .  
j e E  beA  

By a diagonalization procedure, we may choose a sequence {/~n} with #n -+ oo 
such that  the limits: 

exist. Clearly, 

Mab(1) - ~ l i m M a b ( 1 ; # n )  (a, b e A ) ;  
~t 

~(1)  = l im~(1;/~n) ( a e A ,  j e E ) ;  
~t 

4 1 ~,Mab(1)~"  ~ ,Y j (  ), 
b~A j e E  

(34) 

(34) 

(35) 

and, on summing this equation overj  and comparing the result with equation (35), 
we see that  

~. V~(1) = 1 (b eA).  (36) 
jeE 

(Note. Strictly speaking, equation (36) follows only for those b with the 
property that  for some a, 

lim sup Mab(1; [~) ~ O. 

This difficulty is easily avoided in the following manner. 
For fixed a and c in A, the function 

lira sup M ac (2.;/~) 

----- lim sup (a ac -+ (# -- 2) <ya(2), xC(#)}] 11 yC(#)A (l~, 1)Ill 
/~---> OO 

is a non-negative, non-increasing function of 2 (because ya (2) is). Hence, we may 

while, by FATOU'S Lemma, each ~a(1) is a non-negative/-vector whose norm does 
not exceed unity. But 

y~ (1)---- ~. i a b  (1) ~ (1), 
b e A  
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find a number v such that, for every pair a and c in A,  either 

(i) l i m s u p M a c ( ' ; # )  ~ 0 or ] 

u~oo I (37) (fi) tim sup M,~(~,;/z) + O. 

We now redefine the ~' s, using r instead of 1 as the value at which to normalize ~nd 
adjust M(2;/~) aceordi~gly. Ig is easily checked that  the new M ( i ;  #) has the 
properties described at (37). I t  does no harm to suppose that  1 is a suitable v. 

If, for some b, lim sup M ab (.;/~) -~ 0 for every a, then ~b plays a completely 

superfluous r61e and we may for the present choose for ~ any non-negative solution 
of (30) which also satisfies (36). But see the discussion following equation (39).) 

From (34) and (36), it follows, by a well-known theorem on/-spaces, that  

{r~(1)-v,,(1;~.)]{~0 as n-->oo. 

Define ~a (2) ~ ~a(1)A (1, 2). Then, in the strong topology of l, 

n ~ (2;/~,) = ~a (1 ;/~,) A (1, X) -+ ~ (1) A (1, 2) = ~a (2) 

and so ya(1) is non-negative. For fixed 2, 

ya (2) ~- ~ Mab (1 ;/~n) ~b (2;/~n) 
beA  

and we know that  {[ ~b(2;/~n) I{1 ~-> ]! ~b(2)II # 0. Hence, in a suitable subsequence 
of {/~n}, M ab (2;/~n) -~ M ab (2) and 

y~ (i) = ~ M~b (2) ~b (2) 
b e A  

as was to be shown. 

3.3. Some identities. Retracing to the definition (33) of Oa (1;/u), we see now 
that  

M~ (z) v b (z) A (~, ~) 
b~A 

V a (2;/~) = 11 Y ~a~(~)~(~)A (m 1)([~ " 

Since ~a (~)A Qz, 2) = ~a (2) and ]I 0 a (1)iI~ = 1, (a ~ A), we may write the above 
equation as 

b e A  

where H (/~) is the stochastic matrix with elements 

caA 

In a suitable subsequence of {~un}, H ab (/27 "~  H aO where H is a stochastic matrix. 
~t follows from (38) that  for this subsequence, which we may as well take to be 
{#n} itself, lira ~la(2; ~n) exists in the strong topology of l for every a in A and 

every 2 > 0. We may there]ore define ~a(i)  ~- lira ~ya(2;/zn) ]or every a and every 
n 

without a/]ecting any o] the ]oregoinff results. Then, from (38), 

H~ ' ( i )  ~ ~'(2) for every 2 > 0. (40) 
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Many identities in the sequel are most conveniently expressed in terms of the 
matrix function {Ubc(2); b, c ~ A ;  4 > O} defined by 

vbc(4) -- 4 < ~  (4), xC>. 

