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The Reproducing Kernel Hilbert Space Structure 
of the Sample Paths of a Gaussian Process* 

Michael F. Driscoll** 

1. Introduction 

Let the random variables Y~ . . . .  , Y,, defined on a probability space (f2, cg, p), 
have mean vector v and nonsingular covariance matrix K. Then 

P [-(Y~ . . . .  , Yn)eH(K)] = 1 (1) 

since the reproducing kernel Hilbert space H(K) is simply Euclidean n-space 
under the inner-product (a, b)= a'K-1 b. 

Parzen [8] mentions that the analogous statement for a random process 
Y= {Y~: t~ T} on (f2, cg, p) is false if T is a (non-finite) separable metric space and 
the covariance kernel K of Y is continuous on T x T. In fact, he states that under 
these conditions almost all the sample paths of Y lie outside H(K). 

These facts lead one to ask whether there is some other reproducing kernel 
Hilbert space H(R) of functions on T which contains all the sample paths of Y. 
In this paper we use a recent result by Kallianpur [4] to show that if Y is a Gaus- 
sian process and R is a continuous symmetric positive-definite kernel on Tx  T, 
then 

P[Y~H(R)]=O or 1. (2) 

We also derive conditions, involving only the kernels K and R, which characterize 
the two cases in (2). 

One of the hypotheses required for our results is that almost all the sample 
paths of Y be continuous functions on T. This is a rather restrictive assumption, 
even for Gaussian processes. For  some recent work on sample continuity of 
Gaussian processes, the reader is referred to Eaves [-2], Garcia, Posner, and 
Rodemich I-3], Nisio [6], and Preston [10]. 

The statement and proof of the main result (Theorem 3) are given in Section 4. 
We begin in Section 2 with some definitions and notation. The lemmas and theo- 
rems which support the main result are given in Section 3. In Section 5 we discuss 
an application of the main result to signal-noise problems (the details of this 
application will be given in a later paper). 

Throughout  the paper, we exclude the case that Tis a finite set--as is necessary 
in view of Eq. (1) and the remarks immediately following it. The results obtained 
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here hold, with slight and obvious changes, for the case that T is a countable set, 
but we do not explicitly include this case in what follows. 

The analysis in this paper is by reproducing kernel Hilbert space methods. 
For material on these Hilbert spaces, see Aronszajn [1]. Parzen [7] gives a good 
introduction to their use in the study of Gaussian processes. 

2. Definitions and Notation 

Throughout the paper let T be a fixed separable metric space and let T O be a 
fixed countably dense subset of T, say To= {tl, t2, ...}. Let N denote the positive 
integers and F the field of real numbers. For each n in N, define T, = {h . . . . .  t,}. 

A function R: T x T ~ F  is called a symmetric nonnegative-definite kernel--or 
simply a nonnegative kernel--if R (s, t)=R (t, s) for all s, t e T and if for each n s N 

~ aiR(si, sj)aj>O (3) 
i = 1  j~l 

for all sl, ..., s, in T and all al, ..., a, in F. If, in addition, equality holds in (3) only 
when a I ..... a~=0, then R is called a positive kernel. Note that a function 
R: Tx T~F is a nonnegative kernel if and only if it is the covariance kernel of 
some random process indexed by T. 

Given a nonnegative kernel R on T x T, we denote by R~ = [R (ti, tj)] = [rij ] the 
matrix obtained by restricting R to T, x T,. When R is positive, we denote by 
R21= [rij] the inverses of these matrices. The (i,j)-th element of a matrix A will 
sometimes be denoted A(i,j). The transpose of a matrix A is denoted A'. 

A Hilbert space H of functions h: T ~ F  is a reproducing kernel Hilbert space 
(RKHS) if there is a function S: Tx  T ~ F  such that 

St(" ) =S( ' ,  t)~H (te T) 
and 

(h, St)= h (t) (he H, t~ T) (4) 

where ( . , . )  is the inner-product in H. Then S is a nonnegative kernel and is called 
the kernel of H, which is then denoted H=H(S). Conversely, every nonnegative 
kernel S on T x T determines a unique RKHS H(S) of functions on T. The inner- 
product and norm of H(S) are denoted ( . , . )s  and II" I[s- The subscript is dropped 
when no confusion can result. Property (4) is called the reproducing property. 

A mapping L: G-,H between two real Hilbert spaces is called an operator if 
it is linear, continuous, and bounded, and its norm is denoted IILII. 

