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Radonifying Mappings 
and Functional Central Limit Theorems 

D. J. H. Garling 

1. Introduction 

The theory of Radonifying mappings, developed by Laurent Schwartz [-7, 8], 
provides a powerful tool for the study of measures on linear spaces. The purpose 
of this paper is to show how this theory can be applied to obtain functional central 
limit theorems (invariance principles) concerning the convergence of probability 
measures to Wiener measure. 

The pattern of this paper is as follows. In w which is purely descriptive, we 
recall the basic definitions and results about Radonifying mappings which we 
shall need. Full details of these results are given in [1, 7] and [-8]. w contains the 
fundamental compactness result which we need; this result enables us to avoid 
the usual tightness arguments. In w 4 we show how the operation of integration on 
the interval [0, 1] can be factorised as the product of a Radonifying mapping and a 
compact mapping. Throughout this paper we have not hesitated to restrict 
attention to special cases, and this is particularly true here. Although we go a little 
further in some directions, the mappings that we consider are special cases of 
mappings considered in a more sophisticated way by Schwartz(J7] Exposes XIV 
and XV). The last two sections contain applications of these preceding results to 
functional central limit theorems. Here a common feature is that rather strong 
conditions have to be placed on the moments of the random variables (for example, 
finite fourth moments, which are not too large compared to the second moments). 
By way of compensation, it is possible to consider fairly weak mixing conditions, 
and also to consider convergence of the measures on spaces smaller than the space 
C,  [0, 1] of continuous functions on [0, l] vanishing at 0. The results obtained 
here are similar in nature to those obtained recently by Philipp and Webb [5]. 

I am very grateful to Patrick Billingsley and Geoff Eagleson for many helpful and illuminating 
discussions. 

2. Radonifying Mappings 

We recall the basic definitions and results about Radonifying mappings. For 
simplicity, we restrict our attention to Banach spaces. The theory of Radonifying 
mappings is developed in more generality, and much greater detail, in [-7] and [8]. 

A Radon measure # on a Banach space E is a regular Borel probability measure 
on E. That is,/~ is defined on the Borel sets of E, and/~ (A)= sup {/~ (K): K compact, 
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K___ A}, for any Borel set A. # is of order p (for p > 1) if 

II~llp =(~ IlxlV d~(x))  x/p < 0o, 
E 

A set M of Radon measures on E is uniformly of order p if sup {lllAllp: #~M} < oo. 
More generally, suppose that r is a lower semi-continuous extended-valued semi- 
norm on E - i . e .  a mapping r: E ~  [0, oo] satisfying 

(i) r(0)=0, 

(ii) r(x + y) <= r(x) + r(y), 

(iii) r(2x)=121 r(x) for 24=0 and 

(iv) C= {x: r(x)<= 1} is closed. 

Then a Radon measure # on E is of order (p, r) (for p >= 1) if 

E 

and a set M of Radon measures is uniformly of order (p, r) if 

sup {[l~til(~,r): ~teM} < oo. 

If f is a continuous linear mapping from a Banach space E into a Banach 
space F, and if # is a Radon measure on E, we denote the image measure by f (#)  
(so that f (p ) (A)=#( f  -~ (A)), for each Borel set A in F). 

If M and N are closed subspaces of a Banach space E, with M__ N, we denote 
the quotient mapping: E ~  E/N by qN, and the natural mapping: E/M ~ E/N by 
UNM" We denote the collection of closed finite-codimensional subspaces of E by ~ .  
A cylindrical measure p on E is then a family {#N}N~X of Radon measures on the 
finite dimensional spaces {E/N}N~X satisfying the consistency condition 
rCUM (#~)= #N for M___ hr. If # is a Radon measure on E, the family {qN ( # ) } r ~  is a 
cylindrical measure on E, and distinct Radon measures define distinct cylindrical 
measures. We shall therefore use the same symbol for a Radon measure and the 
cylindrical measure it defines. Not  every cylindrical measure is defined by a Radon 
measure. 

If f eE '  (the topological dual of E), we may identify E / f  -1 (0) with the real line. 
With this identification, if # is a cylindrical measure on E, we shall write #f  for the 
corresponding measure f (p )  on the real line. A cylindrical measure # is of type p 
(for p > 1) if there is a constant K such that 

~ \ 1 /p  

_ ~[t]Pdl2y(t)) <=K Ilfll, 

for all fEE'. The least such K is denoted by I1/~11". A set M of cylindrical measures 
is uniformly of type p if sup { I1~11" : # ~ M }  < oo. A cylindrical measure defined by a 
Radon measure # of order p is of type p, and I[/~ I1" < II ~ lie. 