A similar function was used by F~LL~.  The importance of U(4) rests on the 
identity 

( 4 -  ~) <vb(4), xc(~)> = vbc(4) - ub~(~) (41) 

which is a consequence of equations (11), (12) and (30). 
Other properties of U (4) which will be needed are: 

U ( 4 ) ~ U ( # )  for 4 ~ / ~ > 0 ;  (42) 

H U ( 4 ) = U ( ) ~ )  for 4 > 0 ;  (43) 

~ M~(~) U~c(~) ~ 1. (44) 
bEA c e A  

The relations (42) and (43) are implied by equations (41) and (40) (respectively). 
The inequality (44) follows from the norm condition (27) and the fact that  
~x~(~)  =< 1. 

t e a  

3.4. Redundancy. We may have defined more y ' s  and ~'s than is good for us. 
Notice that  if the boundary points al and a2 arc indistinguishable, i. e. f f  ya~ (4) 
_~ ya~ (4) for some (and then all) % > 0, then we may combine al and a2 into a single 
exit boundary point a, writing 

x ~ (4) : x a~ (~) ~- x a~ (4) ; ya (,~) = y~  (4) -~ ya~ (4). 

(For a detailed discussion, see CHU~G'S paper.) I t  there/ore does not restrict the 
generality to azsume that all the ya (.) are distinct. 

Even after indistinguishable boundary points have been merged, there may 
still be "too many"  y' s. A method of making a suitable selection from among them 
will now be described and then the probabilistic significance of our choice will be 
discussed. 

For a moment, let 4 > O be fixed. The convex hull of the set {O} u {ya (4) : a e A }  
is a compact convex polyhedron in the space I. The vertices (extremal points) of 
this polyhedron may be written {O} u {y~(%) : 5 e ~} where ~ is a subset of A. 
I t  follows from the Krein-Milman Theorem that  every ya(4) ( a e A )  may be 
written: 

ya ()~) : ~, Ga-~y~(~) (45) 
a e A  

where G a-~ ~ 0, ~ G a~ ~ 1 (a ~ A)  and G a~ : 1 (5 e .4). 
a e A  

The matrix G may appear to depend on % but, on post-multiplying equation 
(45) by 1 -- (# -- 4)R (~), we obtain: 

ya(/~) : ~ Ga-~y-~(/~) for every /~ > O. (46) 
a e A  

(There may however exist other substochastic matrices G for which (46) holds. 
Throughout the remainder of the paper, G will denote one fixed such matrix.) A 
similar argument shows that,  for each ~u > 0, the extremal points of the set 
{0} ~ {ya (#) : a ~ A }  are precisely {0} ~J {y~ (#) : 5. e A} i. e. A is independent of 4. 
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Probabilistically, equation (46) may be interpreted as stating that,  on reaching 
a e A --  A, {X(.)} decides to jump immediately to a point of A, choosing 5 with 
probability G a~'. 

3.5. Interchanging ~ and f in equation (31), we obtain 

ya (#) A ( f ,  ~) = ~ [5 ac ~- ()~ --  f )  <ya (~), x c (~)}] yC ()0" (47) 
c e A  

Equations (47), (33) and (41) and Lemma 1 lead to the following formula for 

V~(2;f):  

V ~ ()~; f )  = 
t 

(Convention: symbols a, b, c~ d, t etc. range over A;  "barred" symbols such as 5 and 
range over A.)  Hence, by definition of H( f ) ,  

~ (A;  f )  = ~ ~ H ~ b ( f )  Ubc(A) ~ Gc~y~(A) ~- ~ T ~ ( f ) y ~ ( )  0 , (48) 
b c ~ 

where 
~ _  ~ ~ ~ b ( ~ )  uo*(~) G~ 

T ~  ( f  ) = ~ 
Z M a t  (~) 
t 

The inequality (44) implies that  

 M b(f) Ubc(f)Cc  <= 1. (49) 
b c ~ 

I t  will now be shown that  

(Lemma 2) i/  T denotes any subsequential limit o/ T (fn), then T is finite. 

Proo]. We may as well suppose that  T = lira T (fn). Notice that  if, for some 
5, T ~  = 0, then, by (49), T ~ = 0 for all 5. I f  T 5~ ~: 0, define 

S ~ ( f )  : - -  T ~ c ( f ) / T ~ ( f )  (5 ~: 5, f > 0). 

