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Certain Induced Measures and the Fractional 
Dimensions of their "Supports"* 

By 

S. D. CHACT~I~JI 

w  

In  this paper, I shall discuss the fractional dimensions of the "supports"  of 
certain measures on [0, 1]. The word "suppor t"  is used not in the sense of being 
the smallest closed set carrying the total  measure but  rather the smallest such 
set in the sense of fractional dimensions. (See section 3 for a rigorous definition.) 
These measure are the measures induced by  such random variables (r.v.) as 

c o  

X = ~ X~ k -i where {X~} are independent (not necessarily identically distributed) 
i = l  

r .v . ' s  taking values from the set {0, 1, 2, ... (k - -  1)}. The statements and proofs, 
however, are given in terms of product measures and convolutions mostly to 
make the paper readable to the non-probabilistic mathematical  fraternity and 
part ly  to satisfy m y  own whims. 

In  section 2, a slight extension of a well-known theorem of KAKUTA~I (see [1]) 
is given a direct proof using theorems of A N I ) ~ g s ~  and J~ssn~r (Martingale 
theory to probabflists). From this a simple set of necessary and sufficient con- 
ditions for the absolute continuity etc. of the above-mentioned measures (Corol- 
lary 1) is deduced. (A special case, k = 2, was treated by  elementary methods 
by  the author earlier in [4], in total  ignorance of KAXVTANI'S result.) In  section 3, 
using BILL~GSLEY'S definitions and theorems (see [6], [7]) I calculate the pro- 
mised dimensions. In  the last section, I demonstrate how Corollary 1 and the 
work in section 3 allow one to decompose, quite effortlessly, absolutely continuous 
measures of the type referred to above (which includes the Lebesgue measure) 
into a convolution of two singular measures, both of which "sit" on very small 
sets (even of dimension zero). 

w 
In  this section, I shall present a very brief proof of a slightly extended version 

of a theorem of KAKVCA~I [1]. Let  (K2n, ~n) n > 1 be a sequence of measurable 
spaces (for notation and terminology see HALMOS [2]) and let /xn,  an, n >_-- 1 be 
two probabili ty measures on (f2n, ~n). Suppose/~n is absolutely continuous with 
respect to an, in symbols #n ~ an. Let  

o o  c o  o o  c o  

f 2 = X ~ n ,  ~ = X ~ n ,  # = X # n ,  a = X ~ n .  
n = l  n = l  n : l  n = l  
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Theorem 1 (KAKuTANI). Either ff ~ o- or else ,a _L ~ ( •  = singular). 
A necessary and su/fieient condition that ff ~ o- is that 

c o  

1-[ Q (ff~, ~+) > o 
n ~ l  

where 
C I d,un \ 1/2 o-e)- JI ) do++. 

Pro@ Let  # (n)  a(n) be restrictions of #, a to ~)~(n) respectively where 

~:(n) ~ ~:1 X ~:2 X "'" X ~ n  X Q n + l  X " " .  

Clearly if(n) ~ o-(n), ~(n) cg~(n+l). 

d#(n) 
Let  ]n(W) - -  da(n) " 

(Then {/n(co), ~R (n), n ~ 1} is a mart ingale on (~Q, ~,  o-).) 
The following s ta tement ,  essentially a rephrasing of a general theorem due to 

AccDm~snsr and Jn s sn~  [8], (see also Doon  [3], pp. 630--2) will be used: 

i) lim/n(co)=](09) exists a .e .  (o-). 
~--+ Oo 

ii) # ~_ o- if and only if  [ (co) - -  0 a.e. (o-). 

iii) ff < d if  and only i f /n(W) is an uniformly integrable sequence (w.r. t .  o-). 

