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1. Introduction and Summary

Let S be a countable set of integers, N=1{0,1, ...} and Q=5". Define the variables
{X ,(0):nz0} on Q by X, (0)=0w,, where w=(wg, @y, ...,0,,...). Let F be the o-
field generated by the variables {X,(w):n=0}. An initlal probability vector u®
=(?;ieS) and a (I-step) transition probability matrix P=(P(i,j);i,jeS) de-
termine a probability measure # on & and a temporally homogeneous Markov
chain {X, (w):n=0} on (Q, % %) such that u\”=2(X,=i) and P(i,j)=P(X,.,
=j|X,=1i) provided that (X ,=1)>0. Denote by {u™: n=0} the sequence of the
absolute probability vectors, where u®™=(u{";ieS), u"=2(X,=i) and let P"
=(P™(i,j);i,jeS) be the n-step transition probability matrix. Throughout the
paper our results will refer to a Markov chain for which the initial probability
vector is strictly positive (i.e. #® >0 for all ieS) and 2 will correspond to such an
initial probability vector. In the proofs we shall sometimes consider Markov chains
assuming the same transition probability matrix P but a different initial probability
vector, (say) 4, and in this case £, will stand for the corresponding probability of the
chain. We shall abbreviate Z for %, where ¢ stands for the Dirac measure.
Let Z, be the o-field generated by X, and %% the o-field generated by X,

Xyi1s--» 7 =) Z, will be said to be the tail o-field of the chain. A set A in a
n=0

o-field & is called atomic with respect to ¢ if Z(A) >0 and A does not contain two
disjoint subsets of positive probability belonging to . A set 4 in ¢ is called
completely nonatomic with respect to ¢ if #(A4)>0 and A does not contain any
atomic subset belonging to 4. It is well known that, in general, Q may be

represented as Q= U A,, where A, is completely non-atomic and 4,, 4,, ... are

atomic sets with respect to 4. If A, =0, % will be said to be trivial.

If A and v are two finite measures on a measurable space (X, ') we denote by |2
—v|| the total variation of A—v ie. [A—v||=(A—v)T(X)+(A—v)" (X), where (/.
—v)* and (A—v)~ are the positive and negative parts of A—v in its Jordan
decomposition. It is easy to see that if X =S and % is the class of all subsets of S, || 4
—v||=Y|2() —v(i)|. Further A° will stand for the complementary set of 4, 4,44,

ieS
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for the symmetric difference of A, and A,, Z for the set of the integers and R for the
set of the real numbers. A shift function T': Q— Q is defined by setting T(wg, w4, ...)
=(w,,®,,...). We shall write TA={Tw:wed}, T"'A={w: TweA} and T°A
=A. A set Ae & is said to be invariant if T~ A= A. The class of all invariant sets,
denoted by .# is a g-field, called the invariant ¢-field. It is easy to see that both T and
T-1! are countably additive maps from & into Z Besides, T~! preserves the
disjointness of sets and commutes with complementation and countable in-
tersections. These properties of T~ !, not possessed by T, are probably accountable
for the use of T~ in the definition and the investigations of the invariant sets from
the very beginning of the ergodic theory.

In a paper concerning the structure of 7, Abrahamse [1] has shown that if T is
restricted to the sets of 7, then it proves tractable and useful. He has first proved
that T maps J one-to-one onto itself and £ ={AeZ: TA=A} (Theorem 1, [1]).
This result implies that an invariant set can also be defined as a set with the property
TA=A. To the further “rehabilitation” of T we remark that making use of the
above mentioned result of [ 1] we can prove that T restricted to 7 has also other
desirable properties, which will be needed in what follows, expressed by the
following

Proposition 1. Suppose that A, A,, A,, ... belong to . Then
1) TA°~(T/1)“

(i) T ﬂ A,= ﬂ TA,,
(iii) T”‘*"A T’"T"A for m, neZ.

We remark that these results hold in general, the Markov property being not
used in their derivation. We shall say that A is a null set if 2(A)=0.1f 2(T" A) =0 for
all neZ, A will be said to be a small set. It is easy to see that if A is a null set then
P(T-"A)=0 for all neN. Indeed, Z(T-"A|X,=0)=P (A X,=i)=0 for all
ie{j: u>0}. However 2(T A) is not necessarily null for any null set A and
therefore not all the null sets are small sets. In Sect. 4 we identify a class of smali sets
that will prove useful in some applications.

Suppose that ¢ and # are two o-fields such that ¥ — # We shall say that ¢
= as. if the sets of # are the sets of ¥ modulo small sets and ¥« # as.
otherwise.