Then ~ S a~ (f) ~ 1 and hence, in a suitable subsequence of (fin}, S ~ ( f)  -~ S ~ 
c ~ - a  

with ~ S a-~ =~ 1. I f  T ~5 = c~, we obtain, on dividing (48) through by T ~ ( f )  and 

letting # --~ ~ suitably, 
Sa~ 

c ~ : 5  

contradicting the choice of y~(-) as an extremal point. Lemma 2 is therefore proved. 
]n the limit as # --~ r through the sequence {fin}, equation (48) becomes 

~(A) = [H U(),) C + T]~(A) = [U()0 G + T]9(A ) (50) 

where U (A) and 9 (A) denote the restrictions of U- (A) and y. (A) to A and where/~ 
and ~ (A) denote the restrictions of H and U ()0 to A • A. 

I t  it easily checked that  each off-diagonal term of the matrix U(A) G ~- T is 
non-positive. Also, it follows from equation (50) that  for 5 in A and A > 0, 

0 > A <~(),), 1} = ~ [g~(~) G ~- T]~A <y~(A), 1}. (51) 
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The matrix with (5, ~)th component 

2[U(2) a -]- T]~<y~(2), 1> 

therefore has a non-negativ e inverse and so the same is true of the matrix 
[ U (~) G -~ T]. Hence 

(Lemma 3) y()~) = G[U(2) G + T] - lg (2 ) .  

3.6. The norm condition and positivity. Define 

= ~ <va (~), x0> (5 e ~{), 

the definition being independent of ~ because of equation (13). Substituting 
1 = x ~ ~- ~ x b in the left hand side of equation (51) and using the norm condition 

b e A  

,~(yc(,~), 1} ~ 1, we obtain 

Gab(4) [1 -- ~ aa~] + ~ =< ~ T~, (4 > 0). (52) 
b ~ c 

By (42), U(2) ~ U(r as X -~ 0% where the matrix U(oo) may contain infinite 
elements. I t  is clear that  (52) is equivalent to the statement: 

y~ v ~ ( ~ )  [1 - ~ Gb~] + ~ =< E T~.  (53) 
b v c 

Since, for every ~ > 0, U(2) G -~ T is non-positive off diagonal, we also obtain the 
condition: 

r > --  T ae > ~ Uab(~)  G b~ (5 ~: ~). (54) 
b 

Conditions (53) and (54) imply that  

(Lemma 4) U~b(r is finite i] b ~ 5 (5 e A ,  b e A).  Equivalently: 

lira <2 ~a (X), 1 -- x~> < r162 (5 e ~ ) .  

Proo/. I f  U ~b (r -~ r162 for some 5 in A and b in A with b =~ 5, then, from (53), 
G b~ -~ 1, while, from (54), a be -~ 0 for ~ :~ 5. Hence 

c 

yb (#) ~ y~(#) for every/~, 

a possibility we have already ruled out. 

3.7. The general solution. The above relations among the vectors x a (.), ~a (.) 
and the matrices G and T provide su/ficient (as well as necessary) criteria that  the 
function {P(t)}, defined via Lemma 3 and Theorem 1, belongs to ~r This is the 
content of Theorem 2, which may be regarded as a complete , though clumsy, 
solution to our problem. We shall see in the next  subsection that  the construction 
of the strictly stochastic members of ,J~Q may be described in somewhat simpler 
terms. 

The introduction of the set C in the statement of Theorem 2 is merely a device 
to cover the case of indistinguishable boundary points. 

Theorem 2. Let E be a countable set and let Q be an E X E matrix  such that 

q ~ > 0 ;  - - r  ~ q ~ = 0  ( i , j e E ,  i . j ) .  
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Let r  = {q~i~(.)} denote the resolvent matrix o/the minimal transition/unction F 
associated with Q. Assume that/or some (equivalently, /or every) 2 > O, the space 
o/ bounded vectors x on E such that 

2 x = Q x  

is o/ finite dimension. The exit boundary A induced by Q then consists o / a  finite 
number o/ points. 

