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Characterizations of the Normal 
and the Gamma Distributions 

Lennart  Bondesson 

The Normal and the Gamma distribution, properly translated, are characterized by a uniformly 
minimum variance property of the sample mean. In fact, we answer in particular a question asked by 
Kagan in 1966. Also an optimality property of the sample variance is proved to characterize the 
Normal distribution. 

1. Introduction 

Let x a . . . . .  x ,  be independent observations of a random variable X with d.f. 
F[ (x -O) /0 - ] .  The parameters 0 and 0-(a>0) are unknown, but F is supposed to 
be known .  

A function g(xl, . . . ,x,) is called translative if g(x 1 + 2 , . . . ,  x ,  + 2) = 2 + g(xl . . . .  ,x , )  
for all 2eR  and all (xl ,  . . . ,  x , ) e R " .  The meaning of "g is translation invariant"  is 
then also obvious. We say that g (xl, . . . ,  x,) is multiplicative if, for any c > 0 and 
any (x 1 . . . .  , x , )ER" ,  g(e  x l  , . . . ,  c x , ) = c  g ( x l ,  . . . ,  x,).  

When estimating 0 it is natural to consider only translative and multiplicative 
estimators. We call such estimators proper. Using E~o, , )[(O*-0)  z] as a measure 
of the goodness of an estimator 0", P i tman [7] showed that there is always a 
best proper estimator of 0 (if ~ x 2 d F ( x ) <  oo). If the sample mean s is the best 
proper estimator, what can be said about the d.f. F ? This question was asked by 
Kagan  r4, 6]. Sometimes only the class of unbiased proper estimators of 0 is of 
interest, sometimes also the whole class of unbiased estimators. When is ~ the 
best unbiased (proper) estimator of 0? In this paper we shall present a solution 
of these problems. 

A function g is called square multiplieative if g (e x I . . . .  , c x , )=  c 2 g(xx, ... ,  x,), 
c >0.  We call an estimator of a 2 proper if it is translation invariant and square 
multiplicative. We shall show that if a multiple of the sample variance s2= 

( x i - s  - 1)is the best proper estimator of 0 -2 (such an estimator always 
exists), then F has to be a Normal  d.f. 

2. The Main Result 

It is well known that if F is a Normal  d.f. with mean zero, then the sample 
mean ff is the best unbiased or, as we also say, a uniformly minimum variance 
(UMV) estimator of 0. This is a consequence of the Rao-Blackwell theorem since 
(s s 2) is a sufficient and complete statistic. Another  often used way of establishing 
this result provides the following UMV-criterion. (Concerning this technique, 
see e.g. Rao [9], p. 258.) 
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UMV-Criterion. An unbiased estimator O* of 0 with finite variance is UMV if 
and only if E~o ' ~) [0" g] = 0 for any statistic g having finite second moment and being 
an unbiased estimator o f  zero. 

In this criterion g is usually assumed to be real-valued, but it is readily seen 
that we can also permit g to be complex-valued. 

The UMV-property of~  does not hold only for the Normal d.f. as Theorem 2.1 
below shows. A r.v. Y is Gamma distributed F(p, a), p >0,  a > 0, if it has density 
function yp-- 1 

f r  (Y) = F(p) a p exp { - y/a}, y > O. 

The negative Gamma distribution F(p, a), a<0 ,  we define through: YeF(p, a) if 
- Y~F(p, -a) .  Clearly, whatever the sign of a is, E [Y] =p  a. 

Theorem 2.1. Let F be the d.f  of a variable Y -  p a, where Y~ F(p, a), a ~: O. Then 
is a UMV-estimator of O. 

Proof Let X = 0 + a ( Y -  p a), where Y~ F(p, a). Then we set Z = a Y, 0' = 0 - a p a, 
and a ' =  a a. Evidently, Z ~ F(p, a'). For an unbiased estimator g (x 1 . . . .  , x,) of zero 
we have 

Eto ' ~) [g (x l , . . . ,  x,)] = E~, [g (0' § zl, ... , 0' § z,)] = 0. (2.1) 

For  0' fixed we see that g(0' §  1, ..., 0' +z~) is an unbiased estimator of zero based 
on a samplezl , .  .... z, from a Gamma distribution with unknown scale o-'. As g is a 
complete sufficient statistic, it is also a UMV-estimator of its mean value. There- 
fore, by the UMV-criterion (adapted for the scale parameter situation), 

E~, [~g(0' + h ,  ..., 0' § =0 .  
Hence and by (2.1) 

E~, [(0' §  g(0' § . . . .  ,0' + z.)] = 0. 