We are now in a position to define Radonifying mappings. A continuous 
linear mapping T from a Banach space E into a Banach space F is p-Radonifying 



Radonifying Mappings and Functional Central Limit Theorems 299 

if whenever # is a cylindrical measure of type p on E, T(#) is (defined by) a Radon 
measure of order p on F. Note that the composition of a p-Radonifying mapping 
and a continuous linear mapping is p-Radonifying. T is absolutely p-summing if 
there exists a constant M such that for any finite set xl . . . .  , x, of elements of E 

[ITxill ~ < M  sup xl)l p 
i =  f E E '  i =  ~ / 

I[f[I  < 1  

The least such M is denoted by rip(T). We can now quote a simplified form of the 
fundamental theorem about p-Radonifying mappings (cf. [7] Expos6s 11 and 12; 
[8] Th6or6me 3.4 and Proposition 3.9). 

Theorem A. I f  T is a continuous linear mapping from a Banach space E into a 
Banach space F and if p > 1, the following are equivalent: 

(i) T is p-Radonifying; 
(ii) T is p-Radonifying, and there exists M > 0  such that ]lT(#)llp~M IIPlI* for 

each cylindrical measure of type p on E; 

(iii) T is absolutely p-summing. 

I f  so, np(T) is the best possible constant in (ii). 

A similar result holds for p = 1, if F is the separable strong dual of a Banach 
space or if F is reflexive. This theorem can be generalised a great deal. 

The Importance of Theorem A is that absolutely p-summing operators have 
been studied intensively, and can be characterised quite simply. 

Theorem B (Grothendieck-Pietsch: cf [6], Theorem2). I f  T is a continuous 
linear mapping from a Banach space E into a Banach space F, T is absolutely p- 
summing if and only if there is a regular Borel probability measure 1~ on the unit ball 
B of E', with the weak*-topology, and a constant M such that 

II Txll < M ( S If(x) l p d#(f))l/P. (1) 
B 

I f  so, rip(T) is the best possible constant in (1). 

If # is a regular Borel probability measure on a compact Hausdorff space X, 
there is a natural norm-decreasing map Jp of C(X) into ~P(#) which sends a 
function into its # equivalence class. 

Corollary C. The map Jr: C(X)---~ ~v(#)  is absolutely p-summing. 

We shall be concerned with the convergence of Radon measures and cylindrical 
measures. We give P(E), the space of Radon measures on a Banach space E, the 
narrow topology (or topology of weak convergence) - a net #~ converges narrowly 
to # if S g d#~---~ ~ g d# for each bounded continuous function g on E. We give 

E E 

/5(E), the space of cylindrical measures on E, the cylindrical topology-a  net #, 
converges cylindrically to # if (#0N---~ #N narrowly, for each N in JK. It follows 
from the Cram6r-Wold theorem that #~---, # cylindrically if and only if (#,)y--, #y 
narrowly, for each f eE ' .  
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3. The Composition of a p-Radonifying Mapping and a Compact Mapping 

The following important theorem has useful consequences. 

Theorem D ([7] Proposition (IV; 6, 1); [8] Proposition 1.16). Suppose that r is an 
extended-valued seminorm on a Banach space E such that C = {x: r (x)__< 1 } is compact. 
Then Q={peP(E) :  II#l[(p,r)<l} is compact in P(E) in the narrow topology, for 
any p> 1. 

As a first consequence we have 

Theorem 1. Suppose that E, F and G are Banach spaces, that T: E--> F is p- 
Radonifying for some p> 1, and that S: F---> G is a compact linear mapping. I f  
Ap={#e/5(E): IIPlI~<I},ST(Av) is relatively compact in P(G) in the narrow 
topology. 

Let B be the unit ball in F and let D =rip(T) S(B). D is compact; let r be the 
gauge of D. If f e B ,  7Cp(T) S ( f ) e D ,  so that r ( S f ) < n p ( T )  -1. Thus by homogeneity 
r(Sf)<-np(T) -~ ]lfl[v for all f in F. Hence if p e A  v 

[I S T(/x)11 fp, r) = ~ r (g)P d (S T(#)) (g) 
G 

= ~ r (S f )  p d ( r (g ) ) ( f )  
F 

<= rip(T) -p S ][fll~ d(T(12))(f) <= 1, 
F 

and so we can apply Theorem D. 