When G = H, we call L self-adjoint if (L x, y) = (x, L y) for all x, y H and non- 
negative-definite if (Lx, x)>O for all xeH. A self-adjoint, nonnegative-definite 
operator L: H ~ H  on a separable, infinite-dimensional Hilbert space H is called 
an operator of finite trace if, for some complete orthonormal system (c.o.n.s) 
{e~} in H, the series 

o o  

~_, (L e,, en) (5) 
n = l  

is (absolutely) convergent. It can be shown, see Schatten [12], that if the series (5) 
converges for some c.o.n.s, then it converges for any c.o.n.s., the value of the 
sum being independent of the c. o. n. s. chosen. 
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3. Preliminary Results 

The first of the following lemmas follows from Theorems 2E and 5E of 
Parzen [7] and the second is a special case of Theorem 6 E of the same paper. 

Lemma 1. I f  R is a continuous nonnegative kernel on T x T then each function 
in H(R) is continuous on T. 

I_emma 2. Let R be a continuous positive kernel on T• T and let f :  T ~ F  be a 
function. Define , -1 ( f f )R , ,=f~ ,R .  f .  where f . = ( f ( t , )  .... ,f(tn) ). Then ( f f ) R , . <  
(f, f)R,,+l for all n in N and, for f continuous on T, f e l l ( R )  if and only if 

lim ( f  f)R,, < ~ .  
n ~  oo 

The next lemma supplies a computational tool needed in the proof of the 
main result. 

Lemma 3. I f  R is a continuous positive kernel on T x  T, then H(R) is separable 
and infinite-dimensional. In fact, there is a c. o. n. s. {e.: n ~ N} in H (R) with (Rt,, ej) = 0 
for i <,j. The set of constants eij= ej(ti)=(e 3, Rn) defines a sequence of nonsingular 
lower-triangular n-by-n matrices E, = [eij] such that R,  =E,E'. for all n in N. Also, 
there is a set of constants e ij such that for all n the n-by-n matrix [e ~] is the inverse 
if E.. Moreover, 

n 

R,, = ~ ei, e k (6) 
k = l  

and 

ei= ~ eikR~k (7) 
k = l  

for all i and all n >= i. 

Proof Since each element of H(R) is continuous on T(by Lemma 1), {Rt: t~ To} 
is a spanning set for H(R). Since each matrix R, is nonsingular, the elements of 
{R,: t~ To} are linearly independent. Thus H(R) is infinite-dimensional and hence 
separable. By Gram-Schmidt orthogonalization there is a c.o.n.s. {e,} in H(R) 
with (Rt,, ej)= 0 for i<j. The existence of matrices E, with the stated properties 
follows from the linear independence of the e,'s, Parseval's inequality, and the 
reproducing property of H(R), and the lower triangularity of each E. guarantees 
that E~l(i,j)=E~+Xl(i,j) for all n> i,j. Since {Rt: t~ To} spans H(R) and 

(Rtj, Rn) = R (ti, tj) = R.  (i, j) 

= (EnE~,) (i,j)= ~ e,k(ek, Rt~ ) 
k = l  

(Rtj k~__l eikek) 
for all n >= i,j, (6) holds. The proof of (7) is similar. 

The proof of the main result also requires knowledge of the set-theoretic 
relationships between RKHS's. The necessary information is given by the next 
theorem. 
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Theorem 1. Let K be a continuous nonnegative kernel on T x T and let R be a 
continuous positive kernel on T x T. Then the following statements are equivalent: 

(a) H ( K ) c H ( R ) ,  in which case (a') there is a constant B > 0  such that IlgltR< 
B [[gllK for all g~H(K).  

(b) There is B < oo such that B E R - K is a nonnegative kernel. 

(c) There is an operator L: H ( R ) ~ H ( K )  with ]LLII<B and L R t = K  t for all 
tE To, in which case (c') LR t = K t for all t~ T. 

Moreover, each of these implies 

(d) There is a self-adjoint nonnegative-definite operator L: H ( R ) ~ H ( R )  with 
IILll < B2 and LR t = K~ for all t~ T. 

The constant B is f ixed throughout. 

Proof. Aronszajn ([1], 382-383) proves that (a).~(b) and that ( a )~  (a'). 

Proof that (b)r By the proof of Lemma 3, the linear hull H of {Rt: t~ To} 
is dense in H(R) so L: H ~ H ( K )  can be defined by LR t = K t (t~ To) and by linearity. 
If (b) holds then, since each matrix B 2 R , -  K,  is nonnegative-definite, Lis bounded 
on H, hence extends uniquely to an operator L: H(R)~H(K) .  Conversely, (c) im- 
plies B2IIh[I~>ILLhI[ 2 for all h ~ H c H ( R )  so each matrix B 2 R , - K ,  is non- 
negative-definite. By the continuity of K and R, B 2 R - K is a nonnegative kernel. 