Let A=(A,, A, ...) be asequence of subsets of S. We shall say that lim {X €4}

n— o
=A as. if

P(AAlm inf{X,eA4,})=P(AAlimsup{X ,eA,})=0.

n—oo n— oo

A subset C of § will be said to be almost closed if lim { X e C} exists a.s. and assumes

n— 00

positive probability. C will be said to be a transient set if lim sup {X e C} is a null

set. Denote by € the class of all almost closed and transient sets, by B the class of all
transient sets and by .4” the class of all null sets in .#, It is easy to see that € is a
boolean algebra and B is an ideal in €. The following basic result due to Blackwell
[3] (see also Chung [5], Theorem 1, Sect. 17) exhibits the relationship between the
elements of € and .#.
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Theorem A. To each invariant set A there corresponds a transient or almost closed set
C such that A=1im{X,eC} as., according as A is a null set or not. This

n— oo

correspondence is an isomorphism from £/ A" onto €/B.

Abrahamse, in the already mentioned paper [1] has shown that an isomor-
phism of the type referred to in Theorem A can also be established between some
sequences of sets A =(A, A,, ...)such that lim {X €4} exists a.s. and the sets of 7,

n— o

with the difference that the rdle of the null sets is played here by the small sets. In
analogy to the invariant sets case discussed above, we shall say that A4 is a totally
transient sequence if lim sup{X €A, } is a small set and 4 will be said to be a tail

sequence if it is not a totally transient sequence and if limsup{X,c4,}
—liminf{X,e4,} is a small set. For A=(4,,4,,...) and B=(B,, B, ...) we shall

define Ac=(A45, 45, ...), AUB=(AqUBy, A, UB,,...) and AnB
=(AynByA;NBy, ..., TA=(4,,4,,..)and T ' 4=(S, 4, ...). If we denote by
& the class of all totally transient and tail sequences and by D the class of all totally
transient sets, then we can easily check that & is a boolean algebra and D is an ideal
in €. Denote by .# the class of all small sets in 7. We shall say that A4 lim {X,c4,}

f1— 0

a.s. is a small set if A4limsup{X €4} and AA4liminf{X,eA,} are small sets.

n— oo n—

The following result is due to Abrahamse (Theorem 3, [1]).

Theorem B. To each set AcT there corresponds a totally transient or a tail sequence
A=(Ag, Ay,...)such that A4 lim {X ,eA,} a.s. is a small set, according as A is a small

H— o0
set or not. This correspondence is an isomorphism from 7 J# onto S/D, and
commutes with T.

The first criterion on the structure of the invariant o-field is due to Blackwell,
who in the already mentioned paper [3] showed that a necessary and sufficient
condition for the triviality of .# is that every bounded solution ¢ of the equation

()= P/)$() (1
jeS
be constant. Breiman [4] gave a characterization for some kind of atomic sets 4 of
# in terms of the bounded solutions of the inequation

b= Y P o)
jeC
where C is an almost closed set corresponding to an invariant set A.
Recently, Derriennic [9] proved for an arbitrary state space S, that .# is trivial
under any initial probability if and only if
. PO, )= PY(y, )“ =0, x,yes.

j=1

o1
lim =

nooo N

Derriennic’s proof leans heavily on the properties of the contractions on a Banach
space.
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In the present paper we are concerned both with the structure of the invariant o-
field and with its relation to the tail o-field. In Sect. 2 we give some necessary and
sufficient conditions for # =7 a.s. Our conditions are related to the quantities

a(x)=lim | P™(x, )= P"~ D(x,")], xeS 2)
which were first considered by Ornstein and Sucheston [15], who proved that
under certain assumptions a(x) is either O or 2, a property that became known as
“the 0-2 law”. Subsequently, Derriennic [9] proved a very general 0-2 law and
showed thatif .# =7 a.s. under any initial probability 4®, then «(x) =0 for all x and
supo(x)=2 otherwise. Ornstein and Sucheston’s proof is based on L,-operators

xeS

theory, whereas Derriennic used a combined martingale and operator-theoretic
approach.

Our approach is based on the martingale convergence theorem and does not use
the notion of operator. Besides, one of the equivalent conditions for # =9 as. is
expressed by means of an a.s. convergent sequence, which proves adequate in some
applications involving recurrence conditions.

In Sect. 3 we give a result characterizing both the atomic and the completely
non-atomic sets of #, which parallels the results given for the tail o-field in [6] and
[12].

In the final Section we study the invariant sets attached to a normed sequence of
random variables which converges aimost surely and explore their relation to the
o-field generated by the limiting random variable. As an application, classes of
invariant events are identified for some supercritical branching processes.

2. The Case £ =7 as.

For any state i such that u{"’>0 we shall define the random variables
P™(i,w,)

z,()=1P" (i, w,)
1 if P (i, 0,) =0.

if P, 0,)>0

The random variables {z {w)}, defined in a slightly different way, were
considered in [7] where they were used to give a unified martingale approach to
some results of the tail ¢-field theory. We found out recently that similar random
variables were considered before, in connection with Martin boundary theory,
where their convergence was derived by using the space-time harmonic function
theory (see ¢.g. [10]).

We shall further show that the random variables {z,(w)} can be used to derive a
criterion for =9 as.