Corollary 2. I f  E, F, G, S and T are as above, if {#~}~A is a net in P(E) which 
converges cylindrically to Ix and if {#~}~ ~A is uniformly of type p, then ST(I~) is a 
Radon measure of order p, and ST(#~)--> ST(Ix ) narrowly. 

4. The Operators T~ 

We shall apply the results of w167 and 3 to the operator T 1 of integration. If 
x 

feAm(0, 1), let (Tlf ) (x)= ~f(t)dt .  T1 is a norm-decreasing linear mapping of 
0 

A ~ (0, 1) into the space C.  [0, 1] of continuous functions on [0, 1] which vanish 
at 0. We can express T t as a convolution operator, and as a product of convolution 
operators. For 0 < ~ =< 1 (this range of values can clearly be extended, but is suffi- 
cient for our purpose) let ~p~ (t) = F (~)- a t ~- 1 for 0 < t _< 1. Then ~b~ e L~ 1 (0, 1), and, 
if g>0,  f l>0  and ~+fl=<l, 

t 

(o~(s) (o~(t- s) ds= 4)~+~(t). (2) 
0 

I f f e ~  1 (0, 1), we define 
t 

( T j ) ( t )  = ~f(s) c ~ ( t -  s) ds. (3) 
0 
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Note that this agrees with the definition of T~ given earlier. It follows from (2) that 
T, T~ = T,+ ~ for e > 0, fl > 0, ~ + fl < 1. We shall need the following well-known 
properties of T~: 

Lemma E. (i) I f  0 < lip < o~ < 1, T~ maps ~,op (0, 1) continuously into C,  [0, 1], 
(ii) I f  e > O, the mapping T~ : C,  [0, 1]---~ C, [0, 1] is compact. 

If c~>0, the mapping T, is one-one on C, [0, 1]. We shall denote T,(C, [0, 1]) 
by C, [0, 1], and give it the image norm defined by T, and the norm on C, [0, 1]. 
Thus it follows from Lemma E(ii) that the inclusion: C,[0,  114  C,[0,  1] is 
compact. 

Our first result is a special case of much more general results obtained by 
Schwartz ([7], Expos6 XIV). As usual we denote the conjugate index of p by p' 
(so that 1/p+ 1/p'= 1). 

Theorem 3. I f  q>p' and O < 3 < l / p ' - l / q ,  T 1 is a q-Radonifying mapping of 
~~ 1) into C~, [0, 13. 

We can choose c~ and fl such that c~> l/p, fl> 1/q and e + f l + 6 =  1. Consider the 
following factorisation of T~ : 

~r 1) T,, C, [0, 1] aq, ~q(0, 1) Te, C, [0, 13 T~, C~, [0, 13. 

Jq is q-Radonifying (Corollary C) and the other mappings exist and are continuous 
(Lemma E). 

Theorem 4. Suppose that q > p', that 0 < 6 < l i p ' -  1/q and that 

Aq = { ~ P ( ~ ' ( 0 ,  1)): [l~ll~ --< 1}. 

Then T 1 (Aq) is narrowly relatively compact in P( C~, [0, 1]). 

We can choose e, fl and 7 such that c~>l/p, f i>l/q,  7>0  and ~ + f l + 7 + 6 = 1 .  
Consider the following factorisation of T~ : 

 ep(0, 1) c ,  [0, 13 1) 

c ,  [0, 13 r , ,  c ,  [0, l] , [0, 13. 

As before Tp Jq T, is q-Radonifying, and T~ T~ is compact, by Lemma E, so that we 
can apply Theorem 1. 

Corollary 5. I f  p, q and 3 satisfy the conditions of Theorem 3,/f {/~=}~a is a net in 
/6(~P(0, 1)) which converges cylindrically to I~ and if {/2,},~ a is uniformly of type q 
then T 1 #~ converges narrowly to T 1 I~, a Radon measure of order q, in C~, [0, 1]. 

We now consider the case p = 2 ;  5~ (0, 1) is a real Hilbert space and the finite- 
dimensional quotients 5P2(0, 1)/N are isometrically isomorphic to finite-dimen- 
sional Euclidean spaces. We denote the cylindrical measure obtained by giving 
these spaces normalised Gaussian measures by w, and call it white noise. If 
f ~ 2  (0, 1)(= (Sfz(0, 1))'), w I is normally distributed with mean 0, variance I[fN 2. 
In particular w is of type q, for any q. 