Choose any disjoint partition: 

A = ( . J A  a, A a ~ A c = O  ( a . c ;  a ,e~C) 
a e C  

o/ A and,/or a ~ C, let x a, xa(2) denote respectively the sojourn solutions o /Qx  = O, 
( 2  - Q)x = 0 corresponding to the boundary set A a. Let x ~ = 1 - - ~ x  a denote the 
maximal passive element, ae o 

Next, choose any subset C o /  C and, /or each 5 in C, choose any non-negative 
1-valued/unction ~ ( . )  which satisfies both 

~ (2) - ~ (~) = (~ - 2) ~ (2) �9 (~) (~,/~ > o) 

and 
lim <2 ~]~ (2), 1 -- x ~> < c~. 

2,---> ~ 

For 5 in C and b in C, define 

U~b (2) = <2 ~ (2), x~) (2 > 0) 
and 

~:~ = <2 ~ (~), xO> . 

~-~ is independent o/2. Let U~b(~) = lira U~b(2). 

Choose a non-negative C • C matrix G such that 

~ G a ~ l  ( a e C ) ;  G ~ = I  ( S e C ) .  
a~C 

Now choose any (finite) matrix T on C • C such that 

b e C  

and 

ceC bEC ceC 

Then,/or every 2 > O, the matrix 

K(2)  = G[O(2)  G + T/-~ 

(on C • C) exists and is non-negative. Lastly, define 

a~C c e C  

Then R(.) = {r~$(.)} is the resolvent o / a  substochaetic transition/unction P(.) on 
E • E with initial derivative matrix Q. Conversely, every subetochastic transitio~ 
/unction with initial derivative matrix Q may be constructed in the above manner. 

(.) is the resolvent o/ a strictly stochastic transition/unction i/ and o~ly if 

G a ~ = l  (a~C) and ~ T  ~ = r  h (g~C).  
c~C e~C 
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Proo] o] the su/ficiency o/ the conditions. Suppose that  the vectors xa, X a ( ~ ) ,  

~ (~) (a e C, 5 e C) and the matrices G and T have been defined in accordance with 
the conditions of the theorem. Then equation (52) holds for all ~, and hence 

0 < (AUa(Z), 1> ~ [U(~) G ~- T] 15, (55) 

10 denoting the vector (1, 1, 1 . . . .  ) on C. The relations (54) and (55) imply that  
C (~) G ~- T has a non-negative inverse. On multiplying (55) by K (~) we obtain 

(~ ya (~), 1) ~ 1, (a E C) (56) 

the norm condition for R (~). The resolvent equation for R (~) follows from the 
equation 

K(2) -- K(/t) = K(2) [U(#)  -- U(~)] K(#) .  

This equation, which is equivalent to the matrix Riceati equation 

K'  (/t) = -- K (#) U' (#) K (#), 

plays a central rble in all construction problems. 

N o t  e s. 1. We have deduced equation (56) from our explicit formula for K (A). 
In  the cases studied by F~LLER and C~u~G, one may proceed in the opposite 
direction, first proving equation (56) from the resolvent equation and then deducing 
from it the form of K (2). Incidentally, this method yields the shortest proof of 
F~LLE~'s construction theorem. The reason that  the same method does not work 
here is that  our ~'s may be linearly dependent. 

2. Theorem 2 simply rests on the fact that  the resolvent R (.) to be constructed 
is related to a known resolvent ~b (.) by an equation of the type 

rij (~) = ~tj (Z) + ~ x~ (Z) y~ (Z) 
a 

where the non-negative vectors x a and ya satisfy respectively the relations (9)-- (13) 
and (26)--(27). There are many problems in Markov chain theory where a similar 
situation obtains and to which therefore Theorem 2 provides the answer. Suppose, 
for example, that  {X(t)} is any Markov chain (with or without instantaneous 
states) on a countable set E. Suppose that  we know the "taboo" transition 
function {DP (t)} which determines the behaviour of {X (t)} prior to its first entry 
into a certain finite subset D of E. To what extent can we reconstruct the transi- 
tion function {P (t)} of {X (t)} ? This problem has already been solved by NEVEI~ 
([5], [6]). Theorem 2 confirms his solution. 

3.8. The strictly stochastic ease; detailed construction. Q will continue to denote 
an E • E matrix satisfying Assumptions A and B. The purpose of this subsection 
is to describe, in as direct a manner as possible, the complete procedure for con- 
structing the most general strictly stochastic element of JQ from the matrix Q. 
No topological considerations will be used in the /ollowing ]ormulation and the 
concept o/an "exit boundary" will be replaced by that o /a  per]ectly arbitrary para- 
metrizing set. 