Theorem 1. The following three statements are equivalent:
(i) £F=9 as.
(i) lim z,(w)=1 as. for all i such that V>0,
(i) lim |P™(,)—P"=D(,~)|[[=0 for all ieS.

n—
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Proof. Suppose that (i) holds and define the random variables

DX, =i|X,) P(X,=ilX,
O(n(Xn): ( Lfi) - ( Z{O) ) (3)

3

1

We shall prove that lim a,(X,)=0 a.s. if and only if lim z,(w)=1 as.

A— O n— 0

By a well known property of Markov chains we get

22X, =ilF") 2X,=il#")
o, (Xn) = IM(I) - O‘u(O)

Now the martingale convergence theorem (see e.g. [14] p. 409) yields

, PX,=ilT) PX,=ilT)
lim o, (X )= /11(1) - Z('O) a.s. 4

By elementary calculations we can deduce that unless (X ,=i| X,)=0, z, () is the
ratio of the quantities (X, =i| X,)/uV and 2(X ,=i| X ,)/u'” which appear on the
right hand side of (3) and in the case (X ,=1i| X ,) =0, z,(w) is defined as being equal
to 1.

As in [7] we get

. P(X, =i
lim zn(w):m
n— o0 (4]

9|y

If

(0)
I 0

for almost all we{w: #(X,=i|.9)>0}.

Unlike the {z,(w)}, the random variables {«, (X,)} are defined without any
modifications and their limit (4) is established without the restriction: “for almost
allwe{w: P(X,=i|7)>0}” imposed for the validity of (5). Therefore, to complete
the proof of the fact that lim «,(X,)=0 a.s. if and only if lim z,(w)=1 a.s. it will be

- D N 00

sufficient to show that there exists a sequence {C,: n=0} such that lim {X,€C,}
=Ay={w: P(X,=i|T)=0} a.s. and that P"~ (i, j)=P"(i,j)=0forjeC,_,u C,,
n=1,2,.... Indeed, we know that /4, differs from a set in .# at most by a null set and
according to Theorem A there exists a set C such that Iim {X,eC}=A, as. It is
easy to see that we can take C,= C—D,, where D, = {j: "’ >0, Z(Ao| X, =/)=0},n
=0,1,.... Suppose now that for a certain k, P¥(i,/)>0 with je C,. Then by the
Chapman-Kolmogorov formula 2(4,|X,=1)=2 (A, X,=/)P¥(i,j)>0. But
from the definition of A, we obtain #(A,|X,=1i)=0 which is a contradiction.
Therefore P*(i,j)=0 for jeC,, n=1,2,.... Further 2(A,|X,=0)=P(Ay| X ,=1)
=0 and therefore P~ (i, j)=0forjeC, ,,n=1,2,.... Hence lima,(X,)=0 a.s. if

and only if lim z (w)=1 as.
We show now that lim o, (X,) =0 a.s. is implied by (i). Suppose the contrary, i.e.

H— o

that there exists a set A, such that for we A, a(w) = lim «,(X,)+0. We may take for

n— o0
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definiteness a(w)>0 for weA,. If we integrate (4) over A,, after elementary
calculations we get

P(A X =D)>P(A| X =1)

which contradicts the assumption (i) and the implication (i)—(ii) is proved.
Suppose now that (ii) holds. Then the dominated convergence theorem applied
to the sequence {,(X,)} yields

lim sup |2(X,eB|X,=i)—P(X,eB|X =)< lim [|o,(X,)|d?=0

n-ow BcS o0 8
which implies

lim [P™(, +)—P" Vi, +)|| =0. (6)
We recall that the states i for which (6) was derived are subjected to the restriction
w1V >0, which was assumed in the definition of {e,(X,)}. We show now that this
restriction can be removed. Because 1{” was supposed positive for all ieS we need
only consider the case ©{¥>0 and u{"’=0. Denote §'={;: u{"'>0}, and let a*
=max(a,0). Then, for any ieS

1P, ) — PO D@, )l
=32, [ PEHPO V(. k)= Y PG j)P"= 2 (k] ()

keS jeS Jjes
Further (6) and (7) imply
lim [P™ (i, )= P*~ (i, )|

<lim Y PG, /)| P" V()= P*2(, )| =0
n— o jeS’
and the implication (ii)—(iii) is proved.

Suppose now that (iii) holds and assume that .# < .7 a.s. In this case there exists
aset AeJ such that (T A4 A4)>0 and we can suppose without loss of generality
that A and T A are disjoint. Indeed, if A4 and T4 are not disjoint then in view of
Proposition 1 we can arrange to have such a situation by taking A (7'A)° instead
of A.

