On the Invariant Events of a Markov Chain

Harry Cohn
University of Melbourne, Department of Statistics, Parkville, Victoria 3052, Australia

1. Introduction and Summary

Let S be a countable set of integers, $N=\{0,1, \ldots\}$ and $\Omega=S^{N}$. Define the variables $\left\{X_{n}(\omega): n \geqq 0\right\}$ on Ω by $X_{n}(\omega)=\omega_{n}$, where $\omega=\left(\omega_{0}, \omega_{1}, \ldots, \omega_{n}, \ldots\right)$. Let \mathscr{F} be the $\sigma-$ field generated by the variables $\left\{X_{n}(\omega): n \geqq 0\right\}$. An initial probability vector $\mu^{(0)}$ $=\left(\mu_{i}^{(0)} ; i \in S\right)$ and a (1-step) transition probability matrix $P=(P(i, j) ; i, j \in S)$ determine a probability measure \mathscr{P} on \mathscr{F} and a temporally homogeneous Markov chain $\left\{X_{n}(\omega): n \geqq 0\right\}$ on $(\Omega, \mathscr{F}, \mathscr{P})$ such that $\mu_{i}^{(0)}=\mathscr{P}\left(X_{0}=i\right)$ and $P(i, j)=\mathscr{P}\left(X_{n+1}\right.$ $\left.=j \mid X_{n}=i\right)$ provided that $\mathscr{P}\left(X_{n}=i\right)>0$. Denote by $\left\{\mu^{(n)}: n \geqq 0\right\}$ the sequence of the absolute probability vectors, where $\mu^{(n)}=\left(\mu_{i}^{(n)} ; i \in S\right), \mu_{i}^{(n)}=\mathscr{P}\left(X_{n}=i\right)$ and let P^{n} $=\left(P^{(n)}(i, j) ; i, j \in S\right)$ be the n-step transition probability matrix. Throughout the paper our results will refer to a Markov chain for which the initial probability vector is strictly positive (i.e. $\mu_{i}^{(0)}>0$ for all $i \in S$) and \mathscr{P} will correspond to such an initial probability vector. In the proofs we shall sometimes consider Markov chains assuming the same transition probability matrix P but a different initial probability vector, (say) λ, and in this case \mathscr{P}_{λ} will stand for the corresponding probability of the chain. We shall abbreviate \mathscr{P}_{i} for $\mathscr{P}_{\delta(i)}$ where δ stands for the Dirac measure.

Let \mathscr{F}_{n} be the σ-field generated by X_{n}, and \mathscr{F}_{n}^{∞} the σ-field generated by X_{n}, $X_{n+1}, \ldots, \mathscr{T}=\bigcap_{n=0}^{\infty} \mathscr{F}_{n}$ will be said to be the tail σ-field of the chain. A set A in a σ-field \mathscr{G} is called atomic with respect to \mathscr{G} if $\mathscr{P}(\Lambda)>0$ and Λ does not contain two disjoint subsets of positive probability belonging to \mathscr{G}. A set A in \mathscr{G} is called completely nonatomic with respect to \mathscr{G} if $\mathscr{P}(A)>0$ and A does not contain any atomic subset belonging to \mathscr{G}. It is well known that, in general, Ω may be represented as $\Omega=\bigcup_{n=0}^{\infty} A_{n}$, where Λ_{0} is completely non-atomic and $\Lambda_{1}, \Lambda_{2}, \ldots$ are atomic sets with respect to \mathscr{G}. If $\Lambda_{1}=\Omega, \mathscr{G}$ will be said to be trivial.