Corollary 5 ([7], Proposition X V 4; 1). W= T1 (w) is a Radon measure of order 
q on C~ 1] for any 0=<6<�89 and any q. 
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For we can apply Theorem3 for any q such that 1/q<�89 Thus W is of 
order q, for large q, and a fortiori for smaller values of q. W is of course Wiener 
measure. 

Corollary 6. Suppose that {#~}ctEA is a net of cylindrica ! measures, uniformly of 
type 0>2,  on L2(0, 1), which converges cylindrically to w. Then the net {T1 # ,}~a 
converges narrowly to W on 1] for any c.~ [0, 0=<~<�89 

It is not possible, when 6 = 0, to take 0 = 2 in this corollary, for T~: o~ 2 (0, 1) 

C. [0, 1] is not 2-Radonifying. If it were, we would have ~ II Tenll 2< o9 for any 
n = l  

orthonormal sequence (e,) in ~ z  (0, 1); the Haar system shows that this is not so. 

5. Triangular Arrays: Notation and Terminology 

In w we shall show how these results on Radonifying mappings can be used 
to obtain functional central limit theorems for triangular arrays. Here we establish 
the notation which we shall use. We shall suppose that for each n = 1, 2, ... we are 
given k, random variables ~,~, ..., ~,k. on the same probability space (~2,, P,). We 
shall always suppose that 

E(~,j)=0 for all n and j, (4) 
and 

a,2j=E(~,2j)< oo for all n andjs{1 ,  k,}. (5) 

We shall write J 
S.s= Z ~.i, S.=S.k. 

i=1 (6) 
2 2 2 2 s,s=E(S,s  ), s, =E(S.).  

We shall always suppose that 

0<s,21 <s,Z2< ... <s ,  z, for all n, (7) 
and 

2 s,-->l as n ~ o o .  (8) 
We shall write 

t ,0=0,  t . j=s2 z sZs for 1 <=j<k,, (9) 
and 

2 _ for 1 < j  < k,. (I0) Vnj-- tnj-- tn, j--1 

Note that vZs = s2 z a2s if 4,1, ..., ~.k. are independent. 
We now define, for each n, a vector-valued random variable X,(t) in 5r 1) 

by setting 
X.(t)=v~jZ ~.j for t, ,j_l <t<=t,s. (11) 

Each Xn(tIJs finite-dimensional, and has a corresponding distribution measure #, 
(which we shall consider as a cylindrical measure). We shall denote T 1 X, by Y, 
and T1 #, by v, (which we shall consider as a Radon measure). Note that Y,(t,j)= 

J 

~,i for j =  1 . . . . .  k., and that I1. is linear between these values. 
i = 1  
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I f f ~ 2 ( 0 ,  1), we set 
tnj 

f i . j= ~ f ( t )d t .  
tn,j-I 

Then (/G)f is the distribution measure of the random variable 

kn kn 

< X . , f > =  ~ fl.jV;~ 2 4. j= ~ ~.jtl.j ,  
j = l  j = l  

where c~.j= fl.j v2j I and ~ . j=  v2j ~ 4.g. Note that 

( t ! J ( f ( t ) ) 2  )-~ I/~.~1_-<% d t  , 
tn, - _ 

by the Cauchy-Schwartz inequality, so that 

(12) 

(13) 

(14) 

kn kn tnj 
~2j< ~ j" f(t)  2 dt= Ilfli 2. 

j = l  j = l  tn, j-1 
(15) 

We shall consider cases in which the random variables (r in each row are 
dependent, and satisfy a mixing condition. For each n and j we denote by Mj(n) 
the a-field of f2. generated by {~.k: k<j}  by MJ(n) the a-field of f2. generated by 
{4.k: k>j} .  If (o=((o.) is a monotonic decreasing sequence of numbers tending 
to 0, we shall say that the array (~.j) is (o-mixing if 

IP. (E~ ~ E2) -  ~(E1) P~(E2)I ~(oh P~ (Ex) (16) 

whenever E 1 ~ Mj(n) and E 2 ~ m j+h (n) for any n and any 1 < j  < j  + h =< k.. Similarly 
if ~ = (~0.) is a monotonic decreasing sequence of numbers tending to 0, we shall 
say that (~.j) is O-mixing if 

IP. (E, ~ E2) -  P. (E~) P. (E2)[ =<~0h P~(E0 P. (Ez) (17) 

whenever EleMj(n)  and E2~MJ+h(n) for any n and for any 1 <=j<j+h<=k.. We 
need the following facts about (o-mixing and 0-mixing arrays. 