By a well known procedure which goes back to Blackwell [3], we know
that if we take B, ={j: 2(A|X,=Jj)> 9} with §>% then {B,}eS is the sequence
corresponding to A in the isomorphism alluded to in Theorem B (see also [1]).
Further, according to the same Theorem B, this isomorphism commutes with
T and therefore lim {X,eB,, ,}=TA as. Now, if ieB,, and » is sufficiently large

n— o0

n+1

PX, B, W X,=020 and 2(X,.,. B, .. 11X,=0)Z0

n+m

and taking into account that B, and B, , , are disjoint for all n, we get |P™(i, ")
— PO~ D(,+)| 226 —1>0 which is a contradiction and the proof is complete.
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Remark. As in the case of the tail o-field considered in [7], a property like (ii) may
prove useful when dealing with recurrence type conditions, whereas (iii) expressing
a “global property” seems less adequate in handling such situations with
probabilistic methods. A criterion of this type can be used to derive the triviality of
the tail o-field, by proving first, what is often simpler, the triviality of .# and then .#
=7 a.s. We notice that in this way we can give an alternative proof of the triviality
of the tail ¢-field for a Markov chain assuming a trivial .# and satisfying the
property P{w: X, , ((w)=X,(w)i.0)=1, a result which was first established by
Kiichler in [13], where he gave a full description of the tail o-field structure of a
birth and death process. It is possible to show that in this case lim z,(w)=1 a.s. in

H— 00

the same way as in the alternative proof of the Blackwell and Freedman 01 law
given in [7].

3. The Structure of .#

We consider now the vector chain {Y,: n >0} with ¥, =(X", X¥), n >0, defined on
the probability space (3, %, P); (XVinz 20} and {X{?:n=0} being two inde-
pendent copies of {X,:n=0}, 0=0xQ F=FRQF and P=PQP.

Let us further define, for any nonnegative integers m and n, the random variable

ﬁm,n((b) =-

m ?
=1

Z(P(l)(Xir})ﬂ ) _p(l)(X(Z) )H

Denote by I, the completely nonatomic set and by I,,1,,... the atomic sets
occurring in the representation of Q corresponding to .#.

The assertions “for almost all &” or “a.s.” in the statement of the following
Theorem will be understood to hold with respect to 2.

Theorem 2. (i) There exists the limits

lim §,, (@) = B,,(®),

H— o0

lim f,(®)=p(d) a.s.

m— o0

(i) B(®)=2 for almost all GelyxI,u {J I, x1,,
uFu

B(@)=0 foralmost all del, <1, u=12,....

Proof. 1t is easy to see that — P9, +))

converges (see ¢.g. Derriennic

[9]p. 115)since if we denote f (1)

—PW(j, -))H then f'(n) can be shown

to be a subadditive function i.e. f(m + n) <f(m) +f(n) for all m,ne N and therefore
lim f(n)/n= 1nff(n)/n Hence lim ,, (&)= p,,.(®) exists for all ®eQ.

-0 n— oo
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The existence of (@) will be proved in the course of the proof of (ii).

Because I is completely nonatomic, for any >0 we can find n(e) disjoint sets
I(1),...,I{(n(e)), such that I,=I(1)vIQR)u...ul(n(e) and 0<P(I(s))<e/4 for
1<s<n(e). Let C)={j:2I(s)| Xo=j)>1—¢/4}. As we have seen Dbefore
lim{X,eC(s)} =I(s) as. with respect to # for s=1,2,...,n(e). It follows that

Tim PO, C(s))=2(I(s)| X, =i). Take now i,eC(s) and i, C(s") with s+5s". Then
1o
I . O
hm‘ Z(P(l)(lla.)_P )(123.)
n—oo M= 1

>lim L Y (PO, C(5)— PO(iy, Cs))

n-o0o ;1

+ lim ! i (PD(i,, C(sY—PP(iy, C(5))

no My

=2—e.

It follows that lim inff, (@)>2—¢ for almost all @el(s) x I(s'). However, we

R— 0O
can further split each of the sets I(s), s=1,...,n(¢) into disjoint subsets whose
probabilities are smaller than ¢'/4, for any preassigned &' smaller than &. Using the
same reasoning as above we get, in particular, that lim in{f (®)>2—¢ for almost

n— a0

all @l (s) x I(s') and because we can apply the same reasoning to any subsets of I(s),
s=1,...,n(e) we deduce that §(3)=2 for almost all del,xI,.
The proof of f(@)=2 for almost all de | I, x I, is easier and will be left to the

uFu

reader.
We shall prove now that S(®)=0 for almost all &el, xI,, u=12,...
According to Theorem 1 of [9], for any i,, i,€S

n

Z (P(Z)(il’ ')_P(l)(izn '))

I=1

lim —
n»owo N

=2 sup (ZF (A=, (A) (8)

Aef (iy,12)

where 2(A)=2(A|X,=1) for any initial probability v such that v}’>0 and

J(i,, i,) is the invariant o-field of the Markov chain assuming the initial probability
=%(5(i1) +0(iy)).

We show now that if I, is an atomic set of .# and if at least one of the inequalities

2 (1,)>0and Z _(I,)>0holds, then I, is also atomic with respect to # (i, j). Indeed,

suppose the contrary; then according to Theorem A there exist two disjoint almost

closed sets C! and C} such that lim {X,eC,} =4, as. and lim{X,eC,} =4, as.

with respect to &, and %(/11),%2/12)>0. Further, because —iim mf{X,eC.} and
’ h— o0

lim inf{X e C}/} are both invariant and disjoint sets, then we must have either
2(lim inf{X,eC.})=0 or #(lim inf{X,eC,})=0. But u, was supposed positive

for all ieS and therefore this entails either Z(lim inf{X,eC,})=0 for all ieS or

n— o0

2 (lim inf{X,eC/})=0 for all ieS and the inequality Z,(A,)#,(4,)>0 is con-

n— 00
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tradicted. Therefore I, is an atomic set with respect to .# (i, j).

