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A n  Invariance  Principle t~or the Law of the Iterated Logar i thm* 

By 

V .  S T R A S S E N  *~ 

Summary 
Let  Sn be the sum of the  first n of  a sequence of independent  identically distri- 

bu ted  r. v.  s. having mean  0 and var iance 1. One version of the law of the i tera ted 
logar i thm asserts t ha t  with probabi l i ty  one the  set  of  l imit  points  of  the sequence 

( (2 n log log n)-1/2 Sn)n > a 

coincides with <- -  1, 1} - -  {x : x real and  I xl ~ 1} (see H A ~ T M A N - W I N ~ R  [6]). 
Now consider the  continuous funct ion ~n on <0, 1} obta ined b y  l inearly inter-  
pola t ing (2n log log n)-l/2St at  i/n. Then  w e prove  ( theorem 3) t h a t  with pro- 
babi l i ty  one the  set  of  l imit  points  of  the sequence (~]n)n>=3 with respect  to the 
uniform topology coincides with the  set  of  absolutely  continuous functions x on 
(0, 1} such t h a t  

x(0) = 0 
and 

fJc2dt <= 1. 

As applicat ions we obtain,  e. g., 

P r  l im sup n -1 -(a12)(2 log log n ) - ( a / 2 ) ~  iS t la 
( n-~r  i =  1 

_ 2(~ • ~a~):~_ ~ = 

lo J 
for any  a ~ 1, and 

P r  llim sup vn n o ~  1 - - e x p { - - 4 ( 1 - - 1 ) } } - - - - 1 ,  

where Vn is the f requency of the events  

S,t > c (2 i log log i)1/2 

among  the  first n integers i (0 --< c __< 1). 
To prove  theorem 3, we first derive an analogous result  for  the  (/c-dimensional) 

Brownian  Motion using well-known ideas of  KOLMOGOROV [7] and  of ERDbS and 
KAC [4]. Also C~Iu~G's profound pape r  [1] is to be ment ioned  here. Then  we prove  
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212 V. STRASSn~: 

an invariance principle for the law of the iterated logarithm by a powerful device 
of Sxoimx.~IOD'S [11], designed by him to yield improvements of the ordinary 
invarianee principle. The paper assumes no knowledge of the classical law of the 
iterated logarithm. 

I would like to thank Professor M. Lo~vr for directing my attention to the book of 
SKO~OK~OV and Professor D. Fgr~D~Azr for pointing out an error in the original manuscript. 

1. Brownian Motion 

Let ~ be the Brownian Motion in Re. Define 

~n (t) ----- (2 n log log n) -1/2 ~ (n t) 

for t e <0, 1> and n > 3. Let C be the Banach space of continuous maps from 
<0, 1> to Re endowed with the supremum norm ]I ][, using the euclidean norm in 
Re. ~n is then a r. v. with values in C. Let K be the set of absolutely continuous 
x ~ C such that  

=(0)  = 0 

and 
1 

.[('~(t) )~dt ~ i 
0 

(where x denotes the deMva~ive of x determined almost everywhere ~ t h  respect 
to Lebesgue measure and the square is meant as inner product). K is a norm- 
compact subset of C: In  fact for a ~ b 

b.  

(]) Ix(b) - x(a)[ = ] ~xdt I <= 
a 

<= 1~Z--a, 
so that  K is relatively norm-compact. That K is closed follows immediately from a 
result of F. t~i~sz (see [10], p. 68, lemma). 

I f  one considers an x ~ C as the motion of a mass point with mass 2 from time 
0 to time 1, then K consists of those motions for which the mean kinetic energy 
is < 1. This interpretation has a nice feature: The obscure factor 2 -1/2 in the 
definition of ~, which has been kept for historical reasons cancels with the factor 2 
of the mass of our masspoint, ff one connects them by theorem 1. A similar 
remark applies to theorem 3. 

Theorem 1. With probability one the sequence (~n)n ~_ 3 is relatively norm-compact 
and the set of its (norm-)limit points coincides with K. 