Lemma F (cf. [2] pp. 170-171). Suppose that (4,j) is (o-mixing. I f  4 is measurable 
Mg(n), if tl is measurable MJ+h(n), i f4 ~ LP(Y2,) and tl~ L p (f2,) then 

IE(~r/)-E(4) E(r/)l ~2(O~/p 11411~ Jl~[l~,. (18) 

In particular, if 4, tl6 L ~ (f2.) 

IE(r H411~o rl~ll~. (19) 

Lemma G [4]. Suppose that (4.j) is ~p-mixing. I f  4 is measurable Mj(n), if t 1 is 
measurable M (j+ h)(n) (with h > O) and if 4, tl ~ L 1 (f2,) then 4 rl ~ 12 (f2,) and 

IE(~u)-E(~)E(~)I <~'h II~lh II~LI~. (20) 
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6. Some Functional Central Limit Theorems 

We are now in a position to establish some functional central limit theorems. 
In each case the procedure  will be the same. First  we show that the cylindrical 
measures #~ are uniformly of type j (for some suitable j) in L~ ~ (0, 1). This implies 
that  the sequence of measures (vn) is narrowly relatively compact  in P(C~. [0, 1]) 
for some suitable ~ (Theorem 4). Next  we show that  any limit measure of the 
sequence (v,) must be Wiener measure W; this implies that  v, ~ W narrowly. 

In order  to show that  any limit measure must  be W,, we use a characterisat ion 
due to Ros6n (see [2], Theorem 19.1). This says that  if # is a Radon  measure on 
C .  [0, 1] for which 

~ f ( t ) d l z ( f ) = O  for all 0 < t < l ,  (21) 

( f( t ))  e dp ( f )  = t for all 0 < t <- 1, (22) 
and 

f ( t ) - f ( s )  and f ( u ) - f ( t )  (23) 

are independent  r andom variables whenever  0_-< s < t < u __ 1, then # = W. (21) and 
(22) are usually easy to establish. The next result enables us to deal with (23): 

Theorem 7. Suppose that (~ni) is a triangular array which is 49-mixing, for some 49. 
Suppose that the corresponding sequence (vn) has v as a limit measure in P(  C .  [0, 1]). 
if 

max{a~j: l=<j=<kn}--~0 as n - * o o  (24) 

then the random variables f ( t ) - f ( s )  and f ( u ) - f ( t )  are v-independent whenever 
O<_<_s<t<u<=l. 

By choosing a subsequence if necessary, we may  suppose that v, -~ v narrowly,  
and that  

m a x { a n t  i l<-j<=kn}<=l/n 2, for each n. (25) 

Suppose that  0 =< s < t < u =< 1. Let  I, be the least integer j such that  t,~ => t, and let 
m n = In + n. No te  that  

__ - 2  2 2 tn, j+l--tn, j--Sn (E(Sn, j+I)-E(Snj)) 
<= 2 s21 ((E (S~, j +1))4 _ (E (S2~j)) ~) 

<<-2s21%,j+1, 

so that t~,t, ~ t. Similarly 
n 

t . . . .  - t~ , z~<2s2 1 ~ an, Z~+k<=2S21 n -1, 
k = l  

so that  t~,m~-~ t, tOO. In particular,  for sufficiently large n, t~,,,, < u. For  such n let us 
set q , =  Y~(t)-  Y~(s), rn= Y~(t . . . .  ) -  Y~(t) and v~= Y,(u)-  Y~(t . . . .  ). Note  that  

(E(r~)) ~ < ~ (E(r < ( n +  1)/n 2. 
k=O 

Now let ~ and fl be any real numbers.  Then  

= E (e i~q" e il~ ~" + ~")) = E (e i~q" e i l~) + E ((e ia*" -- 1) e i~q" e ia ~"), 
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and 
e i'~f(O-f(~)) dv , ( f )  ~ e i#(f(u)-f(t)) dv , ( f )  

= E(e i~q") E(e ia(~"+ ~")) = E(e i~q") E(e ia~") + E(e i~o") E ((e ir - 1) ei~""). 