Notice now that if we denote S ={i:p™>0}, n=0,1,... then
S$,25,2...25,2.... Indeed, we can prove this by induction if we take into
account that ,u(o’ was supposed positive for all ieS. Takenowi,,i,€S, . Then for any
I,uzl we get 2(1,|X,=i)=21,1X,=i)=...=2(,X,,=i,) and similarly
2,0X,,=1i,)=2,X,=i,). Further (8) yields

lim = Z(P(l)(X(l)_l ) P(l)(Xif):iZ»'))”
noo N1
=22 X, =i) =2 X, =i)|+2 sup (#,(A)=Z,(A) )
Ae s, )
AcIg

Choose now C,(e)={i: 2(I,)>1—¢/4} and take i, i, C,. Then (9) implies

hm

h— 00

O =i, ) = PO =iy, )| S27+22=

But lim {X,eC,(e)} =I, as. with respect to £ for any ¢>0 and the Theorem

M- o0

follows.
Let us define, for any nonnegative integers m and n, the random variable

1

V(@)= “”’”( -PO(X,, '))H~

To study {y,, ,(w)} we shall need the following
Lemma 1. For any m, n and i

X ()= PO ) =

I=1

n+1

;WMW%W%%”

Proof. We recall that if v is a signed measure with v(S)=0 then, ||v]| =2 sup v(4).
AcS
Further

n+1

l;uﬂ”%»—ﬂ%n»”

=2sup Z [2(X

BeS? 11

—2sup Z Z P(]l:.]Z (M(l+m) P(l)(i:jl))

B=S> 1 =1 (j1,j2)eB

vims Xiome VEB) = P(X o Xy oy )EBI X, =1)]

n

zwmwrwmm”

<

Theorem 3. (i) There exist the limits

limy, (@)=7,(w),

n— O
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lim y,,(0)= y(a)) a.s.

m— oo

(i1) y(e)=0 for almost all wel,,
y(w)=P(l,) for almost all wel, u=1,2,....

Proof. First notice that by the triangle inequality and by the above Lemma 1

n+p

X =P »)H

n

Z (l-l—m) P(l) H

*Z(#‘”"” ()= PO, ))H

Therefore, as in the case of the expression considered in Theorem 2

“*”‘)(-)—P(l)(i, ))H

is a subadditive function and hence lim y,, ,(w)=7,,(w) exists for all m.

The existence of y(w) will be obtained in the course of the proof of (ii).

To prove that y(w)=0 for almost all wel, we can proceed in the same way as in
the proof of Theorem 2 and we leave it to the reader to work out the details.

To prove that y(w)=P(I,) for almost all wel,, u=1 we notice first that

1 n
Ia@ =12 [ 3 5 W PO =0, )

jeS H=1 keCw)

n +
FY Y U POX ) | (10
1=1 k¢Clw)
We choose further C(u)={j: 2(I,| X ,=j)>1—¢/4} for a certain preassigned &> 0.
We remark now that the first sum of the right hand side of (10) can be neglected
since it is bounded by

Z (m)

keClu)

'S e

]

which by Theorem 2 tends to 0 for almost all wel, as #n and m go to infinity.
We shall now deal with the second sum of the right hand side of (10). It is easy to
see that

n

lim lim ||y 3 u;'“(P(”(k,-)—P"’(Xm,-))N
mow n-om N|1=1 ke C(u)
—lim lm=|Y ¥ u,gm)(P“)(k,-)—P(l)(Xm,-))“=0 (11)
m— o n— o0 l=1 keC'(u)

where C'(uw)={j: P(I| X =j)>1—¢/2}. Indeed, the left hand side of (11) is
bounded by lim ™ (C°(u) A C’ (1)) which equals 0 since

m— o0

lim {X,eCw}=1lim {X,eC'(w}=I; as.

Hl— o0 m— o0
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Therefore, it remains to prove that

. . 1
Iim lim (1——

m— o0 -0 2n

i 2 u}:’”(P‘”(k,-)~P(”(Xm,-))u)=y(w) (12)

l=1 kel (u)

for almost all wel,.
Note further that

lim —
now 211

Y% ui'")(P‘”(k,-)—P“)(X,H;»H

1=1 keC'(u)

Zlim LY Y POk C )~ PO, C (W)

nw’
noo By 1 keC @)

>(1—eP(X,eC (). (13)

provided that X,,e C(u).
Now the limit in (13) does not exceed 2(X e C' (1)), and if we take into account
that lim {X, e C'(u)} =I; a.s. implies lim #(X,eC'(u))=1-2(I,) we get that the

m— o m— o0

limit in (12) exists and equals #(I,) a.s. and the proof is complete.