Le t  7~n (co) = con where ~o = (~Ol, o92 . . . . .  con, ...)- Clearly 

In (~) = ~ [  dff,~ (zr+ (a)) ) 
i=1  ddi 

I ~ I e n c e  
/ ~ /[dfli,x/2 * n 

l~]+(co) do-(co) = [ ~ - +  so-+ - 1 - I P c f f + ,  o-e) > 0.  
i = 1  \ a d i ]  i = 1  

Since 
(/n(CO)1/2-->(/(~o)) 1/2 a.e. (o-), 

by Fa tou ' s  lemma one has 

co 

] ~  e (if+ o-+) = lim f (In (co))z/2 do- >= f /~/2 (co) do-. 
i=1 n - ~  

oo 

Hence the vanishing of I - I  ~ (ff~, o-i) will imply tha t  /(r = 0 a.e. (o-). I f  on the 
i = l  

other  hand  ~ 0 (if,, o-~) > 0 then {[n (co)} is an uniformly integrable sequence. 
i = 1  

Indeed,  if m < n 

j I i , ,  (co) - l,, (co) l do- (~) 

- -  J" I/',I ~ - / ~ 1 .  I/;J ~ + 1~21 do- 

81/2 (1 - - H  @ (#~' O't) )1/2 (by Sehwarz  inequal i ty)  

m + l  
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whence the Ll-mean-fundamental nature and consequently uniform integrability 
of {fn} may be inferred. The last inequality follows from the following com- 
putations : 

jlt  - = . [ { l n  + - 2 

since f l ,  d =l. 
m + l  

and similarly 
?t 

[]1/2 + ]lm/212dq ___ 2(1 -F ~-I ~(#,, (Ii)) ~ 4. 
m + l  

A reference to the above-mentioned paraphrase of a theorem of A~DEasE~ and 
J~ss r~  completes the proof of theorem 1. 

A simple special case of interest in the theory of real variables is obtained by 
specializing to Dt --= {0, 1, 2 . . . .  (k --  1)}. Consider 

and let 

co  

(co) = ~ ~ (0~) ~-~ 
i=1 

k-1 i > l  
/~,({j})-----/~ij>O, ~ # , i = 1 ;  a,({j})=l/k O ~ j < k - - 1 .  

0 

q~ (~o) is a mapping of s9 onto [0, 1]. Clearly a r  -1 is the Lebesgue measure 2 
on [0, 1] (see HALMOS [2], pp. 159) and let/~q~-i _ v. The following then follows 
immediately from theorem I: 

k - 1  eo 

Corollary 1. a) v ~ 1 i/ and only i/ ~ ~ (ixil -- l/k) 2 < + oo. 
] = 0 i = 1  

k - 1  oo 

b) �9 • i i l  and only it ~ ~ (~t~S - l/k)~ = + oo. 
j = 0 i = l  

e) v is purely nonatomic i/ and i/ 

] ~ m a x { ~ j ]  0 < j  =< k - 1} = 0 
i = l  

otherwise v is purely atomic. 
k--1  

Proo/o] Corollary 1. Clearly here ~ (#l, ai) = k-1/~ ~ ~ij"l/2. I shall show that  
j = 0  

00 k - 1  c~ 

{1 -- 0 (ju~, ai)} < -F oo if and only if ~ ~ (/xli -- k-l) 2 < + co. 
i = 1  1 = 0  k - 1  

oo 

First suppose that  ~ {1 -- ~ (/~i, a,)} < + oo. Pu t  /~tj = k -1 + s/j. Then 
i ~ l  

k - - 1  

si1=O and --k -1-<e~j-<l-k -I. 
i=I 
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By  using Taylor ' s  expansion one easily obtains the inequah ty  

t k l/2 t2 
(k-1 -}- t)1/2 <= k-l~2 ~- 2 8 for - -  k -~ _< t _< 1 - -  k -~ 

whence 
~-1 /2  k--  1 

8 j=0 

Thus the convergence of  ~ {1 - -  ~ (/~, a~)} implies the convergence of  
: ; = 0  

k - -1  co k - -1  co 

j=O i = 1  ] = 0  i=l 

Suppose now tha t  
k- -1  ~o 

- < + o o .  

y = 0 i = ~  

Then in part icular  lim #i3" = k-1 0 < j < k - -  1 and hence for i sufficiently large 
i---> oo 