If λ and v are two finite measures on a measurable space (X, \mathscr{X}) we denote by $\| \lambda$ $-v \|$ the total variation of $\lambda-v$ i.e. $\|\lambda-v\|=(\lambda-v)^{+}(X)+(\lambda-v)^{-}(X)$, where $(\lambda$ $-v)^{+}$and $(\lambda-v)^{-}$are the positive and negative parts of $\lambda-v$ in its Jordan decomposition. It is easy to see that if $X=S$ and \mathscr{X} is the class of all subsets of $S, \| \lambda$ $-v \|=\sum_{i \in S}|\lambda(i)-v(i)|$. Further Λ^{c} will stand for the complementary set of $\Lambda, \Lambda_{1} \Delta \Lambda_{2}$
for the symmetric difference of Λ_{1} and Λ_{2}, Z for the set of the integers and R for the set of the real numbers. A shift function $T: \Omega \rightarrow \Omega$ is defined by setting $T\left(\omega_{0}, \omega_{1}, \ldots\right)$ $=\left(\omega_{1}, \omega_{2}, \ldots\right)$. We shall write $T A=\{T \omega: \omega \in A\}, T^{-1} A=\{\omega: T \omega \in A\}$ and $T^{0} A$ $=\Lambda$. A set $A \in \mathscr{F}$ is said to be invariant if $T^{-1} \Lambda=\Lambda$. The class of all invariant sets, denoted by \mathscr{I} is a σ-field, called the invariant σ-field. It is easy to see that both T and T^{-1} are countably additive maps from \mathscr{F} into \mathscr{F}. Besides, T^{-1} preserves the disjointness of sets and commutes with complementation and countable intersections. These properties of T^{-1}, not possessed by T, are probably accountable for the use of T^{-1} in the definition and the investigations of the invariant sets from the very beginning of the ergodic theory.

In a paper concerning the structure of \mathscr{T}, Abrahamse [1] has shown that if T is restricted to the sets of \mathscr{T}, then it proves tractable and useful. He has first proved that T maps \mathscr{T} one-to-one onto itself and $\mathscr{I}=\{\Lambda \in \mathscr{T}: T A=\Lambda\}$ (Theorem 1, [1]). This result implies that an invariant set can also be defined as a set with the property $T A=A$. To the further "rehabilitation" of T we remark that making use of the above mentioned result of [1] we can prove that T restricted to \mathscr{T} has also other desirable properties, which will be needed in what follows, expressed by the following

Proposition 1. Suppose that $\Lambda, \Lambda_{1}, \Lambda_{2}, \ldots$ belong to \mathscr{T}. Then
(i) $T \Lambda^{c}=(T A)^{c}$,
(ii) $T \bigcap_{n=1}^{\infty} A_{n}=\bigcap_{n=1}^{\infty} T A_{n}$,
(iii) $T^{m+n} \Lambda=T^{m} T^{n} \Lambda$ for $m, n \in \mathcal{Z}$.

We remark that these results hold in general, the Markov property being not used in their derivation. We shall say that Λ is a null set if $\mathscr{P}(\Lambda)=0$. If $\mathscr{P}\left(T^{n} \Lambda\right)=0$ for all $n \in Z, \Lambda$ will be said to be a small set. It is easy to see that if Λ is a null set then $\mathscr{P}\left(T^{-n} \Lambda\right)=0$ for all $n \in N$. Indeed, $\mathscr{P}\left(T^{-n} \Lambda \mid X_{n}=i\right)=\mathscr{P}\left(A \mid X_{0}=i\right)=0$ for all $i \in\left\{j: \mu_{j}^{(n)}>0\right\}$. However $\mathscr{P}(\mathrm{T} A)$ is not necessarily null for any null set Λ and therefore not all the null sets are small sets. In Sect. 4 we identify a class of small sets that will prove useful in some applications.

Suppose that \mathscr{G} and \mathscr{H} are two σ-fields such that $\mathscr{G} \subset \mathscr{H}$. We shall say that \mathscr{G} $=\mathscr{H}$ a.s. if the sets of \mathscr{H} are the sets of \mathscr{G} modulo small sets and $\mathscr{G} \subset \mathscr{H}$ a.s. otherwise.