4. Invariant Sets for Convergent Sequences

We recall that we have denoted S,={j:u">0} for neN and that

Sy=25,25,=2.... Since > P(,j)=1 for ieS, , we can easily deduce that
JjeSn
lim{X,eS,, ,} as. exists. But because {X ,[S,—S,. 1} ={X,€S,, .} it follows

n— oo

that lim{X,e[S,—S,, ]} as. also exists. A Markov chain with the property

H->00

Z{limsupX,e[§,—S5,,:1} =0 will be said to be properly homogeneous and

improperly homogeneous otherwise.

This definition is justified by the fact that if a chain is improperly homo-
geneous then the temporal homogeneity of its transition probabilities is of little
use for the relevant sequence of sets {[S,—S, ,]:n=0,1,...} which consists of
mutually disjoint sets and its states belonging to [S,—S,, ;] do not appear in
the chain after time n.

In what follows we shall need the following

Lemma 2. If {X,:n=0} is a properly homogeneous chain, then any null set in T is
a small set. )

Proof. We have already seen in the introduction that for any null set A,
P(T~"A)=0 if neN. Suppose that AeZ, and 2(A)>0. Since P(TA|X,=i)
=2(A1X,,=i)=0for ieS, , we get that

Z2(TA)= )  PTAX,=)u SPX,e[S,~S,. 1]

ielSp—Sn+1]

But lim #(X,e[S,—3S,,:1)=0 and therefore #(T A)=0. The proof can now be

H— o0

completed by induction.
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Let Y, =a,(X,+b,), n=0,1,... where {a,} and {b,} are two sequences of
constants and suppose that {Y,:n=0} converges almost surely to a random
variable V. We shall say that V is a proper random variable if 2(— o0 <V < 0)
=1. V will be said to be nondegenerate if it is not a.s. constant. Denote by ¥~ the
o-field generated by V and #” the class of invariant sets belonging to ¥~ It is
easy to see that #” is a o-field. In what follows we shall prove the following

Theorem 4. Suppose that {X, n=0} is a properly homogeneous chain and
{Y,:n=0} converges a.s. to a proper and non-degenerate random variable V. Then
lima,,  /a,=a and lima, (b,.,—b,)=p exist and are finite and one of the

R— 00 n— 0

following cases occurs

() a=1, f=0and v"'=W as.

(i) At least one of the inequalities =1 and B+0 holds, W =¥ as., and W is
generated by the family of invariant sets

{ U [ao”+ Bt — 1)(a— 1)~ L, bo" + o — 1) (o — 1)~ 1]*

o lla=par—pa e -
(b—ﬁ)oc*"—ﬁoc‘l(oc*"“—1)(@‘1—1)‘1]*;a,beR} if a1

and

‘gz{Ve U (a+nﬁ,b+nﬂ)} if a=1
where [x,,x,]* stands for the closed interval [x,,x,] if x, <x, and for [x,,x,]
otherwise. ’

Proof. First, we notice that according to Theorem 4 of [8] the limits lim g, ,/a,

n— o

=o and lima,, (b, ,—b,)=p exist, —oo<a, f<oo and «+0. We shall further

n— o0

show that if x, is a continuity point of F, where F is the distribution function of
V, then ax,+f is also a continuity point of F. Suppose, for definiteness that
o>0. Then for any >0

F(o(xg+e)+f)—F(a(xo—e)+ B)
=lim ) 2(Y,e(x(xo—e)+ B, a(xo+ &)+ f) X, =i) "

n—ow jeS
= lim Z‘%(an(Xn— 1 +bn)€ (OC(XO _8)+ﬁ7 OC(xO +8)+ﬁ) Mgl)
n—o> jeS
=Z‘%(V6(XO——8:XO+8)) /“l(ll) (14)
iesS
But
F(xo+¢) = F(xo )= Y. Z(Ve(xo—a o +2) 1" (L5)

ieS

and since >0 for all ieS the continuity of F at x, and (15) imply
imZ(Ve(x,—e& x,+¢)=0 for all ieS. Using this in (14) we get that F is

&0
continuous at ax,+ . We can similarly show that the continuity of F at x, also
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implies its continuity at o~ !(x,—f) (We start with F(xq+e&)—F(x,—¢) and
proceed as in (14), etc. ...). It follows, by induction, that if x, is a continuity point
of F and if a1, then

{o" xo+ Bl —D(@—1)"", (xg— P a™"
—Ba ot D@ =1 n=1,2, ...}

are also continuity points of F.
By Lemma?2 we get that whenever lim{X,eAd,}=4 as, {4,}e€ and

AAlm{X €A,} as. is a small set and in such a case Theorem B implies that T4
=lim{X,e4,,,} as.

Consider now the event {a =V <b} where a and b are continuity points of F.
Then we can easily check that

T{agV<b}=lim {a; ' a—b,<X,, <a;'b—b}

n= n
[ Amdive)

={aa+ BV ba+f} as.