First, let us recall some known results. 

Lemma 5 (F~LL~m [3; Theorem 4.1]). For ~ > O, define the matrix ~ (~) by the 
relation 

A~j (,~) = q~j/(~ + q~) 
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and let 

Then 

L e m m a  6 (F~L~n~). 

co 

~ 0  

~j(2)  = s~j(2)/(2 + qj). 

x ~ = lira 2 q~ (2) 1. 
z~0 

This follows f rom equations (9) and  (10). 

L e m m a  7 ( R ~ u T ~  [8; Lemma 2.2]). To construct the most general 1-valued 
/unction ~ ( . ) on  (0, oo) satis/ying 

(~) = rl (2) A (2, ~) (2,/~ > 0), 
w h e r ~  

A (2, ~) = ~ + (2 - -  ~) r (~) (2, ~ > 0),  

choose (i) a non-negative vector w on E such that wq)(2) ~ 1/or every 2 > 0; 
(ii) a positive number v and a non-negative l-vector ~ satis/ying "~ (v I - -  Q) = 0 

and define 
(2) = w 4) (2) + ~ A (v, 2).  

The set B in the following theorem corresponds to the set C in Theorem 2 and the 
vector  z b to ~ x  a Gab. When  these subst i tut ions have  been made,  Theorem 3 

becomes an immedia te  corollary of  Theorem 2. 

Theorem 3. Let E be a countable set and let Q be an E • E matrix satis/ying 
Assumptions  A and B.  Define the minimal  resolvent q5 (2) as in Lemma 5 and the 
vector x o as in Lemma 6. 

Let B denote any finite set d is jo int /rom E. Choose non-negative vectors z b (b ~ B) 
on E such that 

Qz b = O  ( b z B ) ,  ~ z  b :  l -  x ~ 

and, /or 2 > O, define b eB 

z~ (2) = z0 - 2 q~ (2) zb > 0 (b ~ B ) .  

For each b in B,  choose an l-valued/unction ~b (.) on (0, oo) .satis/yiny 

~b(/z) = ~ b ( 2 ) A ( 2 ,  t~) (2,/~ > 0) 

(see Lemma 7) and also 

lira <2 ~b (2), 1 - -  zb> < oo (b ~ B) .  
,~ --+ oo 

Define 
V ~  (~) = ( ~ ~ (;0, z~> 
Va~ (oo) = lira V ab (2) 

~--+ oo 

and (independently o/ 2) 
~:~ = <2 Va (2), xO> 

Next,  choose a matrix T on B • B such that 

- -  T ~  >= V ab 
~ Tac = ~a 

c ~ B  

(a, b e B) ,  

(a, b e B) 

(a ~ B ) .  

( a # b ;  a , b ~ B ) ,  

(a e B) .  

Z. W a h r s c h e i n l i c h k e i t s t h e o r i e ,  B d .  3 17 
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Then the matrix 
K(Z) = [V(2) + T] -1 

exists and is non-negative. Now set 

r,j (2) = ~ j  (2) + Z Z z~- (2) K ab (2) U~ (2). 
a e B  a e B  

Then R (.) = (rg i (.)} is the resolvent o/ a strictly stochastic transition/unctiog ( P (t) ) 
with P'  (0) -~ Q. Conversely, every such resolvent mgy be constr~cted in the above 
m a n n e r ,  

Theorem 3 is now in the most convenient form for the type of probubilistie 
interpretation described in Section 4. I am convinced that  the general case of 
Theorem 2 may be reduced in a similar manner and think it better that  the inter- 
pretation of Theorem 2 be postponed until this has been done. An analysis of 
Theorem 2 in its present form would involve complicated calculations very like 
those needed to prove Theorem 2 in [10]. 

4. Probabilistie interpretation 

4.1. A theorem on time substitution. This subsection, which is a slightly 
modified form of w 1 of the author's paper [10], is independent of the preceding 
results. Various technical conditions (e. g. that  Z (t, o~) be "Borel measurable, well- 
separable . . . .  ") essential for a rigorous proof of Theorem 4, while of mere academic 
interest in the present context, are included for the sake of completeness. What  is 
important is tha t  these conditions do not restrict the generality in any real sense 
because every Markov chain with standard transition matrix has a version with 
the properties assumed of Z (., .). (For the relevant terminology and for a proof of 
this result, see CHu~G's book [1].) 