But the left hand side is equal to E<o,~)[2g(x 1 . . . . .  x,)]. Thus, an application of 
the UMV-criterion concludes the proof. 

For  p ~: 1 this result provides an example of a case when a non-trivial sufficient 
statistic does not exist, but still a UMV-estimator of some special parameter 
may be found. 

The author feels that the result obtained must have been noticed earlier, but 
is not capable of finding it explicitly stated in the literature. However, whatever 
the case, the main emphasis of this paper is directed to the converse theorem, 
which we give in the following strong form. 

Theorem 2.2. Let F be continuous. I f  for some n>__ 7, the mean 2 is the best 
unbiased proper estimator of O, then F is either a Normal d. f  with mean zero or 
the d.f of a r.v. Y - E  [Y], where Y is Gamma distributed, possibly negatively. 

Proof To make the ideas dear  and to illustrate the various difficulties, we 
first prove the theorem under the assumPtions that all moments are finite and 
that n>9.  

The observations xx . . . . .  x 9 will most often be called y~, Y2, Ya, Zl, z2, z3, u~, u 2, u a . 
For a real number x :~ 0 and a complex number 4, we define 

x ~ = exp {~ log Ix I+ i n ~ e (--x)}, 
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where e(x)= 1 for x > 0  and .0 for x<0 .  Since F is continuous, with probability 
one, Y l -  Y 4 = 0. Therefore, as all moments are finite, the functions 

E(o,1)[(yl-y) r and E(o, i ) [y(yl-y)  r 

both become well-defined and continuous for Re ~ > 0 and analytic for Re 4 > 0. 
Because of analyticity, a point (~ ,  4 ~ , saJ,~~ satisfying ~ + ~  + 4~ = 1, can be con- 
structed such that E(o,1 ) [(Yl-Y)r 4:0, j =  1, 2, 3, for all points (~1, 42, ~3)in some 
neighborhood of (4~, ~ ,  4~). 

Let g(xl, ..., x,) and h(xl, ..., x,) be translation invariant and multiplicative 
statistics, both with mean values different from zero. Then 

g/E(o, 1)[g] - hiE(o, 1)[hi 

is an unbiased, translation invariant, and multiplicative estimator of zero. As 
is the best unbiased proper estimator of 0, it follows from an obvious variant 
of the UMV-criterion that 

E(o, 1) [X g] _ E(o ,i) [2 hi 

E(o, l) [g] E(o, i) [hi 
Hence 

E(o, 1) (x g]/E(o, l) [g] = constant. (2.2) 

For an arbitrary Point (4i, 42, 43), having coordinate sum equal to 1 and 
lying in the above mentioned neighbourhood of (4~, 4~, ~),  we now set 

g (xl, ..., x,) = (Yl - Y)r (z~ -~)r (u 1 - ~)~. 

Trivially, g has the required properties. Therefore (2.2) yields 

E [y (y l -y ) r  E [ ~ ( z l . ~ )  ~] E[fi(ul-f i)  ~] 
g [(Yl - Y)r ~ g [(z 1-7 z)r ~ E [(u 1 - fi)r = constant, 

where E [. ] stands for E(o ' 1)[" ]- This is essentially Cauchy's functional equation 
with solution 

E [y(y~ - y)r = (A ~ + B). E [ (Yl  - Y) r  (2.3) 

A and B being constants. The equality holds for all ~ close enough to 4] (or 4~ or 
4g), but therefore, on account of analyticity and continuity, for all ~, Re 4>0.  
Especially we have 

E[y(y l -y )  k] =(Ak + B). E[(yl--y)k], k=0,  1, 2 . . . . .  

As E(o ' 1)Ix] =0,  E [y] =0. Setting k = 0, we find B = 0. Hence (cp. Rao [10]) 

E [ y . e x p { i t ( y l - y ) } ] ~ A i t .  E[(y l -y)exp{ i t (y l -y)}] ,  (2.4) 

where ~ means that the left and the right hand members have the same derivatives 
of all orders at t=0 .  The equality ~ can be handled just as the ordinary one. 
We set O(t)=qr where tp is the characteristic function of F. 
The function ~ is well-defined for all t small enough. Of course, ~ (0) = 0. Observing 
that E [Yt exp {i t yl} ] = -  i qg'(t) and manipulating a little, we find that (2.4) can 
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be written as 
(2At+i).  O(2t /3)~(2At- i ) .  ~b ( -  t/3). 