Proof. Let e > 0, Ke be the set of all points in C which have a distance < s 
from K. Then ff m is any positive integer and r > 1 real 

+ P r  2m Sn ~ - -~n  < r  2 and ~n~K~ = I - ~ I I  (say). 
1 
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Now 
oo 

I =  Pr {Z2,2~ > 2r21~176 - F(mk)l ~1 s tml~-le-tdt 
r o g  o g n  

(r 2 log log n) m k  -- 1 e - -r21oglog n 

F(mk) 

for n -+ oo (recall that  k is the dimension of the Brownian Notion ~). Moreover, let 
~]n be the r . v .  with values in C obtained by linearly interpolating the points 

( i )  i ( i = l ,  2m).Then ~ ~m- at 2m- "'" ' 

2 m ~  ~'n - - ~ n  --~ ~ r 2  
i = 1  

1 
means just r ~n e K and we get 

{ 1  } { 1  1 } 
I I = P r  ~]neK,~n~K~ =~Pr ~neK,  7 ~ n - - ~ n  ~ e .  

Define the r. v. T by 

T = in t : t ~ <0, 1}, v ~n (t) -- ~, (t) ~ e if this set is nonempty 

otherwise, 

and let F be its d. f., so that  
1 

f { '  } I I ~  Pr  T ~ ] n c K ] T = t  dF(t) 
0 

1 

-- Pr  VneK, r~n( t ) - -$n( t )  = e  T = t  dF(t). 
�9 i 
0 

�9 i 
I f  i (t) is the smallest i with ~ => t, the statement 

1 
r ~nCK 

implies 
i ( t ) / 2  m i ( / ) / 2 m  

t t 

The two statements 

and 

together therefore imply 

1 
r ~ n C K  

l I 
~ (t)  - ~ - . ( t )  i = s - r  l 

>= - ~ .  ( t)  - \ 2 m  ] - ~ "  (t) i 

remember that  ~nk 2rr;) = ~n \ 2m ] ] 
r 

~ r s -- ( r --1) / ~ m  ~ -2 - 
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if r is chosen close enough to 1 and m is sufficiently large. Then 
1 1 

[i(t)~ ,>~ T=t}dF(t)< Pr{ $n(2~) >2} f dF(t) II =<. f ,r{  : . ( t ) ] =  2 = = 
0 0 

: < P r {  : ( & ) ~ V 2 n l o g l o g n } , . ~ l ~ ( ~ 2 - ) - l ( ( ~ , 2 m l o g l o g n ) 1 2 ) k i 2 - l x  

X exp { (-- s ~ m log log n)/2} 

(compare the estimation of I). By choosing m and r appropriately and using the 
above estimates for I and II,  it is easily seen that  for some r > 1 and sufficiently 
large n 

Pr{$. r g~} =< ~-,~o~]o~n. 

I f  n i -~ [all + 1, where c > 1, then 

P r  {~nr r ~ (log c)-r~ ~ j - r ~  < co 
J J 

so that  eventually ~nj e K~ with probability 1. For c sufficiently close to 1 this 
implies that  eventually ~n e K2~ with probability one. 

This shows that  almost surely at most the points of K are limit points of 
(~n)n_>-3 and also that  almost surely this sequence is relatively compact (for 
{~n : n --> 3} is totally bounded). To prove the theorem it is therefore sufficient 
(because of the compactness of K) to show the following : given x E K and e > 0, 
the probability that  tn is infinitely often in the open s-sphere {x}e around x equals 
one. Let  m ~ 1 be an integer, 0 < ~ < 1 and x% $~ be the u-th coordinate of x 
and ~n respectively (1 --< u --< k). We denote the event 

I ~ i . ~ l i - - l \  
- 

for all i with 2 ~< i ~< m and all ~ 
J 

m l - [ k  ] \ [  ( k i n ~  \ m / I  
Pr  (An) > 1-I (S212) 6 -  ds 

i = 2 " =  

exp - -  m x~ - -  x~ log log n 

=> const 1"I [7 
i = 2  u ~ l  

b 
r e -  (s~/2) > L _  6--(a2/2) ( l  - -  e-- 1/2(b2 -- a~)) for n sufficiently large (having used j V ~  -- b t / ~  - 
a 

for 0 =< a < b). So by summing up the exponents and using Schwarz's inequality 
we get 

const .  
Pr(An) ~ lognVm~logn 

for large n ("large" depending on m and 5). We now put n t -- mS. Then the An/,S 

by An. Then 
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are mu tua l ly  independent  and 
o o  