Suppose that  (~2, J ,  t )) is a complete probability triple. Let  E be a countable 
set and let B be a finite set disjoint from E. Suppose that  {Z(t, co) : t > O, o~ E f2} 
is a Borel measurable, well-separable, right lower semieontinuous Markov chain 
with minimal state-space E q- B and with standard transition function 

{ N ( t ; i , j ) : t ~ O ;  i , j e E +  B } .  

(The set E + B with the discrete topology is assumed compactified by one-point 
compactifieation, the adjoined point being denoted by "oo". In  general, oo will 
belong to the range of Z(., co) for almost every co.) 

The process {ZS(.)} on E induced by {Z(.)} is obtained from the process {Z(.)} 
by  ignoring the time spent by the latter in B. Thus Z~(.) represents the position o/ 
Z(.)  when the time spent by Z(.) in E is exactly t. (Similarly for {ZB(.)}, the process 
on B.) We assume that  B is not an absorbing set so that  Z (.) will spend an infinite 
time in E, i. e., ZS(.) will be everywhere defined. On the other hand, zB(t ,  co) will 
be defined only for t < ~ fii (0% co) ~ 0% so that  {Z B (.)} will be a stopped process 

i e B  

in the case when the states in B are transient. These ideas will now be m~de precise. 
Let /~  denote Lebesgue measure on the real line and, for tQ~_~ O, co ~ if2 an:l 

i ~ E  + B, let 
~ (t, co) = ~ { s :  s < t, z (s, co) = i } ;  
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in other words, fli (t) is the time spent by {Z (.)} in i be/ore time t. Define: 

co) = i n f { s  : co) > t}; 
i c e  

Z~(t, co) = Z(~E(t, co), co) if Z(vE(t, ~o), co) @B, 
= oo if Z(vE(t, o)), co) e B ;  

~B(t, co) ---- inf{s : ~/~i(s, co) > t}; 
i e ] ~  

Z B (t, co) = Z ( ~  (t, co), co). 

I t  is known (see W~LIA~s [9; Theorem 1.1]) that  both {Z~(.)} and {Z~(.)} are 
(Borel measurable, well-separable, right lower semicontinuous) Markov chains. Let 
{N E (t; i, j) : t > 0 ; i, j e E} and {N B (t; i, j ) :  t > 0 ; i , j  ~ B} denote their respective 
standard transition functions. For ~ > 0, we write Nx(i, j), N~.(i, j) for the 
Laplace transforms : 

o o  o o  

Nx( i , j )  = f e xp ( - -  ) ,ON(t ;  i , j )d t ;  N~( i , j )  = f exp ( - -  2 t ) N E ( t ; i , j ) d t  
0 0 

of N(. ; i , j )  and NE(.;i , j) .  
With the transition function {N(t; i , j ) : t  >~ 0} is associated the strongly 

continuous semigroup {N(t) : t  > 0} of operators on the Banach space lE+B of 
vectors y such that  

Ilylf =  [y(i)l < 
i e E  § B 

The operator N(t) (t > 0) is defined by 

{yN(t)} (j) = ~ y ( i )  N(t; i,j) (yzlE+B, j e E  ~- B).  
i c E  § ]~ 

In a similar fashion, we define the resolvent operator Nx (2 > 0) by the equation 

(yN~) (j) = ~y ( i )Nx( i , j )  (yelE+B, j e E  4- B).  

I t  will be recalled that  the infinitesimal generator ~ / o f  the semigroup {N (t) : t ~ 0} 
is defined as follows : a vector y in lE+B belongs to the domain 2 (d )  of ~ / i f  and 
only if there is a vector z in IE+B such that  

I [{y~V( t ) - t~} / t - z I [ -~o  as t r  

and then y~/---- z .  3 / i s  therefore the strong derivative of N (.) at zero. In exactly 
analogous fashion, we introduce the generator ~r of the semigroup {N E (t) : t ~ 0} 
(on the space 1E) associated with the transition function {NE(t; i, j)}. One of the 
important properties of the operator ~ / i s  that  it uniquely determine8 the transitiou 
/unction {N(t; i, j)}. (Reason. Each N~ (2 > 0) is precisely the operator inverse to 
(2 - -  ~/) and so is certainly determined by ~/. Ln~cg's theorem on ~he uniqueness 
of the determining functions of Laplace transforms completes the proof.) 