Further if ¢ is a jump point for F ie. if P(V =¢)>0 we can choose a decreasing
sequence of numbers {c,} such that limc,=0 and {c—c,,c+c,:n=1,2,...} are

continuity points of F. Proposition 1(ii) implies that T{V=c}= ) T{c
n=1

—c,EVsc+ce,}={V=ac+p} as. An upshot of these considerations is
T{a<VZh}={aa+=<V=<ba+f} as. for any a, beR. We can similarly show
that T~ {a<V<b}={(a—Pa"'SVZ(b—pa"'} as. for a, beR.

Suppose now that lima,, /a,=1 and lima,_ , (b, ., —b,)=0. Then the above

equality yields T{a =V <b} ={a <V <b} as. and according to Theorem 6 of 17,
{a =V £b} is either an invariant set or differs from an invariant set by a small
set. Because the family of sets {{a<V £b};a, beR} generates 7, (i) follows.

Suppose now that at least one of the inequalities a1, f0 holds. Then as
we have seen before T{a<V=b}={au+ =<V =ba+f} as. If we choose a and
b such that Z({a<V=<b})>0 and au+ f>b then {a<V=b} and T{aZV<h}
are a.s. disjoint and as a consequence we get ¥ > ¥ a.s.

We can inductively show that

T"{asVsb}={ac"+ "~ N)(a—-1) "=V
<ba"+Bla"—D(e—1)"}  as.

for n=1,2, ...
and

T-"{asVsbh={a—fa "= fa " == 1)
SVE(b—Poa=po o " =D =171
for n =1,2,....
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Using the countable additivity of T and Proposition 1(iii) we get that if A
Yy(A)= |) T"Ae# and that y(A) is the smallest invariant set containing A. It

R= — 00

follows that % is the class of smallest invariant sets containing %,
={{a<V<b};a,beR}. It is not difficult to see that y commutes with com-
plementation, countable unions and intersections and since %, generates ¥~ it
follows that & generates ¥~ and the proof for the case >0 is complete. The
other cases can be treated in the same way.

Corollary. Suppose that {X,:n=0} is a properly homogeneous chain, {Y,:n=0}
converges a.s. to a proper random variable V and ¥ is trivial. Then one of the
following two cases occurs

(i) V is constant with probability 1,

(i1) V assumes the countable set of values

{ya"+ (o —1)(a~1)"*;n=0,1,...}
u{y=Boar—Ba =) t=1)"n=1,2,..} if a1
and

{y+nB;, n=..—-101,...} if a=1
for some yeR.

Proof. Suppose that F is strictly increasing on a certain interval (a,b) and that
o>0. Then we can choose two numbers a', b'e(a,b) such that F(b')—F(a’)>0
and either a'a+ f>b" or b’ o+ f<a’. Assume for definiteness that ¢ o+ f>b";

we get that A= | ) T"{a<V<b} is an invariant set and 0<P(A)<1—(F(a'a

+pB)—F(b))<1 which contradicts the triviality of .#. Therefore V is a discrete
random variable. Suppose now that y is a number with the property 2(V
=7)>0. Then Proposition 1(iii) in conjunction with Lemma?2 implies that

P(T"{V=y})>0 for all neZ. Since |J T"{V=y} is an invariant set, its

probability must be 1 and the proof is complete.

We shall further give a result that parallels Theorem 4(ii) in the case when
the sequence {Y,:n=0} converges a.s. to an improper random variable and
lima,.,/a,=oo. Such a situation occurs for some branching processes with

n—

infinite mean (see [17]) where lim X, /a,=V as. with #(V=00)>0 and

P(V+{0,0})>0. Using a reasoning similar to that employed in the proof of
Theorem 4 we can show that lim {a<a,(X,,+b,)=b}=T{a=<V=bh} as. Fur-

h— 00

ther T{a <V <b} assumes positive probability provided that 2({asV <b})>0.
Under these conditions Theorem 1.1 of [16] implies that V, =lima,(X,,,+b,)

n— o

exists a.s. [t is not hard to see that lima,_ /a,=co entails

P{—w<V<ow,VE0}n{—oo<V, <o,V +0})=0

and hence, unlike the situation described by Theorem 4(ii), ¥ is not expressible
as a function of V.
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Theorem 5. Suppose that {X,:n=0} is a properly homogeneous Markov chain,
{Y,:n=0} converges a.s. to an improper and nondegenerate random variable V and
that lima,, /a,=co. Then lima, (X, ,+b,) =V, exists a.s. and is nondegenerate

n— o n— oo

for all keZ; W =+ as. and # is generated by the family of invariants sets 9
:{ ) {a= Vngb},a,beR}.