P r  (An~)  = oo 
j = l  

1 
because ~. j V log---j- diverges. Hence  by  Borel-Cantell i 's  l emma  infinitely m a n y  

] 

events  An  happen  a lmost  surely. B y  wha t  we previously have  proved  ~n is even- 
tua l ly  close to K,  and therefore a lmost  surely we have  eventual ly  

(2) ]~(t)  - ~n(s) J =< V I t -  8t + 
for any  s, t E (0, 1 }. Now ff y ~ C the two s ta tements  

ly(t) - y(s) l _ - < / ~ t -  sl + 
for all s, t e (0, 1} and 

! 

for all i and ~ with 2 _~ i ~ m and 1 ~ ~ ~ k together  imply  

J iy -  xll < ~ ,  

provided m is sufficiently large and ~ is sufficiently small  ("smal l"  depending also 
on the choice of  m). 

Looking a t  the  definition of A n ,  a t  the  fact  t ha t  An  happens  infinitely often 
a. s. and  a t  (2) we conclude t h a t  

P r  { I[ ~n - -  x lI < s infinitely often} = 1. 

This proves  the theorem.  
The  discreteness of  n is inessential for the  previous considerations. So ff u ~ e 

(base for the  na tura l  logari thm) is real and  we pu t  

~u (t) = (2 u log log u ) -  1/2 ~ (u t) 

for t ~ (0, 1}, we have  the following 

Corollary l .  With probability one the net (~u)u > e is relatively norm-compact and 
the set o / i t s  norm-limit points as u tends to oo coincides with K.  

2. The invarianec principle 

Let  Y1, Y2 . . . .  be a sequence of independent  and  identically dis t r ibuted 
r. v. s. Assume 

E Y1 = 0 
and 

(no fur ther  momen t s  are needed). P u t  

S n ~ - - i Y i ,  S o = 0  
i = l  

and 
(t) ~- (It] ~- 1 --  t) S[t] -~ (t __ It]) S[t]+ 1, 

i. e., the funct ion ~ is obta ined by  l inearly interpolat ing Sn at  n. 
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Theorem 2. The 1-dimensional Brownian Motion ~ and the above ~ can be 
redefined on a common probability space without changing their respective laws 
(the Wiener measure in the case o] ~), in such a way that 

Pr  { lim (2 t log log t ) -  1/2 s u p  I C ($) - -  ~ (T) I = 0}  = 1. 

Proo]. This follows easily from an important  result of SKOROKHOD [11], 
p. 180: 

" I f  a sequence 
satisfying 

and 

Y1, Y2 . . . .  of independent identically distributed real r. v. 's  

EY1 = 0  

E(Y~) < oo 

is defined together with a 1-dimensional Brownian Motion ~ on a probability space 
such tha t  

Y1, Y2 . . . .  
and 

are mutually independent, then there is a sequence 

TI~ T2~ . . .  

of independent identically distributed nonnegative r . v . ' s  defined on the same 
space such tha t  

E~h = E ( Y  2) 
and such tha t  the process 

C (T~), C(~ + T~) - C (T~) .... , C(~,, ~:~) - C(~ ~) .... 
i<=n i ~ n - - 1  

and the process 
Y1, Y2,..., yn,. . .  