Let $A=\left(A_{0}, A_{1}, \ldots\right)$ be a sequence of subsets of S. We shall say that $\lim _{n \rightarrow \infty}\left\{X_{n} \in A_{n}\right\}$ $=\Lambda$ a.s. if

$$
\mathscr{P}\left(\Lambda \Delta \liminf _{n \rightarrow \infty}\left\{X_{n} \in A_{n}\right\}\right)=\mathscr{P}\left(\Lambda \Delta \limsup _{n \rightarrow \infty}\left\{X_{n} \in A_{n}\right\}\right)=0 .
$$

A subset C of S will be said to be almost closed if $\lim _{n \rightarrow \infty}\left\{X_{n} \in C\right\}$ exists a.s. and assumes positive probability. C will be said to be a transient set if $\lim \sup \left\{X_{n} \in C\right\}$ is a null set. Denote by \mathfrak{C} the class of all almost closed and transient sets, by \mathfrak{B} the class of all transient sets and by \mathscr{N} the class of all null sets in \mathscr{I}. It is easy to see that \mathbb{C} is a boolean algebra and \mathfrak{B} is an ideal in \mathbb{C}. The following basic result due to Blackwell [3] (see also Chung [5], Theorem 1, Sect. 17) exhibits the relationship between the elements of \mathbb{C} and \mathscr{I}.

Theorem A. To each invariant set 1 there corresponds a transient or almost closed set C such that $A=\lim _{n \rightarrow \infty}\left\{X_{n} \in C\right\}$ a.s., according as Λ is a null set or not. This correspondence is an isomorphism from $\mathscr{I} / \mathcal{N}$ onto \mathbb{C} / \mathcal{B}.

Abrahamse, in the already mentioned paper [1] has shown that an isomorphism of the type referred to in Theorem A can also be established between some sequences of sets $A=\left(A_{0}, A_{1}, \ldots\right)$ such that $\lim _{n \rightarrow \infty}\left\{X_{n} \in A_{n}\right\}$ exists a.s. and the sets of \mathscr{F}, with the difference that the rôle of the null sets is played here by the small sets. In analogy to the invariant sets case discussed above, we shall say that A is a totally transient sequence if $\lim \sup \left\{X_{n} \in A_{n}\right\}$ is a small set and A will be said to be a tail sequence if it is not a totally transient sequence and if $\limsup _{n \rightarrow \infty}\left\{X_{n} \in A_{n}\right\}$ $-\liminf _{n \rightarrow \infty}\left\{X_{n} \in A_{n}\right\}$ is a small set. For $A=\left(A_{0}, A_{1}, \ldots\right)$ and $B=\left(B_{0}, B_{1}, \ldots\right)$ we shall define $\quad A^{c}=\left(A_{0}^{c}, A_{1}^{c}, \ldots\right), \quad A \cup B=\left(A_{0} \cup B_{0}, A_{1} \cup B_{1}, \ldots\right) \quad$ and $A \cap B$ $=\left(A_{0} \cap B_{0}, A_{1} \cap B_{1}, \ldots\right), T A=\left(A_{1}, A_{2}, \ldots\right)$ and $T^{-1} A=\left(S, A_{0}, \ldots\right)$. If we denote by \mathfrak{G} the class of all totally transient and tail sequences and by \mathbb{D} the class of all totally transient sets, then we can easily check that \mathcal{S} is a boolean algebra and \mathfrak{D} is an ideal in \mathbb{S}. Denote by \mathscr{M} the class of all small sets in \mathscr{T}. We shall say that $A \Delta \lim _{n \rightarrow \infty}\left\{X_{n} \in A_{n}\right\}$ a.s. is a small set if $A \Delta \limsup _{n \rightarrow \infty}\left\{X_{n} \in A_{n}\right\}$ and $A \Delta \liminf _{n \rightarrow \infty}\left\{X_{n} \in A_{n}\right\}$ are small sets.

The following result is due to Abrahamse (Theorem 5, [1]).
Theorem B. To each set $\Lambda \in \mathscr{T}$ there corresponds a totally transient or a tail sequence $A=\left(A_{0}, A_{1}, \ldots\right)$ such that $\Lambda \Delta \lim _{n \rightarrow \infty}\left\{X_{n} \in A_{n}\right\}$ a.s. is a small set, according as Λ is a small set or not. This correspondence is an isomorphism from $\mathscr{T} / \mathscr{A l}$ onto \mathbb{S} / \mathcal{D}, and commutes with T.