Our sequence of definitions is completed with the introduction of the "taboo" 
transition function {BN(t; i,j) : t ~ 0; i , j  ~ E}: 

BN(t;  i , j)  = P{Z(t) = j ;  Z ( s ) ~ B ,  0 < x < t[Z(0) = i}. 

{BN (t; i, j)} therefore determines the behaviour of Z (.) up to its first entry into B. 
The Laplace transforms and generator associated with {BN (t; i, j)} will be denoted 
by {BN~ (i, j)} and B~/ respectively. 

17" 
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(iv). 

on B • B,  where 

The interrelations among the transition matrices described above are sum- 
marized in the following theorem. 

Theorem 4. 

(~). N~(., .) = N ~ ( ,  -) + ~ ~ 2v~(., a ) / ~  (a, b) 2V~(b, .) 
a, b e B  

on E • E, where 
F~I _~ )-I _ Nz  on B • B .  

(II). For each 2 > 0 there exist uniquely defined matrices Lz  on E • B and Gz 
on B • E (first-entrance and last-exi t /unctions/or the set B )  and a matrix H~ oN 
B X B such that: 

N ~ ( ' , ' ) = H z ( ' , ' )  on B •  

N~(., .)=~lIz(. ,b)G~(b,.)  on B •  
b e B  

N~(',  ") = ~L; . ( ' ,  a)IIz(a,  .) on E x B; 
b e B  

N~(',-) = BNz(', ") -~ ~. ~ Lz(', a)IIz(a,  b) az(b, ") 
a, b e B  

on E •  

(III). I n  terms o/ Gz and L~, N~( . ,  .) may be expressed: 

Nf(.,-) = ,Na(-, .) + ~ ~ Lz(., a) A~(a, b) Ga(b, .) 
a, b e B  

on E • E, where 
A~ = H ~ [ I - -  ;tH~] -1 on B • B .  

co 

S~xp(-  ;,s)e.{~'(t) eds; z'(t) = -} = exp[t v'~] 
0 

Hence N z (t) = exp ( Q~ t) where 
T~ = - -  H i  1 . 

Q B  = _ _  lira H ~  1 . 

~o 
oo 

(V). Aa (a, b) = f exp (-- ~ t) dE~/~b (~  (t)), 
0 

Ea{'} denoting the conditional expectation E {. I Z ( O ) = a }. 

(VI). The generators ~ ,  d E and B d  are related as/ollows: 
(i) y ~ ~ (~,E) i / a n d  only i/ there exists a vector y+ on E -~ B such that 

y = y +  on E , y + ~ ( d )  and ( y + d ) = 0  on B; 
then 

y ~ E  ~_ y+ d on E;  

(ii) y ~ ~ ( B ~  r i/ and only i/ the vector yO, with 

yO = y on E and yO = O on B ,  

belongs to ~ ( d )  and then 
y . B d  -- yO . d on E .  

C o m m e n t s  a n d  R e f e r e n c e s .  For a proof of Part  I of Theorem 4 see 
"An extension to Theorem 3.2" in the author's paper [9]. 
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An analytic proof of Par t  I I  is given in N E v e r  [5; Theorem 4]. As stated by 
Nnv~u,  the intuitive content of the result is clear, though, as usual, the heuristic 
arguments are rather  difficult to rigorize. Let us write 

~B = inf{u :Z(u) e B} 

and L (s ; i, a) (s ~ 0, i E E, a ~ B) ibr the probabili ty 

L (s ; i, a) : P~; {~B ~ S ; Z (~-B) - -  a}. 