have the same distribution." 
To apply this result, let us assume tha t  our original sequence Y1, Y2, -.. and 

a Brownian Motion ~ are already defined on the same probability space and are 
mutually independent (this of course can always be done). Pu t  To = 0 and 

i j - 1  

i ~ 0  i ~ 0  

for j > l, also 

and 

n n 

~n= Z ? ,  = C(Z**), ~'o = 0  
i = 1  i = 1  

(t) = ([t] + 1 - -  t)SEt] + (t - -  I t ] )~ ( t ]  + 1 

for any t ~ 0. Then ~ has the same distribution as M. Moreover 

I~ ( t ) - -  ~(t) l = < m a x { l ~ ( ~ T ~ ) - -  ~(t) l, I ~ ( ~ T 0  --  ~(t) l}. 
l ~__ i~ t  l ~ i < = t + l  
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Le t  e > 0. B y  KOL~OGOROFF'S law of large numbers  we have  for sufficiently 
large T 

P r  {[ ~ "c,; - -  t I > t s for some t > T} <: 2 
15i<=t  

and 

P r { l ~ , ~ , - t l > t ,  forsomet> T}<  2 ,  
l = < i < t + l  

so t h a t  with probabi l i ty  > 1 - -  s for all t > T 

m a x { ] ~ ( ~  ~ 0 - ~ ' ( t ) I ,  ]~ (  ~ ~ 0 - ~ - ( t ) ]  } 
l <=i~__t l <=i < t  + l 

< sup { I t  (~) - ~ (t) l : s ~ ( t 0  - ~), t(1 + e))} 
__< 2 sup{l~(s)  - -  ~(t(1 + e)) I : s e<t(1 - e), t(1 + e)>}. 

Therefore with probabi l i ty  > 1 - -  e we have  for all t > T 

(2 t log log t ) -  1/21 ~ (t) - ~ (t)] 

__< 2 sup { (2 t log log t ) -  1/2 I r (s) - -  ~ (t (1 + e) ) I : s ~ (t  (1 - -  s),  t (1 + e)>} 

= log log t - (2 u log log u) ~ (d u) - -  r (u) ] : 

1 - - e  ~ s '  < 1} 
l + s  

where we pu t  u = t(1 + e). For  large t this m a y  be cont inued 

__< 4 sup { I ~,(l+~)(s') - ~,(1+~)(1)I : 1 - 2 ~ _< s' _< 1}. 

Applying  corollary 1, we see t h a t  i f  we restr ict  a t t en t ion  to a suitable event  of  
somewhat  smaller  bu t  still large probabi l i ty  (say > 1 - -  2 e), then  for t > T '  
(nonrandom) we have  ~'t(1 + e) ~ K e ,  so t h a t  

4 s u p { ] ~ m  +~)(s' ) - -  ~m+~)(1)l  : 1 - -  2 e ~< s' ~< 1} ~ 4 ( [ / 2 e  + 2 s) 

(recall (1)). So given e > 0 there  is a T '  such t h a t  

P r  { (2 t log log t)-l/z ] ~ (t) - ~ (t) l g 4 ( / 2 s - +  2 e) for all t > T '}  ~ 1 - -  2 e.  

This implies 
Yr {lim (2 t log log t ) -  1/2 I ~ (t) - -  ~ (t)] = 0} = 1 

l---~r 

and this implies the theorem.  
P u t  

~n (t) = (2 n log log n)-1/2 ~/(n t) 

for t ~ (0, 1} and  n => 3, i. e., ~n is the r. v. wi th  values in G (where k = 1) which 
is obta ined  by  interpolat ing l inearly 

(2 n log log n)-1/2 Si 
i 

a t  - - .  Then  we have  n 

Theorem 3. With probability one the sequence (~n)n>3is relatively norm-compact 
and the set o/ i ts  norm-limit points coincides with K. 
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Proo/. Replacing t b y  n in theorem 2 we get 

Pr{lim[[ ~n - -  ~nli ---- 0) = 1. 
n - - >  o o  

Theorem 3 then  follows f rom theorem 1. 

3. Some applications and comments 
Let  again 

]/1, Y2 . . . .  

be a sequence of independent  identically dis t r ibuted real r. v . ' s  with 

E Yi =0 
and 

E(Y~) = 1. 