The first criterion on the structure of the invariant σ-field is due to Blackwell, who in the already mentioned paper [3] showed that a necessary and sufficient condition for the triviality of \mathscr{I} is that every bounded solution ϕ of the equation

$$
\begin{equation*}
\phi(i)=\sum_{j \in S} P(i, j) \phi(j) \tag{1}
\end{equation*}
$$

be constant. Breiman [4] gave a characterization for some kind of atomic sets A of \mathscr{I} in terms of the bounded solutions of the inequation

$$
\phi(i) \leqq \sum_{j \in C} P(i, j) \phi(j)
$$

where C is an almost closed set corresponding to an invariant set A.
Recently, Derriennic [9] proved for an arbitrary state space S, that \mathscr{I} is trivial under any initial probability if and only if

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left\|\sum_{j=1}^{n} P^{(j)}(x, \cdot)-P^{(j)}(y, \cdot)\right\|=0, \quad x, y \in S
$$

Derriennic's proof leans heavily on the properties of the contractions on a Banach space.

In the present paper we are concerned both with the structure of the invariant σ field and with its relation to the tail σ-field. In Sect. 2 we give some necessary and sufficient conditions for $\mathscr{I}=\mathscr{T}$ a.s. Our conditions are related to the quantities

$$
\begin{equation*}
\alpha(x)=\lim _{n \rightarrow \infty}\left\|P^{(n)}(x, \cdot)-P^{(n-1)}(x, \cdot)\right\|, \quad x \in S \tag{2}
\end{equation*}
$$

which were first considered by Ornstein and Sucheston [15], who proved that under certain assumptions $\alpha(x)$ is either 0 or 2 , a property that became known as "the 0-2 law". Subsequently, Derriennic [9] proved a very general 0-2 law and showed that if $\mathscr{I}=\mathscr{T}$ a.s. under any initial probability $\mu^{(0)}$, then $\alpha(x)=0$ for all x and $\sup _{x \in S} \alpha(x)=2$ otherwise. Ornstein and Sucheston's proof is based on L_{1}-operators theory, whereas Derriennic used a combined martingale and operator-theoretic approach.

Our approach is based on the martingale convergence theorem and does not use the notion of operator. Besides, one of the equivalent conditions for $\mathscr{I}=\mathscr{T}$ a.s. is expressed by means of an a.s. convergent sequence, which proves adequate in some applications involving recurrence conditions.

In Sect. 3 we give a result characterizing both the atomic and the completely non-atomic sets of \mathscr{I}, which parallels the results given for the tail σ-field in [6] and [12].

In the final Section we study the invariant sets attached to a normed sequence of random variables which converges almost surely and explore their relation to the σ-field generated by the limiting random variable. As an application, classes of invariant events are identified for some supercritical branching processes.

2. The Case $\mathscr{I}=\mathscr{T}$ a.s.

For any state i such that $\mu_{i}^{(1)}>0$ we shall define the random variables

$$
z_{n}(\omega)=\left\{\begin{array}{cc}
\frac{P^{(n)}\left(i, \omega_{n}\right)}{P^{(n-1)}\left(i, \omega_{n}\right)} & \text { if } P^{(n-1)}\left(i, \omega_{n}\right)>0 \\
1 & \text { if } P^{(n-1)}\left(i, \omega_{n}\right)=0
\end{array}\right.
$$

The random variables $\left\{z_{n}(\omega)\right\}$, defined in a slightly different way, were considered in [7] where they were used to give a unified martingale approach to some results of the tail σ-field theory. We found out recently that similar random variables were considered before, in connection with Martin boundary theory, where their convergence was derived by using the space-time harmonic function theory (see e.g. [10]).