We put O(t)~ ~ aj t j. (This makes sense even though the right hand side diverges.) 
j = l  

Identifying coefficients, we easily find 

a~=(i3A)i-lal, j>=l. 

As if' (0)= qr (0), a 1 = - # 2 .  Summing up a geometrical series, we obtain 

0 (t) ~ - i~ z t/(1 - i 3 A t). (2.5) 

Recalling that O (t)= D log ~o (t), the solution of (2.5) is easily verified to be 

.. ~,,(exp{-p2t2/2} if A = 0  (2.6) 
q)(t)~((1/(1-i3At))~/9a2, exp{ - i# 2  t/3A} if A * 0 .  

Since ~0 is a c.f. and the right hand members are analytic, ordinary equality holds 
for all t. Furthermore, the functions on the right are just the c. f.'s for a N(0, (/~2)�89 f. 
and a correctly translated F(#z/9A 2, 3 A)-d. f., and therefore an application of the 
inversion theorem for c.f.'s finishes the first part of the proof. 

It is easy to prove that the functional equation 

H1(~l)+H2(~2)+H3(~3)=O, ~1+~2+~3=1,  

where the continuous functions //1, HE, and H 3 are not supposed to be equal, 
only admits linear solutions. So if we instead set 

g(xl . . . . .  x.) = (Yl- y)~l ( x , -  xs) ~2(x6- xT) ~3, 

(2.3) still follows. This shows that n > 9 can be replaced by n > 7. 

The general proof, not assuming the existence of all moments, will now be 
given. (A more detailed version will appear in a forthcoming paper.) 

That the variance is finite is obvious. We set 

g (x l ,  . . . ,  x . )  = (I y~ - Y l + �89 (y~ - y))r (I y ,  - Y I) "1 

. ([X4_X5 [..~�89162 ([X4_X5[)t/2. ([X6_X7I..~I(X 6_X7)){3. (]X6_XT]).3 

where ~ ,  ~2, ~3, qa, q2, ~/3 are positive and have total sum 1. Then g is translation 
invariant and rnultiplicative. Therefore (2.2) holds. Manipulating a little we get 
a functional equation of a new but easily solvable type. We find 

E [Y(lY~ - Yl +�89 - Y))r (lY~ - Y l ) " ]  

=A(~+n).E[(Iy~-YI+�89 ~ + ~ t < l .  

Here is E [" ] = E(o,~ ) [" ]. Because of analyticity and continuity, this relation also 
holds for all purely imaginary ~ and q. We set 

4=ih,  q=it2, v~=log(ly~-Yl+�89 vz=log(lyl-yl) 
and get 

E [y.  exp {i t 1 v 1 + i t 2 v2}] = A (it 1 + itz). E [exp {it~ v 1 + it 2 v2} ]. 
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Equivalently, 
] 

E [y.  exp { i t  a v 1 + i t  2 v2} ] = A .  E I_\ ov--~- ~v2-! exp { i t  I v 1 + i t  2 v2} J . 

The idea is now that in this relation exp {i q vl + i t  z v2} can be replaced by any 
sufficiently smooth function h(Vl,  v2). The technical argumentation is omitted. 
Using this fact for 

h (v a, U2) = exp {2 i t (e  v l -  eV;)} = exp { i t  (Yl - -  Y)} ,  

we obtain 

E [ y .  exp { i t ( y ,  - y)}] = A i t .  E [(YI- Y)" exp { i t ( y  1 -  ~)}]. 

Equivalently, 

(2 A t + i). ff (2 t/3) = (2 A t - i) .  O ( - t/3) 

if t is small enough. The transformation f ( t ) =  (1 - i 3  A t). ~(t) gives 

/ (2  t /3) = - 2 / ( -  t /3) .  

We differentiate and obtain 

f '  (2 t/3) = f ' (  - t /3) .  

Hence f '  is constant. It then easily follows that (2.6) holds in the ordinary sense 
for all t in some neighborhood of the origin. This ends the proof. 

R e m a r k .  Employing Hilbert space theory, one can prove that there always 
exists a best unbiassed proper estimator of 0 (at least if ~ x 2 d F  (x) < oe). However, 
an explicit expression of this estimator seems hard to obtain (cp. the next section). 