(i) The  ordinary  law of the i te ra ted  logar i thm for the sequence Y1, Y2 . . . .  
follows f rom theorem 3. I n  fact  (1) with a ---- 0 and b = 1 yields 

sup x(1) = l ,  
x e K  

where the sup remum is a t ta ined  for and only for x ~-- t. I n  view of theorem 3 
this means  

P r  {lira sup (2 n log log n)-  1/.2 Sn = 1} -= 1. 
n - - >  Do  

Moreover for small e > 0 and  sufficiently large n (" large"  depending on e and 
on chance) 

(2 n log log n)-1/2 Sn > 1 -- 

happens  only ff the sequence 
$1, $2, . . . ,  Sn 

has an approx imate ly  linear shape (here we make  use of  the compactness  of K). 
(ii) Le t  / be any  R iemann  integrable real funct ion on <0, 1>, 

1 

F (t) = ~ / ( s )  as  
t 

for t e <0, 1>. Then  

- 1  

I n  par t icular  (putt ing /(t) = t~) 

P r { l i m s u p ( 2 n Z ~ + 8 1 o g l o g n ) _ l / 2  ~ i ~ S , _  ~ 1 ] =  1 

for a n y g > - - l .  
To prove  (3) we make  use of  the  following 

Corollary of Theorem 3. I/q~ is a continuous map/rom C ( = Banach space o/ 
continuous real/unctions on <0, 1>) to some Hausdor~ space H (in all/ollowing 
applications H wiU be the set o/ real numbers), then with probabili 0 1 the sequence 
(q~ (•n) )n > 8 is relatively compact and the set o/ i ts  limit points coincides with q~ (K). 
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Pro@ I n  general  ff a re la t ively  compac t  sequence (Yn)n > 1 of points  in C has 
some (compact)  K as the  set  of  its l imit  points,  then  ~v (K) is the set of  l imit  points  
of  (~v (Yn))n > 1" The corollary follows f fwe  assume the  basic p robab ih ty  space to be 
complete  (so as to be sure t h a t  the  event  of coincidence between the  set of  l imit  
points  of  (~0 (~n))n > ~ and  ~0 (K) is measurable) .  

We  app ly  this corollary to the funct ion q defined by  

to get 

But  

1 

q~(x) = ~ x (t) / (t) dr, (x e r 
0 

1 
Pr{ l im sup f~ln(t)/(t)dt = sup q~(K)} = 1. 

~t - +  r  0 

1 
sup ~0 (K) = sup ~ x (t) 1 (t) dt 

x E K  0 

1 

= sup f_~(t)x(t)dt 
x ~ K  O 

1 1 

= sup { f F (t) y (t) dr: f y2 (t) dt ~ 1} 
0 0 

1 

-~ ( ; (F(t) )2dt) 1/2 
0 

(evaluat ion of the sup remum of a l inear functional  on the uni t  sphere of  a Hi lber t  
space). 

An e lementa ry  consideration yields 

P r  l i m s u p  ~=1 (n  (2nl~176 limsup [. /(t)r]n(t)dt = 1 ,  
( n-+c~ i =  n--+z~ 0 

so t ha t  (3) is proved.  

(iii) Le t  a ~ 1 be real. Then  

P r  ! l im sup n -  1 - (a/e) (2 log log 
n 

(4) I n--.~o n) al~=l 

/ 

2 ( a @ 2 ) ( a / 2 ) - 1  / 
s i l ~  dt / = 1 ,  

in par t icular  

and 

P r  l i ra  s u p  n - 3 / 2  (2 log log n) -1/2 ] S i  I = 1 --~ 1 
I. n-+oo i =  1 

n 2 4 / 
Pr  l i m s u p n  -2 (21og log) t ~ S i  = ~ = 1. 