The finite mean supercritical branching processes (see [2]) and the irregular
branching processes with infinite mean (see [17]) provide examples of Markov
chains to which Theorems4 and 5 respectively apply. Let us notice that any non-
degenerate supercritical branching process {Z,: n=0} is a properly homogeneous
chain. Indeed, suppose that x and y are two states such that P({1,x)P(1,y)>0
and let ¢ be the greatest common divisor of the numbers {i:iz=1, P(1,i)>0}.
According to a result by Dubuc (Proposition 2, {11]) there cxists a number d
such that any je{i:x"+d=<i<y"—d} with j=x"(mod?) is accessible at time n
from 1 (ie. P*(1,j)>0) for n=1,2,.... If we choose x=min{i:i=1, P™(1,i)>0}
then we can prove that for n sufficiently large u{” >0 for all j=x"(modt) with
j>x"+d. Toward this aim let us notice that given u$’>0, if we choose n such
that y"—d>2x"+2d then any je{i:2x"+2d <i<2y"—2d} with j=2x"(mod ) is
accessible at time n from 2. But {i:x"+d<i<y"—d} and {i:2x"+2d=<i<2)y"
—2d} overlap and therefore u$">0 for all je{i:x"+d=<i=Z2y"—2d} with j
=x"(modt). Further >0 and y"—d>2x"+2d also implies that {i:2x"
+2d<iZ2y"—2d} and {i:4x"+4d=<i<4y"—4d} overlap, etc. We conclude
that for n sufficiently large p$”>0 for all j=x"(mod?) with j>x"+d. Therefore
[S,—S,, 1< {L,2, ..., x"+d}.

Suppose now that m=E(Z,;)<oo. Then the Seneta-Heyde theorem ([2],
p. 30) asserts that there exists a continuously distributed random variable W and
some norming constants {c,} with lime, ,/c,=m such that imZ j/c,=W as.

n— oG

Now ¢,=¢,/¢,_1Cy 1/Cs_2---C; yields that there exists a number 4 and an
integer k such that ¢,=> A (m—e)"~* for a preassigned ¢>0 and a sufficiently large
n. If we choose & such that m—e¢>x and take into account that #(W >0)
=2(lim Z,= o0 a.s.) we get that lim 2(Z e[S, —S,.1)=0. Hence {Z,: n=0} is
properly homogeneous.

In the infinite mean case {Z,: n2=0} grows quicker to infinity and the general
theory of such processes given by Schuh and Barbour [17] can be easily seen to
imply that these processes are properly homogeneous (in both the regular and
irregular cases).

We mention that Athreya and Ney [2] Chapter 2, p. 96 have identified the

€0
invariant sets { ) {m"<W<m"*"},xeR; for a finite mean supercritical
— 00

branching process, under the additional assumption that E(Z, logZ )< oco. This
result is a particular case of Theorem 4(ii). Athreya and Ney derived two
different proofs of their result on p.96-97 of [2] but neither of them seems
extendable to the general case considered here.



96 H. Cohn
References
1. Abrahamse, A.F.: The tail o-field of a Markov chain. Ann. Math. Statist. 40, 127-136 (1969)

10.

11.

12.

13.

14.
15.

16.

17.

. Athreya, K.B., Ney, P.E.: Branching Processes. New York: Springer 1972
. Blackwell, D.: On transient Markov processes with a countable number of states and stationary

transition probabilities. Ann. Math. Statist. 26, 654-658 (1955)

. Breiman, L.: On transient Markov chains with application to the uniqueness problem for

Markov processes. Ann. Math. Statist, 28, 499-503 (1957)

. Chung, K.L.: Markov chains with stationary transition probabilities. 2nd Edition. New York:

Springer 1967

. Cohn, H.: On the tail events of a Markov chain. Z. Wahrscheinlichkeitstheorie verw. Gebiete 29,

65-72 (1974)

. Cohn, H.: On the tail ¢-field of the countable Markov chains. Rev. Roumaine Math. Pures Appl.

4, 850-858 (1976)

. Cohn, H.: On the norming constants occurring in convergent Markov chains. Bull. Austral.

Math. Soc. 17, 193-205 (1977)

. Derriennic, Y.: Lois “zero ou deux” pour les processus de Markov. Applications aux marches

aléatoires. Ann. Inst. H. Poincaré. Section B. XTI, 2, 111-129 (1976)

Doob, J.L.: A Markov chain theorem. Probability and Statistics. (H. Cramér memorial volume)
ed. U. Grenander, 50-57. Stockholm and New York: Almqvist and Wiksel, 1959

Dubuc, S.: Etats accessibles dans un processus de Galton-Watson. Canad. Math. Bull, 17, 111-
113 (1974)

Griffeath, D.: Partial coupling and loss of memory for Markov chains. Ann. Probability 4, 850~
858 (1976)

Kiichler, U.: Uber die o-Algebra der asymptotischen Ereignisse bei diskreten Geburts- und
Todesprozessen. Math. Nachr. 65, 321-329 (1975)

Loéve, M.: Probability Theory. Third Edition. Princeton: Van Nostrand, 1963

Ornstein, D. and Sucheston, L.: An operator theorem on L, convergence to zero with
applications to Markov kernels. Ann. Math. Statist. 41, 1631-1639 (1970)

Padmanabhan, A.R.: Convergence in probability and allied results. Math. Jap. 15, 111-117
(1970)

Schuh, H.-J., Barbour, A.: On the asymptotic behaviour of the branching processes with infinite
mean. Advances Appl. Probability 9, 681-723 (1977)

Received September 10, 1977; in revised form January 2, 1979