Proof that (c)=~ (c'). This follows easily from the facts that L is continuous, 
that H(K) is Hausdorff, and that s~-os in T implies R s ~ R  ~ strongly in H(R) and 
Ks ~ K~ strongly in H(K). 

Proof that (a)-(c)=~ (d). If L is the operator in (c) then by (a') 

IJLhIIR <BIJLhlIK<B21Ih}I R (h~H(R)) 

so that L: H ( R ) ~ H ( R )  is an operator with LRt= K t (t~ T). Thus 

(LR; ,  Rt) R = (K  s, Rt) R = K(s ,  t) = K ( t ,  s) = ( K  t, R,)  R 

= (R~, LRt) R 

for all s, t in T. Since {Rt: t ~ T }  spans H(R) and L, K, and R are continuous, Lis 
self-adjoint. That L is nonnegative-definite follows similarly from the continuity 
of L and the fact that K is a nonnegative kernel. The proof of Theorem 1 is com- 
plete. 

The following theorem is from an example of Prohorov ([11], Sect. 1.6). 

T h e o r e m  2. Let H be an infinite-dimensional separable Hilbert space and let o ~ 
be the Borel a-field from H, that is, the smallest a-field of subsets of H with respect 
to which every continuous linear functional f :  H--* F is measurable. On (H, 8) define 
the random process Y* = {Yg*: g~H} by Yg*(h)=(h, g)n for all g, h~H. Then there 
is a probability P* on (H, 8) such that Y* is a Gaussian process under P* with mean 
value function m*: H ~ F and covariance kernel K*: H x H ~ F if and only if there 
are m~ H and a self-adjoint nonnegative-definite operator L: H ~ H  of finite trace 
such that m* (g) = (m, g)H and K* (g, g') = (Lg, g')H for all g, g'~ H. 
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4. The Main Result 

Let ~/be the set of all continuous functions y: T ~ F  and let ~ be the smallest 
a-field from ~/containing all sets of the form {y: y(t)eB} where te  T and B is a 
Borel subset of F. If R is a continuous nonnegative kernel on T x T, then H ( R ) c  ~1 
by Lemma 1. If R is also a positive kernel, then Lemma 2 gives 

H ( R ) = U  ~ { h e ~ : ( h , h ) , < _ k }  
k=l n=l  

= ~) ~ {he~ . . . .  ,h(tn))eq:l([a,b])} 
k=l  n=l  

where q, is the positive-definite quadratic form q (a 1 . . . .  , a,)= a'R~ 1 a. Thus H (R) 
is a ~-measurable subset of ~. Further, the a-field g={Dc~H(R):  D e ~ }  is the 
Bore1 a-field from H(R), as is easily shown using the reproducing property of H(R). 

Having settled these details, we can now prove our main result. 

Theorem 3. Let the random process Y = { Y~: t e T} on a probability space (t2, ~, P) 
be Gaussian with mean value function v and covariance kernel K. Assume that K is 
continuous on T• T and that almost all the sample paths of Y are continuous on T. 
Let R be a continuous positive kernel on T x T with v ell(R).  Then either 

P [ Y e H ( R ) ] = I  or P[YeH(R)]=O.  (8) 

Further, this probability is 1 or 0 according as 

z = sup tr(K,  R21) (9) 
hen 

is finite or infinite, where tr(.) is the trace function for finite matrices. 

Proof Since ve i l (R)  and H(R) is a linear space, we assume without loss of 
generality that v = 0. Let Q be the probability measure induced on (~, N) by the 
random process Y, that is, Q (D)=P(YeD)  for all DeN. Then it follows immediately 
from Theorem 1 of Kallianpur I-4J that Q [H(R)] = 0 or 1, which proves (8). 

By Lemma 2 and the Monotone Convergence Theorem we have 

Ep Ill Y - / J  I[ 2"] = lim Ep 1-1[ Y -  v I1~ . ]  

=lirn tr(K, R21) = r. 

So if z < ~ ,  then P [[1 Y -  vll~ < ~ ]  = 1, thus P [YeH(R)] = 1. 

Conversely, assume that P [Yel l (R)]  = 1. Let the random process 

Yr* = { Y~: t e T }  

and the probability P* on (H(R), ~) be defined by 

Yff~(h) = (h, Rt)n= h(t) (hell(R),  te T) 
and 

P*(E)=Q(E) (Ee&). 
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Since P* [Y* e E] = P* (E)= Q (E)= P(Y~ E) for all E in 8, Yff is a Gaussian process 
under P* with mean value function zero and covariance kernel K. 