( n-~co i = 1  
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One reduces the proof of (4) in an entirely analogous way as above to tha t  of 
the following assertion: 

1 
(5) s u p  f I x ( t )  l a d t  = 2 ( a - ~ - 2 ) ( a / 2 ) - 1  

(/ ; x~K 0 dt 
g ~  aa/2 

Now if A z is the Hilbert  space of all absolutely continuous x e C such that  

x (o) = o 

and 
1, 

f x2 dt < oo 
0 

endowed with the inner product 

we have 

1 o  o 

((x, y)) -~ f x y d t ,  
0 

sup f l x l  a d t = s u p  f xl a d t : x E A  2 a n d ( ( x , x ) ) = l  . 
xeK 0 

The right-hand side can be evaluated by  classical methods of the calculus of 
variations. We know tha t  the supremum is obtained by  some x (because K is a 
norm compact subset of C and any x e K which maximizes f ]x]adt  satisfies 
((x,x)) ~-1).  Without loss of generality we m a y  assume x >--0. A necessary 
condition for x is the existence of a Lagrange multiplier fi such tha t  for all y e A 2 

1 1 

0 0 

(the left-hand side is the derivative of the functional f [x  ladt at x applied to y, i. e., 

0 1 

(see [9]), the right-hand side is fl times the derivative of the functional ((x, x)) 
at  x applied to y). Part ial  integration of the left-hand side yields 

1 1  1 ,  . 

f f a(x(s) )a-ldsy(t)dt  : 2 fl f x yd t ,  
O t  0 

therefore 
1 

(6) .~ a x a-1 ds = 2 t5 x (t) 
t 

which shows tha t  x has a continuous derivative (of course fl 4: 0) and also tha t  

x ( 1 ) = o .  

Differentiating, multiplying with x (t) and integrating again yields 

x~ + ~x~ = x ( l V  + fix(l)2 = x( , )~ .  
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F r o m  the significance of  x and f rom our assumption x > 0 it follows tha t  x is 
nondecreasing, x(1) > 0, so from the above equat ion 

(o) > o, 

/~_ x(1)~ > 0.  
x (0)~ 

Using (6) we see also tha t  

x(t) > o 

for all t. The last equation becomes 

(7) x a + .x(1p x2 = x(1)a.  
x(0)2 

Separat ion of  variables and integrat ion yields 

x (t) du 

x(O) - x(])~ 

so tha t  

x(1) f dv x(1) 
1 - -  x(O) x(O) [/1 -- v a - -  x(O) 7 (say). 

0 

Now, on the one hand, using (7) and f x 2 d t  = 1 

1 l) 
o x(0)2 ' 

on the other  hand, using (8) 

1 x(1) uadu 2x(1)a+l 
f x a d t  = f x(O)]/5 (ua/x(1p) (a A- 2)x(0) y" 

0 0 - -  

Eliminating x (1) and x (0) f rom the last 3 equations we get  the desired conclusion (5). 
R e m a r k s :  I f  a is an integer, [S~] ~ in (4) can of  course be replaced by  S~. 

Also: For  sufficiently large n ("large" being random) whenever 

n 

n-l-(a/2) (2 log log n) -a/2 ~ l Si  ] a 
i = 1  

is close to its limes superior 

2 (a -b 2 )  (a/2) -- 1 
y a a a / 2  

then ~n is close to either ~p or - -  ~,  where 

y(a/a d- 2 ) l l ~ ( t )  

t --- --1 f dv 
Y J V1 - va 

0 

(e. g., ff a -=-- 2, we have ~f(t) -~ (Vs/z) sin (•/2)t). 
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On might inquire about 
ni  

lim sup n~ 2 (2 log log n~) -1 ~ S~, 
i - + c r  ] = 1 

where ni runs through all n such that  

Sn Sn-1 < O. 

I t  is easy to see that  the above quantity equals almost surely 

1 

sup{ ] x2d t :  x ~ g  and x(1) = 0}. 
0 

This supremum equals 1 / ~  and is obtained by the two functions ~= V2/:n sin ~rt, 
as can be derived from (8) using a symmetry argument, or directly from 
WIRTr~G~'s lcmma. 

(iv) Pr  

y s~ 

lim sup (2 n log log n) -1/z i = a - -  2p  
n 

iZ1 [S~]= 

where p is the largest solution of 

V1 - p  
V ~ - p sin 

P 
for 0 < p < l .  

Again one has only to prove 

f xedt 
s u p / f U ~ t  

-4- c o s - -  - =  0 
P 

- -  : x e A ~  and ((x, x))~- 1}----2p. 