Decomposition of the event {Z (t) ~ b} (b e B) according to the time (UB) and 
place of first entry into B leads to the formula : 

t 
N ( t ; i , b ) = ~  f d t ( s ; i , a ) N ( t - - s ; a , b )  ( i e E ,  b E B ) .  

aeJ~ O 

The second and fourth equations of Par t  I I  involve a decomposition of N (t; a,j) 
(a e B, j e E) according to the time and place of the last exit of Z(.) from B. I t  may  
be shown tha t  Gz (b, j)  (b e B,  j e E) is the Laplace transform of the continuous 
function G(t; b, j)  defined by  the equation: 

af t ;  i , j)  ~- l im(1/u)Pb{Z( t )  = j ;  Z(s) ~B ,  u < s < t}. 
u40 

The discussion of last-exit decompositions relative to a single state in the Appendix 
to Cuu~G [1] extends with obvious modifications to the case we are now conside- 
ring and the reader will find there (see especially Theorem 2) a basis for further 
interpretations of G(t; b, j) .  

Parts  I and I I  of Theorem 4 imply Par t  I I I .  The formula for the transition 
function 

o o  

NB(t;  ", "; 2) = f e x p ( - -  2s )P . {~B( t ) eds ;  ZB(t) = .} 
0 

on B • B is due to Nv~vE~ (Theorem 5 in [5]). I t  is also possible to calculate the 
transition function 

o o  

NE(t;  ", "; 2) - - f e x p ( - -  2 s ) e . ( T E ( t ) e d s ;  ZE(t) = .} 
0 

on E • E (see WILLIAMS [9]) .  From either result, one may  deduce Par t  V. 
The formulae for the generators ~/E and B d  (see Lemmas 3.3 and 3.4 in [9]) 

were included because they provide the most  concise and natural  expression ot the 
relations among the various transition functions. 

4,2. Application to preceding results. 
Theorem 5. Let the sets E and B be as in Theorem 3 and let R (2) be the resolvent 

there constructed. Then there exists a strictly stochastic transition/unction {N  (t; i ,j) } 
on the set E ~- B such that Theorem 4 holds with 

N~( i , j )  = rij(2) ( i , j e E ) ,  BNz( i , j )  = q~ij(2) (i, j e E )  

G~. (b,j) = ~ (2) (b E B ,  j ~ E) ,  Lz (i, a) = z a (2) (i ~ E ,  a ~ B) 

A~ = K (2) , QB = _ T .  

The matrix 
II~ = [2 + v (x) + T]-~ 
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on B • B exists, is non-negative and defines Nz (and hence 1V (t)) via the equations 
o/ Part I I  o/ Theorem 4. 

Particular attention is drawn to the representation o/ K (4) given by Theorem 4, 
Part V. 

The verification of  Theorem 5 is s traightforward and will be left to  the reader. 

C o m m e n t s. The solution to the construction problem afforded by  Theorems 
3 and 5 certainly has the merit  of  simplicity and ye t  it is unsat isfactory in some 
respects. The chief drawback is t ha t  our solution assigns the central probabilistic 
rSle to an arbi t rary  well-behaved Markov chain {Z(t)} on E -~ B with transit ion 
matr ix  {N(t;  i, j)}. (In the present context,  "well-behaved" means "Borel 
measurable, wellseparable and right lower semicontinuous".)  I n  a systematic 
probabflistic t rea tment  of  the subject, the main rSle should be taken by  an 
arbi t rary  well-behaved Markov chain {X(t)} on E with transit ion matr ix  
{P  (t; i, j)}. The distinction is of  little importance from a "pract ical"  s tandpoint  
because in calculating any/unction o/ {X (t)} which depends only on the transition 
/unction o/ { X (t)}, we may replace { Z (t) } by a process {Z E (t)}. However,  a rigorous 
proof  t ha t  every (well-behaved) {X(t)} is o/the ]orm {ZE(t)}/or a suitable {Z(~)} 
would add considerable insight into the structure of  Markov chains. Progress 
towards  such a proof  has been made by  L~vY ([4]) and NEV~U ([7]) bu t  it is not  
ye t  possible to define Z(., o)) for every co. 

Another  possible objection is t ha t  the use of  non-extremal exit solutions 
obscures the rSle of  the exit boundary  as the set of  limit points of traversible jump 
chains. Comparison of  Theorem 5 with Theorem 2 of  [10] inclines the author  to the 
view tha t  what  the present approach gains in simplicity more than  justifies the 
sacrifice of  some fine probabflistie detail. 
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