By Lemma 5 of Kallianpur [4], P[YeH(R)] = 1 implies H(K)cH(R), so by 
Theorem 1 above there is a self-adjoint nonnegative-definite operator L: H(R)~ 
H ( R) such that LR t = K, (re T). Define the nonnegative kernel K*: H (R ) • H ( R )--. F 
by 

K*(g, g ')= (Lg, g')R (g, g'e H(R)). (10) 

Then K*(R~, Rt)= K(s, t) (s, te T) so Yff under P* is Gaussian with mean zero and 
covariance kernel K* on {Rt: te T} x {Rt: te T}. 

Let H be the linear hull of {Rt: teT} and let Yff = {Y*: geH} be the random 
process defined by Yg*(h)=(h, g)R for all h in H(R) and g in H. Then clearly Yff 
under P* is Gaussian with mean zero and covariance kernel K*: H x H~F. 

Finally, consider the random process Y*= { Yg*:g ell(R)} on (H(R), 8) defined 
by Y*(h)=(h, g)R (g, hen(R)). It then follows from the facts that H is dense i n  
H(R), that g , ~ g  strongly in H(R) implies Y* ~ Yg* a.s. (P*), and the Dominated 
Convergence Theorem that Y* under P* is Gaussian with mean zero and covari- 
ance kernel K*. 

So by Theorem 2, there is a self-adjoint nonnegative-definite operator 

L*: H(R)---.H(R) 
of finite trace such that 

K*(g, g')= (L* g, g')R (g, g'eH(R)). 

In view of (10), L* = L, so L is an operator of finite trace. Therefore 

oo 

(L e i, el) R < oo 
i = l  

where {e,} is the c.o.n.s, of Lemma 3. But by (7) 

~(Lei, ei)R = ~ ~ ~eiP(LR,~,R,q)Re iq 
i=1  i=1  p ~ l  q = l  

= ~  ~ ~eiPKn(P,q)e i~ 
i = l  p = l  q = l  

= tr [E~- ~ K,(E; 1),] 

=tr[K,R[1], 

so z < ~ .  This concludes the proof. 

It was noted in the proof of Theorem 3 that the supremum in (9) may be 
replaced by limit. It is also true that z < oo if and only if the sequence {d,} where 

d.=iR.(R.+ K.)-I[ (n~N) 

and [A[ denotes the determinant of the matrix A, has a finite nonzero limit d (in 
which case 0 < d < 1). The proof of this equivalence requires a theorem on infinite 
matrices in MacDuffee ([5], 105) and properties of the matrices K,R; ~ which 
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follow from Lemma  3. The details of the proof  are mainly computat ional  and are 
therefore omitted. 

5. An Application 

The result of the previous section has an application to the following signal- 
noise problem. 

Suppose that S={St: t~T} and N={Nt :  t~T} are random processes on a 
probabili ty space (12, cg, p) such that, under P, S is Gaussian with mean zero and 
covariance kernel K, N is Gaussian with mean zero and covariance kernel R, 
and S and N are independent. Given a sample path x = s + n from the random 
process X = S + N, the problem is to estimate the corresponding sample path s 
from S, that is, to eliminate the noise n from the data x to recover the signal s. 

In order to obtain such an estimate based on x, it is first necessary to deter- 
mine which signals s could have produced x and then focus one's attention on 
that class of signals. This is precisely where Theorem 3 applies. For  if K and R are 
such that z of(9) is finite, then P[S~H(R)] = 1 and so, by a result of E. Parzen, the 
conditional distributions of X given S = s are all mutually absolutely cont inuous--  
that is, the class of signals to be considered (for any x) is the class of all possible 
signals. Further, the class of all possible signals has Hilbert space structure. 

In this framework, formulas can be derived for the conditional probabili ty 
density functionals of X given S = s and of S given X = x and for the marginal 
probabili ty density functionals of S and X. It can be shown that under the gener- 
alized square-error loss function 

Z(a, b)= Ila -bl [  2, 

where ]l "Jl is the norm in a RKHS,  the best estimate of s given x is the conditional 
mean of S given X = x and also that this estimate is the limit on T of a sequence 
of functions which have closed forms involving x, K, and R. A similar approxi- 
mating sequence can be found for the conditional expected loss associated with 
this estimate. 

The proofs of these facts employ several results of Parzen [9] about  Gaussian 
processes. The details of these arguments will be given in a later paper. 
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