= 1  

The supremum is attained, say at x. We may assume x ~ 0, in fact x(t) > 0 for 
all t > 0. Taking derivatives we get with a Lagrange multiplier fl 

(Sx t Se xydt -  Sy t) (]x = ii t 

for all y e A 2 as a necessary condition on x. Substituting for y functions of the form 

ys(t) = if t ~ <t0, 8> 

otherwise 

we see that  x has a continuous derivative. Putt ing 

= ( f x d t )  2 fl 

we obtain by a partial integration from the above equation 

f xd t  f 2 x y d t  - -  f x2dt ] yd t  = 2 ~x(1) y(1) - -  2 ~ f x y dt 

and therefore 

(9) 2x yx t- yx2 t + 2 ;=o 
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and 

x ( ] ) = o .  

Multiplying (9) by  x and integrat ing we get  

x2 f xat - x Sx2dt + ~.(?~ -/~(o)2) = o .  

In tegra t ing  from 0 to 1 

x(O) = 1. 
Any  solution of  (9) has the form 

z(t) = p  ~- q cos~ t  ~- r s i n~ t .  

The conditions z(0) = 0, z(0) ---- 1, z(1) = 0 and f z~d t  = 1 specify p,  q, r, 4: 

P sin l/1 - p z ( t ) = p - - p c o s  p t +  g---~_ p - - p  t 

where - - o o < p < l ,  p 4 : 0  and 

V1 - p  (10) V 1 - -  iO sin V1 - p @ cos 0 .  
P P 

For  any  such p the COlTesponding z actual ly solves (9) and satisfies the side 
conditions. Moreover 

2p 2 
f z 2 d t -  1 - - p  ' 

P 
f z d t - -  1 - - p  ' 

so t h a t  
f z2dt 
f zd t  --  2 p .  

One easily checks tha t  the z corresponding to the largest value of p < 1 satis- 
fying (10) is positive in (0, 1), so t h a t  it mus t  coincide with x. 

(v) I n  view of  the ordinary law of  the i terated logari thm it seems natural  to 
ask about  the relative frequency of  events 

Sn > (1 - -  s) (2 n log log n) 1/2 . 
Let  0 - - < c _ < l a n d  

1 ff  S~ > c ( 2 i l o g l o g i )  1/2 

ci = 0: otherwise. 
Then 

(11) 
/ n )/} 
( n - - ~  r  

For  c ---- �89 as an example we get  the somewhat  surprising result t ha t  with pro- 
babil i ty one for infinitely m a n y  n the percentage of  times i ~ n when 

S~ > �89 (2 i log log i)1/2 

exceeds 99.999, bu t  only for finitely m a n y  n exceeds 99.9999. 
I t  suffices to prove (11) for 0 < c < 1. One easily shows, using the fact  t ha t  

for any  g ~ (0, l) 
log log g n ~ log log n ,  
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t h a t  with probabi l i ty  one 

and 

1 n 
l im sup ~ .  ~ ci < sup m{t::r --< t --~ 1 and x(t) > c'~/t-} 

n - ~ o o  z = [an]  x e K  

l imsup  1 ~ c i > s u p m { t : ~ < t < l a n d x ( t ) > c , , V ~ , }  
St . n~oo * = [an] x e g  

where c' < c < c" a rb i t ra ry  and m denotes Lebesgue measure  (note t h a t  

m { t : ~  ~< t_< 1 and x(t) ~ c y  [} 

is not  a continuous funct ion of x, so t h a t  one has to go back  to theorem 3 instead 
of using its corollary). For  cont inui ty  reasons i t  is therefore sufficient to prove  

Now m {t : x (t) >= c y ~} is upper  semicontinuous in x, so t h a t  the  sup remum is 
a t ta ined,  say b y  x0 e K.  I t  is easy to see t h a t  all functions y0 for which the sup remum 
is a t ta ined  have  to sat isfy 

(13) y !]~dt = 1 

(one uses the fact  t h a t  for c > 0 the set {t : Y0 (t) < c V ~} is not  empty) .  General ly 
if  0 ~ to < tl --<_ 1 and  x ~ K (only x e A 2 is needed), then  

t~ 
(14) f ~c2dt > (x(h) -- x(to)) ~ 

to - -  t l  - -  t o  ' 

where equal i ty  holds if  x is linear. This  follows f rom Jensen ' s  inequal i ty  (see [3]) 
and is known in point  mechanics.  The  linear connection of x (to) wi th  x (tl) will be 
called the  (to, t l)-secant of  x. 