Now by Lemma F, 
IE (d '~~ d ~ ~-) - E (d ""-) E (d~ ~")1 < 2 q~.; 

also 
]E ((e ' p " -  1) e i~`q" e'P")[ < g(I/~r.I) _-< I/~1 (g(rff)) ~ <=~(n + 1)/n 2 

and 

Consequently 

[E((e i ~ " -  1) eir <=fl(n+ 1)/n 2 . 

e i~(:(~ e ip(y(")-y(t)) dv ( f )  

- ~ e i~r162 d r ( f )  ~ e ipr162 d r ( f )  

= lim [~ e i'(:(')-:(~)) e ip(:(")-:(')) dv , ( f )  

- S ei~:r d v . ( f )  ~ e 'p:~")-:"~] d v . ( f )  

~ 0 .  

Since this holds for all e and fl, f ( t ) - f ( s )  and f ( u ) - f ( t )  are independent (cf. [3] 
Theorem 6.6.1). 

First we consider the case where the random variables in each row are inde- 
pendent. 

Theorem 8. Suppose that ~,l, ..., ~,k, are independent, for each n. I f  for some 
integer p > 1, there exists K >  0 such that 

#2p(n,j)=E(~2.f)< K 2" u2f for each n and each j, (26) 

then the sequence (#,) is uniformly of  type 2p in 5~2 (0, 1). 

If, further, (24) holds, then v,, -+ W narrowly in P ( C~. [0, 1])for any 0 < 6 <  1/2 p. 

I f f s ~  2 (0, 1), (/~,): is the distribution measure of the random variable ( X , , f )  
defined in (13). Since 

llzq(n,j)~(llzp(n,j))q/P'(K2qt7 2q for q<p, 
we have 

kn 
E ( ( X , ,  f ) 2 p ) =  ~ (2p)!l ~ (fl, J v~2) 2~j/t2~j(n,J) 

vl+...+vkn=p j = l  

kn 

< E (2P)! 1-[ 
vt + " ' +  Vkn= p j = l  

kn 

< (2p)! Z P!]-I 
= 2PpT " Vl + ' " + V k n =  p j ~ l  

[ kn \ p  

< ( p s  2 K 2 IIf]12) p, by (15). 

(2 v j) ! 

(K s, %j)2 vj 
(2 D) r 

vj ! 
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Thus the sequence (#.) is uniformly of type 2p. If 0 < 3 < � 8 9  then (v.) is uni- 
formly of order 2p in C~. l-0, 1], by Theorem 3, and narrowly relatively compact in 
P(C~. [0, 1], by Theorem 4. Suppose now that (24) holds, and that v is a limit 
measure of the sequence (v.). Then 

f( t)  dr. ( f )  = E (Y. (t)) = O, 

(f(t)) 2 dr. ( f ) =  E (Y, (t)) 2 = t 

for all n and each 0 <  t_< 1. Since the distributions of the random variables Y,(t) 
are narrowly relatively compact in P(R), and therefore tight, by Prohorov's 
theorem (cf. [2], Theorem 6.2), it follows that (21) and (22) hold for v. Finally (23) is 
satisfied by Theorem 7. Thus v = W, and v,--+ W narrowly. 

Next we consider a C-mixing triangular array of bounded random variables. 
oo 

Theorem 9. Suppose that (~,,j) is a (o-mixing triangular array, with ~ (o~ = L < 0% 
j=o 

of  bounded random variables, and that there exists a constant C such that 

[~nj[ ~ C Vnj for all n and allj. (27) 

Then the sequence (#.) is uniformly of  type 4 on ~2(0,  1). 
If, further, (24) holds, then v. ~ W narrowly in P( C .O [0, 1]), for any 0 =< 6 < �88 

kn 
As before, if f s ~ 2 ( 0 ,  1), (/~.)y is the distribution of (X. ,  f }  = ~ e.j q.j. Thus, 

i=a for fixed n, 

E ( ( X . , f }  4) 
kn 

<4t Z 
r = l  

Z ? r  ? r + i  ?r+i+j ~)r+i+j+k [E(~nr ~]n,r+i t~n,r+i+j ?]n,r+i+j+k)[, 
O<=i,j,k 