We shall further show that the random variables $\left\{z_{n}(\omega)\right\}$ can be used to derive a criterion for $\mathscr{I}=\mathscr{T}$ a.s.
Theorem 1. The following three statements are equivalent:
(i) $\mathscr{I}=\mathscr{T}$ a.s.
(ii) $\lim _{n \rightarrow \infty} z_{n}(\omega)=1$ a.s. for all i such that $\mu_{i}^{(1)}>0$,
(iii) $\lim _{n \rightarrow \infty}\left\|P^{(n)}(i, \cdot)-P^{(n-1)}(i, \cdot)\right\|=0$ for all $i \in S$.

Proof. Suppose that (i) holds and define the random variables

$$
\begin{equation*}
\alpha_{n}\left(X_{n}\right)=\frac{\mathscr{P}\left(X_{1}=i \mid X_{n}\right)}{\mu_{i}^{(1)}}-\frac{\mathscr{P}\left(X_{0}=i \mid X_{n}\right)}{\mu_{i}^{(0)}} . \tag{3}
\end{equation*}
$$

We shall prove that $\lim _{n \rightarrow \infty} \alpha_{n}\left(X_{n}\right)=0$ a.s. if and only if $\lim _{n \rightarrow \infty} z_{n}(\omega)=1$ a.s.
By a well known property of Markov chains we get

$$
\alpha_{n}\left(X_{n}\right)=\frac{\mathscr{P}\left(X_{1}=i \mid \mathscr{\mathscr { F }}_{n}^{\infty}\right)}{\mu_{i}^{(1)}}-\frac{\mathscr{P}\left(X_{0}=i \mid \mathscr{\mathscr { F }}_{n}^{\infty}\right)}{\mu_{i}^{(0)}} .
$$

Now the martingale convergence theorem (see e.g. [14] p. 409) yields

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha_{n}\left(X_{n}\right)=\frac{\mathscr{P}\left(X_{1}=i \mid \mathscr{T}\right)}{\mu_{i}^{(1)}}-\frac{\mathscr{P}\left(X_{0}=i \mid \mathscr{T}\right)}{\mu_{i}^{(0)}} \text { a.s. } \tag{4}
\end{equation*}
$$

By elementary calculations we can deduce that unless $\mathscr{P}\left(X_{0}=i \mid X_{n}\right)=0, z_{n}(\omega)$ is the ratio of the quantities $\mathscr{P}\left(X_{1}=i \mid X_{n}\right) / \mu_{i}^{(1)}$ and $\mathscr{P}\left(X_{0}=i \mid X_{n}\right) / \mu_{i}^{(0)}$ which appear on the right hand side of (3) and in the case $\mathscr{P}\left(X_{0}=i \mid X_{n}\right)=0, z_{n}(\omega)$ is defined as being equal to 1 .

As in [7] we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z_{n}(\omega)=\frac{\mathscr{P}\left(X_{1}=i \mid \mathscr{T}\right)}{\mathscr{P}\left(X_{0}=i \mid \mathscr{T}\right)} \frac{\mu_{i}^{(0)}}{\mu_{i}^{(1)}} \tag{5}
\end{equation*}
$$