Assume now that F is continuous and that, for some n>5,  9~ is a UMV- 
estimator of 0. The relation (2.2) will then hold for all g being translation invariant 
and homogeneous of a certain degree. The constant will depend on this degree. 
Using e.g. the statistic 

g (Xx . . . .  , x,,) = (y l  - y / ' ( x ~ -  x s )  ~2, 

which has degree ~l + ~z, we easily see that the conclusion of Theorem 2.2 remains 
true. 

However, supposing that also all moments are finite and that # 3 = 0  but 
dropping the continuity assumption, then we need only assume the UMV- 
property of ~ for some n > 3 in order to conclude that F is Normal. For, letting 
n = 3, if #3 = 0, then the statistic (x 1 -~)3  has mean value zero for all (0, a). There- 
fore E(o ' ~) [~(x 1 - 2) 3] = 0. Hence E(o ' ~) [,y2 (x 1 _ ~)3] = 0, hence E(o ' ~) [~3 (x~ - ff)3] 
=0,  and so on. From these relations, for (0, a)=(0, 1), it is easy to see that all 
moments must be uniquely determined by #2, and thus they are Normal. As the 
Normal moments uniquely determine the Normal d. f., F is Normal. 

3. Kagan's Problem 

In this section we present a solution of Kagan's problem mentioned in the 
introduction. 

First we derive an expression for the best proper estimator 0* of 0. Let s2= 
(x~-2)2/ (n-  1)and U=((x~-Y~)/s . . . . .  ( x , - , 2 ) / s ) .  Any proper estimator 0* can 

24a Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 26 
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be written O*=,2+sh(U),  where h is some function. As E(o,o)[(O*-O)2]= 
a 2 E(o,1 ) I-(0")2], we find the best one by minimizing 

E(o, 1) [(ff + s h (U)) 2] = E(o ' 1) [E(o,1) [(2 +s  h (U)) 2 [ U]]. 

Hence we easily get 

0 F = x - -  s .  E(o" 1) l' ~" sI g]/E(o,  1) [-82[ g ]  

(cp. Pitman [7]). Usually 0 F is a biassed estimator of 0 even though F has mean 
zero. Notice also 

Criterion. A proper estimator O* of 0 with finite variance is the best one if and 
only if  E(o ' 1) [0" g] = 0 for every translation invariant and multiplicative statistic g 
with finite second moment. 

The easy proof is omitted. 
If F is a Normal d.f., then a theorem of Basu 1,1] asserts in particular that 

(~, s 2) and U are independent. Hence, as also ~ and s 2 are independent, 0 F =if, 
provided that F has mean zero. 

Also for a properly translated Gamma distribution ff can be the best proper 
estimator of 0. More exactly 

Theorem 3.1. Let  x 1, . . . ,  x ,  be independent observations of a r.v. 

X=O+~r ( Y - p a - - ~ ) ,  

where Yet(p, a). Then O* =~. 

For the proof we need a lemma. 

Lemma 3.1. Let yl,  . . . ,  y, be independent F(p, a)-distributed r.v.'s. For any 
multipiicative statistic g (Yl, . . . ,  Y,) we have 

E [ ( y - p a  - a )  . g ( y x , . . . , 4 = 0 .  (3 . ,  

Proof. It suffices to consider the case a > 0. Consider the expression 

yp--1 up--1 
i " " "Yn E [g] = ~...~ g (Yl . . . .  , y,,) �9 exp { -  (YI + " "  + y,)/a} dyx. . .dy, .  

y,  > o I F ( p ) ] "  �9 a " v  

Making the transformation y i=cz i ,  using the fact that g is multiplicative, then 
differentiating with respect to c (the derivative is zero), and finally setting c = 1, 
we obtain (3.1). 

Proof of Theorem3.1. Let g (x l , . . . ,x , )  be any translation invariant and 
multiplicative statistic. According to the criterion we have to prove that 

E(o, 1)[~" g(xl, ..., x,)] =0 .  

However, this relation follows immediately from (3.1) and the fact that g is trans- 
lation invariant. 

The solution of Kagan's problem does not come as a surprise. 
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Theorem 3.2. Let  F be continuous. I f  for some n > 7, ,2 is the best proper estimator 
of  O, then F is either a Normal d . f  with mean zero or the d . f  of  some variable 

a 
Y - p  a - - - ,  where Y6F(p, a). In particular, if  F has mean zero, then F is Normal. 

n 

Proof  Using the criterion, we see that (2.2) still holds with the constant being 
equal to zero. A slightly modified proof of Theorem 2.2 shows that F is either 
Normal or the d.f. of some translated Gamma variable. In the first case F must 
have mean zero, for otherwise 0* = , 2 + k . s ,  k+O. In the second case Lemma 3.1 

and the criterion show that only the translation - ( p a + a l  is possible. This 
ends the proof. \ n ]  

Observe that if one supposes that 0f = ff for two different sample sizes, then 
there is only the possibility of a Normal d. f. 