The set {t : x0 (t) > c y /}  is empty .  Otherwise there would exist to, tl such t h a t  
0 =< to < tl ~ 1, x0 is not  linear in <to, tl> and  the (to, t l)-seeant of x0 would still 
be greater  t han  c V ~ in <t0, 4}.  Replacing xo b y  its (to, t l)-secant in <t0, tl} we 
would get a yo contradict ing (13). 

The  point  0 is not  an accumula t ion  point  of {t : x0 (t) = c Vt). Otherwise there  
would be 1 >= tl > t2 > " ' "  such t h a t  for all i 

and  

Bu t  then  using (14) 

1 ~ Sx2dt >~ 
0 

VtT+  < l/t7 

14 

i = l  t t+l  i > ~ 1  

c~ 

t i  - -  t ~ + l  i >  1 

Therefore the  open set 

{t: x0(t) < Vii, 
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yo(t) = { 

We have  

which as any  open set  is the disjoint union of open intervals,  contains among  its 
components  an in terval  of  the form (0, So). B y  (13) and  (14) x0 is linear in (0, So} 
and  

80 

0 

(note t ha t  this value does not  depend on so). I f  {t : x0 (t) < c V t-} 4: (o, so), there is 
ano ther  n o n e m p t y  open in terva l  (Sl, s2) such t h a t  xo (t) < c V [ on (sl, sp) and 

x0 (Sl) = c y ~ ,  x0 (s~) = c V ~ .  But  then  consider the  funct ion Y0 defined b y  

tc if  O<--t<--so+sp--sl 

c V s 0 + 8 2 - - S l + X 0 ( t - - s p + s l ) - - x 0 ( s 0 )  if  so-f-s2--sl<=t<=s2 

c ] / ~  + s2 - s l  + xo  ( s l )  - xo (so) + xo  (t) - xo (sp) i f  s2 < t < 1 .  

y o g A  2 , 

m {t: yo (0 => ~ V i}  > ~ {t: x0 (t) => ~ lfi} 
1 Sl 1 s~ 

~ dt = c 2 + f J:~ dt + f Jc~ dt = 1 -- f ~ dt < 1, 
0 80 82 8i 

contradict ing (13). So x0 is linear in @, so} and  coincides with c V [ in @o, 1}. 
f x~dt  --~ 1 determines so as e x p { - -  4((1/c 2) - -  1)}, which proves  (11). 

(vi) Though  K C_ A2 and ~n 6 A 2 for all n ~ 3, the  sequence (~n)n ~ 3 with 
probabi l i ty  one has no l imit  points  in A 2 with respect  to the Hi lber t  space norm.  
I n  fact  

P r{  l im f (~n)2dt = co} = 1. 
~- -+  oo 

For  any  s t r ic t ly  increasing sequence of integers an >~ 0 such tha t  ao = 0 and 

l im a~*l __ 1 
~ n  ft --+ oo 

let ~]n e C be obta ined b y  l inearly interpolat ing 

(2 an log log an) -1/2 S~, 

at ai/a~ for 0 --< i ~< n. I t  would be interest ing to know for which sequences 
(an)n >= 0 with probabi l i ty  one the set  of  l imit  points  of  (~n)n => a wi th  respect  to the  
Hi lber t  space norm in A 2 coincides with the uni t  sphere K in A 2. I n  this connec- 
t ion see also LAMFERTI [8]. 

I t  would also be ve ry  interest ing to find the strong form (in the sense of  FEL- 
LER [5]) of  our law of the  i te ra ted  logari thm, a t  least  for Brownian  Not ion.  
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