/~j 's  are all bounded away  (uniformly) f rom zero; i.e. e~ i above are such tha t  
there exists a ~ > 0 for which ~ - -  k -1 ~ e~j < 1 - -  k -1 for i > N. B y  using 

t k l / 2  
Taylor ' s  expansion one can again show tha t  (k-1 -F t) 1/2 ~ k -1/2 -F ~ -  ct  2 

for ~ - -  k-z ~ t ~ 1 - -  k-1 for some c > 0 so tha t  now for 

k - 1  1r 
i > N ,  1 - - ~ ( ~ t i , r  -1/2 2 

Y=o j=o 

Hence the convergence of  ~. ~ (/~i;" - -  k-l)  2 implies the convergence of  
] = 0 i = 1  

i {1 - -  e (/ti, ai)}. 
i = 1  

To complete the proof  of  Corollary 1, I first point  out  t ha t  q~ is a one-to-one 
mapping  of  9 onto [0, 1] except  for k-ray rationals x in [0, "1], for which there 
are exact ly  two points of  9 which are mapped  into x (the terminat ing and non- 
terminat ing expansions). Now ff v is purely non-atomic then and only then 
r ({x}) = 0 for every x in [0, 1]. This clearly implies the val idi ty  of  the equation 
in (e). On the other hand, let 

m a x  ttij > 0.  
i = 1  0 G j ~ k - 1  

Then there exists a point  ~ = (~1, (~2 . . . . .  wn . . . .  ) ~ Y2 such t h a t  /~ ({o9)) > 0 
(e.g. take  ~n such t h a t / & ~  ~ max/An1). The denumerable set 

0=<~ '5k-1  
oo 

A = U{~ol 7~n(O9) = 7~n(~); n > N} 
2 ~ = 1  

is such tha t /~  (A) = 1. This can be proved either by  alluding to the zero-one law 
or by  an amusing direct computa t ion  as in C ~ A T T ~ I  [4]. Hence /t and so v 
will be purely atomic. 
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The rest  of  the  proof  of Corollary 1 is easy in view of the preceding observat ions 
and  Theorem 1. (The case/c = 2 of  the Corollary is also discussed in KAKUTANI [1]. 
See CRATT]~I  [4] for an e lementary  proof.) 

The  construct ion of v on [0, 1] can be described geometrically.  I shall indicate 
it  for the  case /c = 2. Subdivide the  in terval  [0, 1] into halves [0, �89 and [�89 1] 
and define 

[0,�89 p l + q l = l ,  

~ [ � 8 9  / ~ 1 ~ 0 ,  ql-->--O. 

Subdivide the  subintervals  and split the masses in the  rat io P2 : q2 i.e. define 

v[0, �88 = qlq2, ~'[~, �89 = qlP~, 

v r l  3] v [ ~ , l ]  

I f  one continues this process indefinitely wi th  a sequence Pi ~ 0, qi ~ 0, pi  ~- 
+ q~ ~ 1, a measure  v is obta ined  as in Corollary 1 with/c  = 2. (To avoid a tomic i ty  

assume l ~ m a x ( p i ,  q~) = 0.) Then  ~ ~ ~. of ~ .I_ 2 according as (�89 _ p~)2 < 
i=I i=i 

< /- oo or equals ~- oo (A ---- Lebesgue measure). The cumulative distribution 

function F(x) ~ ~ [0, x] in case ~ i A provides example of a strictly increasing, 

continuous funct ion ~ (x )  such t h a t  F'(x) ---- 0 a.e.  (4). A slightly special case of  
this construct ion is to be found in S A ~  [5]. Notice incidental ly  t h a t  /c = 3, 
/ti0 = / t~2  ~- 1/2 and #i~ = 0 gives the  Cantor  measure  on [0, 1]. 

w  

I n  this section I shall s tudy  the fract ional  dimensions d (v) (defined rigorously a 
little later) of  the  " suppo r t s "  of  the  measures  "v"  refered to in Corollary 1. I shall 
first introduce the following definitions due to  B~L]~GSL~Y [6], [7]. 

Le t  ~ be the class of  intervals  of the  type  (j/c -n,  ( j -k  1)k-n),  0 ~ j ~/cn__ 1, 
n ~ 1. Le t  ~ be a probabi l i ty  measure  on the  Borel  sets of  [0, 1]. For  any  set M 
in [0, 1] define 

co 

v~ (M, ~) = i n f { ~  v ~ (A,) I A~ ~ ~ ,  U A, ~ M ,  ~ (A,) < ~}, 
i i = 1  

~ (M) ---- l im v~ (M, ~), 
Q-->0 

dim (M) = sup {:r I v:~ (M) = -]- c~} = inf{a I v~ (M) = 0}. 