Remark. Kagan has informed that he has also very recently obtained a solution 
of his own problem. However, his method is different from the one used here. 

4. Variance Estimation 

The best proper estimator of 0 .2 can be proved to be 

(o-2)* = s2" E(o. 1) [sZ[ U]/E(o, 1) Is4[ U]. 

Generally (o.z), is biased. If a sufficient statistic (S~, ..., Sk) exists, some calculations 
will show that (0-2), only depends on this statistic. From the explicit expression 
of (0-2), above it follows that, for any translation invariant and square multiplica- 
tive statistic g, 

E(o, a)[(0-2),, g] = E(o, 1)[g]. (4.1) 

It is also true that an estimator (o-2) * which satisfies this condition must coincide 
with (o-2),. A consequence of(4.1) and the UMV-criterion for proper o-2-estimators, 
the formulation of which is easily realized, is that a constant c,, may be found such 
that c,(o-2), is the best unbiased proper estimator of 0-2 (cp. [2]). 

Let o-2 be the variance of F. If F is Normal, S2/O "2 is the UMV-estimator of 0-2 
and hence also the best unbiased proper estimator of~ 2. Therefore (0-2), = s2/c, 0-2. 
Another way to see this provides the result by Basu I l l ,  asserting in particular 
that s 2 and U are independent. We then find 

n -  1 s2/o-~" (o-2), = s 2 " E(o, 2 ) [s2]/E(o. 1~ [ s4] = ~ - i -  

Now we give a converse result. 

Theorem 4.1. Let  F be continuous and have moments of  all orders. I f  for some 
n__> 12, a constant k, exists such that k,  s 2 is the best proper estimator of  ff2, then F 
is a Normal d . f  

Proof  For the sake of simplicity we give the proof only for the case of twelve 
observations, here most often labelled xlj , i=  1, 2, 3, 4, j =  1, 2, 3. With slight 
modifications the proof will also work for all n>  12. 
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Using notations known from analysis of variance, we find 

.~. (xis-  ~..)2 = .~. x21~-12 (~..)2 
l ,J l~J 

= '~, xZs- 0.75 E (xi.) 2 - 1.5 E xl." xv." 
i , j  i i<i '  

Assume (~2)~ = k, s 2. Then, according to what have been stated above, for all 
translation invariant and square multiplicative statistics g, 

E(o, 1)[(.~. x~j-  0.75 E (Xi.)2 -- 1.5 E )~i." X, ' . )g(Xll ,  "'", X43)] 
, ,J i i<i '  (4.2) 

= k'n E(o, 1)l-g(x11, ." ,  X43)'], 

where k', is some new constant. To avoid trouble with zeroes, we set 

4 
g (Xll . . . .  ' X4 3) = I-I (I X i l  - -  X i .  [4-' ~ ( X i l  - -  Xi  .)){i, 

i=1 

where 121 < 1 and the ~'s are positive with total sum equal to 2. After simple 
manipulations finished by square completion we get from (4.2) a functional 
equation of the form 

(4 )2 
H({i)+ Y G({i) =constant ,  ~1q--~2-+-~3+~4=2.  

i=1 \i=1 
Here 

E(o, 1)[(]Xll --XI.[ +~(Xl l  --X1.)){] 

The exact expression of H(~) is uninteresting to know, Clearly, G and H are analytic 
in some (complex) region containing the open interval (0, + oo) and continuous 
on the closed interval [0, + oo). The solution of this functional equation is 

G(~) = A a ~ + B a 
~>0 ,  

H(~) = C a ~ + Dz' 

Aa, Ba, C a, and Da being constants. To prove this, we set H I (g)= H({ +�89189 
G,(g) = G(g + �89  G (�89 and see that if suffices to show that all solutions being zero 
at ~ = 0 of the equation 

~ H,({~)+ G,({,) =0 ,  ~1 -}- {2 + {3 -[- ~ 4 = 0  (4.3) 
1 

are linear. We shall prove that 

H} k)(0)=0 and G~ k)(0)=0 when k > 2 .  