i+j+k<-kn-r 

where ?t= le.tl. Now, arguing as in [2] (p. 173), 

so that 

where 

]E(rhr rl.,,+i ~l.,,+i+j rl.,r+i+j+k)l < 4 C  4 min((o/, (ok, ~i (ok+ (O j), 

E (<X., f >4)=< 96 C 4 ( ~  + ~2 + ~3 + Z4), 

kn 

Y,l=2 
r = l  O<~j,k<i 

i+j+k<-kn-r 
kn 

<= 2 ~ 7~Tr+i):r+i+J (oi(i+l)~ 
r = l  O<=j<-i 

i+j~kn--r 
kn kn- r 

< ~ ~ ?,?,+i(Oi(i+I) 
r = l  i = 0  

kn /kn- i  \ �89 /kn- i  \ 4 

i = 0  _ r = l  

< ~ , ( O i ( i + I ) <  ~ < L  2, 
i = 0  i = 0  / 
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kn 

22=2 
r = l  

kn 

23=2 
r = l  

kn 
24=2 

r = l  

2 ?r?r+i?r+i+j?r+i+j+k ~k~L2' 
o~i ,]6k 

i+j+k~kn-r 

7, ?~+i ?~+i+j ?~+i+j+k ~j~ L2, 
O6i, k~j 

i+j+k6kn-r 
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O<i,k<=j 
i+j+k<kn-r 

kn 
~-~ 2 2 ~/r ~r +i ~)i ~)k 

r = l  i+k<=k.-r 

k ~ �9 
k =  "= r = l  k = O  

Thus (p,) is uniformly of type 4, and (v,) is uniformly of order in C~. [0, 1], for any 
0=<J<�88 Suppose now that (24) holds. As before, ~f(t)dv,(f)=O, for 0_<t_<l, 
which implies that (21) is satisfied for any limit measure v. For fixed t, let j ,  = 
sup {j: t . j _  t}, so that 

5(f(t))2 dv.(f)=E ( ~, {nj+On~,j.+l) 2 
j = l  

for some 0_-< 0, ___< 1. Now 

I (E (j~=l~nj-+-On ~n,j.+l) 2\ �89 

I( , = 1 , i n  2) ( __< - -  tn ,  j .  

2 • • 2 
= tn,j~-~ 0 as n ~ ~ .  

Thus j'(f(t)) 2 dr,(f)--* t as n--~ ~ ,  from which (22) follows. 

Finally (23) is satisfied, by Theorem 7, so that v = W and v, ~ W narrowly. 
If instead of assuming (27), we make the weaker assumption that there exists a 

constant C such that 
4 4 4 E(~,j) <= C v,j for all n and all j, (28) 

then using Lemma F, we find that 

[E(~,r ~/,,r +i t/,,r + i+j ~/,,r+i+j+k)[ _--<4 C 4 rain ( ~ ,  ~ ,  ~ + ~.),  

so that at first sight it appears that we must suppose that ~ ~)  < ~ .  If, however, 
j=o 

we consider sums Z~, ~ ,  ~ and Z~, where Z~ is taken over those suffixes for 
which i=max(i,j ~, kP), ~ over those for which kP=max(i,j ~, k p) and ~,~ and ~ ,  
over those for whichj~ = max(i,j  ~, kP), and choose a and fl suitably, then we can do 
rather better. Thus if we take a=2.6,  f l -4 .2 ,  it is enough to suppose that 

~ rbo.19 ~.~ < oo. Thus we have 
j=o 
22 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 26 
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Theorem 10. Suppose that (~j) is a c~-mixing triangular array, with f ,  ~)j.o 19 ~.- oo, 
j=o 

for which (28) holds. Then the sequence (#n) is uniformly of type 4 on ~o2 (0, 1). 
If, further, (24) holds, then v n ---, W narrowly in P(C~, ['0, 1]), for any 0 N~ <�88 

The details are left to the reader. 
Since 0-mixing is inherently a stronger condition than ~b-mixing, it is to be 

expected that we can place weaker conditions on the sequence (0n); the next 
theorem shows that this is so. 

Theorem 11. Suppose that (~ni) is a O-mixing triangular array, with ~ Oj < oe, 
j=l 

for which (28) holds. Then the sequence (#~) is uniformly of type 4 on &o2 (0, 1). 
If, further, (24) ho lds, then v n --* W narrowly in P ( C ~. [0, 1], for any 0 < 6 < �88 

The proof is similar to that of Theorem 9, using Lemma G in place of Lemma F. 
Some care is needed with repeated suffixes, but the details are again left to the 
reader. 
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