I t  can be shown (see BILLINGSL]~u [6]) t h a t  ff v = ~ where ~ is the  Lebesgue 
measure  on [0, 1] then  dim (M) equals the  classical Hausdor f f  f ract ional  dimen- 

sion of M. I shall fur ther  define : (4 in the sequel shall a lways s tand for Lebesgue 
m e a s u r e . )  

d(v) = i n f { ~ I g  = d im(M) ,  v(M) = 1, 2(M) = O} 

= in f{g [a  = d i m ( M ) ,  r (M)  = 1}. 

I can then  prove  
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Theorem 2. Let v be a measure on [0, 1] induced by the process re/erred to in 
Corollary 1. Then 

- - 1  n 

d (v) = _5 = lira__ n---Gkn k ~ '  (9~ 
n- ->  oo i = 1  

w h e r e  

k - 1  

(9~ = ~ / t~ j  In [tii (with x In x = 0 if x = 0) .  
j = 0  

The proof  is a simple appl icat ion of the  following results of  BXLLI~GSLrY [7]. 
oo 

Let  t = ~ xi (t) k -1 be the  k-radix expansion of t. (For the  sake of definiteness 
i = 1  

consider only  the  expansions with infinitely m a n y  non-zero x, (t)). Le t  

A n ( t ) = [ ~ x i ( t ) k  -I,  ~x~(t)k-~ + k-n], 
i = 1  i = 1  

In v (An (t) ) 
I n ( t ) -  ln2(A~(t)) " 

Then  

(i) ff v is non-a tomic  and  (9 => 0 

dim{t[l im /n(t) <= (9} <= (9. 
,~ n--+ oo 

(ii) M c {t] li__m/n (t) ~ (9} ~ d im (M) ~> (9 d im (M).  
r ,-o- co ), v 

I n  the present  case 

where 

n 

/n (t) -= - -  ~ l n  y~ (t)/n I n k  
i = 1  

y~(t)----#~i if  x i ( t ) = j .  

Clearly {yi( t ) i  - -  1} form a sequence of  independent  functions on [0, 1] under  
v-measure.  Also 

I k - - I  

f l n  y~ (0 dr (t) = ~ mJ In ~ ,  = (9~, 
0 ] = 0  

1 I : - - I  

f ln2 Yi (t) dv (t) = ~ [tij In 2 [%" < C ( independent  of  i ) .  
0 y = O  

Hence  by  a theorem of KOLMOGOROV the set  

n 

B = { t ] l im  1 ~ { ( 9 , _  lny,( t )}  = 0} 
n---->oo n i =  1 

= {t I lim~+~(/. (t) + --nlnk~ i=Zyi) = 0} 

has v-measure 1. Hence  d im(B)  = 1. 
v 
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Since 

by (i) above 

Again since 

by (ii) above 

Therefore 

.B c{t I ~l,~(t) = ~} c{t] lim ln(t) ~ ~} 

dim(B) <= dim{t[ ~nln(t ) ~ ~} <= ~. 
~ n--> oo 

B c {t] lim In (t) ~ ~} 
n ~ r  

dim (B) ~ ~. 

dim (B) = 5. 

I f  C c B and v (C) = 1 then firstly dim (C) G 3 and secondly 

CcBc{t] lim/n(t) ~ }  

so that  dim(C) ~ _~ (by (ii) above). Therefore dim(C) ~ ~. This completes the 

proof of theorem 2. 

w  

Various authors have remarked that  it  is possible to obtain an absolutely 
continuous measure by  convoluting two singular measures. Very simple examples 
of such situations may be obtained by considering induced measures v as in 
Corollary 1. A good way of looking at such examples is from the point of view of 
independent random variables (r.v.). Consider e.g. 

o o  

X = ~ X l 2  -~ 
~=1 

where Xi are independent r.v. 's taking values 1 and 0 with probabilities Pi and 
o o  

1 --la~. Assume that  ~ (�89 - -p i )  2 < + oo. Then the measure induced by X is 
i = 1  

absolutely continuous. However X = X1 -~ X2 where 

o o  o o  

�9 X l  = ~ X2i  2 -2~ and X 2  -~- ~ X 2 i + l  2 -2{-1 �9 
i = 1  i = 0  

X1 and X2 obviously induce singular measures. Since X1 and X2 are independent, 
one thus has an example of an absolutely continuous measure which is the con- 
volution of two singular measures. 