We have the McLaurin expansions 

c l  (~) = ~ ~i (0) + ~2 Gi'(0)/2 + o (~2) 

H 1 (~) = ~ H' a (0) + ~ 2 H~'(0)/2 + ~ 3//1(3)(0)/6 + ~4 H(4)(0)/24 + o (~4). 
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Substituting these into (4.3), setting ~4 = - 41 - 42 - ~3 and identifying coefficients, 
we find that  H'((0),/-/~3)(0) =0 ,  and further that  

(G~,(0)/2)2 (42 q_ ~22 q_ ~2 jr(  _ ~1 -- ~2 -- 43)2) 2 

= (H~ 4) (0)/24)(r + ~ + r + ( _ ~1 - r - ~ 3) 4) 

holds identically. F rom this last relat ion is easily follows that  HI4)(0)=0 and, 
G " 0 "  which is the most  impor tan t  matter ,  1 t ) = 0. Using induction and higher order  

McLaur in  expansions, the remainder  of  this part  of the p roof  is accomplished in 
exactly the same way. 

Thus we have 

E(o,  1) [ x I .  ([ X l l  - -  X1. I + ,t (Xal - X l  ))~] (4.4) 

=(Aa~+B~).E(o, 1)[(Ixal-~a.I+2(xH-,21.))e], ~>0. 

As we are estimating a 2, it is certainly no restriction to assume that  F has mean 
value zero. Setting ( = 0 ,  we find that  B~=0.  Taking ( =  1, we easily see that  A~ 
is independent  of 2, i. e. A). = A 0 . Consider  Eq. (4.4) when ~ is an integer k. Binomial 
expansion of bo th  sides gives, for each k, an equality between two polynomials  in 
2 for I,t1< 1. The coefficients of 2 k must  then be equal, i.e. 

E(o,1)[x1.(x11-ffl.)k]=Aok. E(o, 1)[(x11-Y~l.)k], k = 0 ,  1,2, . . . .  

Therefore  (see Section 2) F is either Norma l  or the d.f. of  a translated G a m m a  
variable. However ,  for the G a m m a  distr ibution direct calculations will show that 
(0.2)~ :4= k, s 2. In fact, for the exponential  distr ibution (0-2) * is a function h of the 
sufficient (and complete) statistic (if, x(a)), x(1 ) being the first order  statistic, and 
therefore, since (0-2)~ is t ranslat ion invariant  and square multiplicative, 

(0-2), = h (if, xa) ) = h (ff - x(1), 0) = (~ - X(1)) 2" h (1, 0) + k, s 2. 

The p roof  is finished. 

No  at tempt  has been made  to remove the momen t  condition, but  there is no 
doubt  it can be done. 

Corollary. I f  s2/0-2 o is the best unbiased proper estimator of a 2, then, under the 
conditions of Theorem 4.1, the d.f is Normal. 

Proof As the best unbiased proper  est imator and the best p roper  est imator of 
0-2 only differ by a constant  factor, Theorem 4.1 applies. 

5. Some Related Results 

For  a pure locat ion parameter  family F(x-O) there are the following results. 
I f F  is Norma l  with mean  zero, then ~ is the best p roper  (i. e. translative) est imator 
of 0. (The best p roper  est imator  is automatical ly  unbiassed.) The converse was 
proved to hold  by Kagan,  Linnik, and Rao  [3] provided that  n > 3. Fo r  n = 2 the 
au thor  has shown (still unpublished) that  ff is a best unbiassed est imator  of 0 
also only if F is Norma l  with mean  zero. 
24b Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 26 
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For a scale parameter family F(x/~), where o->0 and F(0)=0, Kagan and 
Rukhin [5] have characterized the Gamma distribution in similar ways. These 
results will be improved in [2]. 

Rao [8], and later other authors, have tried to find all classes of distributions 
admitting UMV-estimators of certain parametric functions. 

Note Added in Proof In Theorem 2.2 and 3.2 the condition n>7  can be replaced by n>6. Hint: 
Use Eq. (2.2) first for 

g(xl . . . . .  x,)=(lxl-xzl)r162 r , ~1 + ~2-1- ~3 = 1, 

and then for 

g(xx . . . . .  x,) = (]Yl -Yl +�89 Y))r (lYl-Yl) n' (Ix4- xs[) ~2, ~1-[-ql ~- ~2 = I .  

We also mention that the moment condition of Theorem 4.1 really can be removed. 
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