A formal presentation of the above may be given as follows. Consider Corol- 
lary 1 for the case /~ = 2 (other cases may also be dealt with similarly). Let  r 
be the absolutely continuous measure induced by the sequence {Pi} where 

(1 - 2p~)~ < + oo. (p~ =/~( (1}) ) .  
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Le t  {p}}, {p~'} be defined as follows: 

p ' : p i  i f i i s e v e n  p~'----0 f f i e v e n  

0 i f l i s o d d  = p ~  i f i o d d .  

The measures v', v" induced by  {p~}, {p~'} respectively are non-atomic singular 
according to  Corollary 1. However  quite clearly the absolutely continuous measure 
v is a convolut ion of  v' and v". 

I f  v is taken  to be the Lebesgue measure ), i.e. pC = 1/2, i > 1 then the above 
gives a me thod  for representing ), as a convolution of  two singular measures vl 
and v2. 

Fur the r  a little more generally if  one defines Vl, v2 be sequences {p;}, {p~'} 
where 

p~ ~ -p ,  if i e { i l ,  i2 . . . .  }, 1 ~ il < i2 < ' "  

0 otherwise 
and 

p ~ ' = p i  if  i ~ { i l , i 2  . . . .  } 

= 0 otherwise 

then once again v = v l*  v2 (* = convolution) where vl and v2 are always singular. 
This gives a method  for writing down say the Lebesgue measure as the con- 
volut ion of  two singular measures, both  of  which have supports  of  arbitrari ly 
small dimension, even of  dimension zero. To this end, all one has to do is to  choose 
an infinite set of  integers A = { i l ,  i2 . . . .  } such tha t  the lower number  densities 
of  bo th  A and the complementary  set of  integers are zero i.e. ff n ( A )  equals 
the number  of  integers in A less t han  or equal to n then choose A so tha t  

and also 

lim n(A) _ 0 

l i m  - -  
n ---> oO 

~(~ A) _ 0 (N A = complement  of  A) .  

This can be done b y  choosing A to be a set of  integers as follows: 

A = {1} u {i2, i ,  + 1 . . . . .  i3} u {i4,  i4 + 1 . . . .  , i5} u . . -  
c o  

= (1} U { i 2 r ,  ~2r -}- 1 . . . . .  i2r+l} 

where i~'s  are defined induct ively by  

i2 such tha t  

i3 such t h a t  

i4 such tha t  

i 1 ~  1; 

1 
2/i2 < ~ ; 

(i~ - i2) + 2 1 
i3 > l - - y ;  

(i8 - i2) + 3 1 
i4 " < -4- ; 
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and  generally for s ~ 2 

~, (i2r-1 - -  i2r-2 -~ 1) -~ 2 

i2s such tha t  ~ = 2 
i2s 

and  

1 
~ 2 s  

i (i2~-l -- i2r--2 § 1) § (i~+1 -- i2~) § 2 

i~s+l such tha t  ~ = 2 1 i2s+l ~ 1 2s ~- l " 

I t  is clear tha t  the lower n u m b e r  densities of bo th  A and  ~ A are zero. Now 

define 
p~----�89 if i e A  

----0 ff i t A  
and  

p ~ ' : ~  if i t A  

~ 0  if i ~ A  

Let vl ,  ~2 be the measures induced by  {p~} and  {p~'} respectively (as in  Corollary 1). 
As before the Lebesgue measure )~ is a convolut ion of Vl and  v2. The dimensions 
of the supports  of the measures v l ,  ~2, according to theorem 2, are s imply the 
lower n u m b e r  densities of the sets A and  complement  of A respectively and  hence 
equal to zero. 

Other interest ing examples can also be constructed by  using these techniques.  

In conclusion, I should like to thank Professor H E ~ A ~  RVBI~ for some stimulating 
discussions which ][ had with him. 
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