for almost all $\omega \in\left\{\omega: \mathscr{P}\left(X_{0}=i \mid \mathscr{T}\right)>0\right\}$.
Unlike the $\left\{z_{n}(\omega)\right\}$, the random variables $\left\{\alpha_{n}\left(X_{n}\right)\right\}$ are defined without any modifications and their limit (4) is established without the restriction: "for almost all $\omega \in\left\{\omega: \mathscr{P}\left(X_{0}=i \mid \mathscr{T}\right)>0\right\} "$ imposed for the validity of (5). Therefore, to complete the proof of the fact that $\lim _{n \rightarrow \infty} \alpha_{n}\left(X_{n}\right)=0$ a.s. if and only if $\lim _{n \rightarrow \infty} z_{n}(\omega)=1$ a.s. it will be sufficient to show that there exists a sequence $\left\{C_{n}: n \geqq 0\right\}$ such that $\lim _{n \rightarrow \infty}\left\{X_{n} \in C_{n}\right\}$ $=\Lambda_{0}=\left\{\omega: \mathscr{P}\left(X_{0}=i \mid \mathscr{T}\right)=0\right\}$ a.s. and that $P^{(n-1)}(i, j)=P^{(n)}(i, j)=0$ for $j \in C_{n-1} \cup C_{n}$, $n=1,2, \ldots$. Indeed, we know that Λ_{0} differs from a set in \mathscr{I} at most by a null set and according to Theorem A there exists a set C such that $\lim _{n \rightarrow \infty}\left\{X_{n} \in C\right\}=\Lambda_{0}$ a.s. It is easy to see that we can take $C_{n}=C-D_{n}$, where $D_{n}=\left\{j: \mu_{j}^{n \rightarrow \infty}>0, \mathscr{P}\left(\Lambda_{0} \mid X_{n}=j\right)=0\right\}$, n $=0,1, \ldots$. Suppose now that for a certain $k, P^{(k)}(i, j)>0$ with $j \in C_{k}$. Then by the Chapman-Kolmogorov formula $\mathscr{P}\left(\Lambda_{0} \mid X_{0}=i\right) \geqq \mathscr{P}\left(\Lambda_{0} \mid X_{k}=j\right) P^{(k)}(i, j)>0$. But from the definition of Λ_{0} we obtain $\mathscr{P}\left(\Lambda_{0} \mid X_{0}=i\right)=0$ which is a contradiction. Therefore $P^{(n)}(i, j)=0$ for $j \in C_{n}, n=1,2, \ldots$. Further $\mathscr{P}\left(\Lambda_{0} \mid X_{1}=i\right)=\mathscr{P}\left(A_{0} \mid X_{0}=i\right)$ $=0$ and therefore $P^{(n-1)}(i, j)=0$ for $j \in C_{n-1}, n=1,2, \ldots$. Hence $\lim _{n \rightarrow \infty} \alpha_{n}\left(X_{n}\right)=0$ a.s. if and only if $\lim _{n \rightarrow \infty} z_{n}(\omega)=1$ a.s.

We show now that $\lim _{n \rightarrow \infty} \alpha_{n}\left(X_{n}\right)=0$ a.s. is implied by (i). Suppose the contrary, i.e. that there exists a set Λ_{1} such that for $\omega \in \Lambda_{1}, \alpha(\omega)=\lim _{n \rightarrow \infty} \alpha_{n}\left(X_{n}\right) \neq 0$. We may take for
definiteness $\alpha(\omega)>0$ for $\omega \in \Lambda_{1}$. If we integrate (4) over Λ_{1}, after elementary calculations we get

$$
\mathscr{P}\left(\Lambda_{1} \mid X_{1}=i\right)>\mathscr{P}\left(\Lambda_{1} \mid X_{0}=i\right)
$$

which contradicts the assumption (i) and the implication (i) \rightarrow (ii) is proved.
Suppose now that (ii) holds. Then the dominated convergence theorem applied to the sequence $\left\{\alpha_{n}\left(X_{n}\right)\right\}$ yields

$$
\lim _{n \rightarrow \infty} \sup _{B \subset S}\left|\mathscr{P}\left(X_{n} \in B \mid X_{1}=i\right)-\mathscr{P}\left(X_{n} \in B \mid X_{0}=i\right)\right| \leqq \lim _{n \rightarrow \infty} \int_{S}\left|\alpha_{n}\left(X_{n}\right)\right| d \mathscr{P}=0
$$

which implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|P^{(n)}(i, \cdot)-P^{(n-1)}(i, \cdot)\right\|=0 \tag{6}
\end{equation*}
$$

We recall that the states i for which (6) was derived are subjected to the restriction $\mu_{i}^{(1)}>0$, which was assumed in the definition of $\left\{\alpha_{n}\left(X_{n}\right)\right\}$. We show now that this restriction can be removed. Because $\mu_{i}^{(0)}$ was supposed positive for all $i \in S$ we need only consider the case $\mu_{i}^{(0)}>0$ and $\mu_{i}^{(1)}=0$. Denote $S^{\prime}=\left\{j: \mu_{j}^{(1)}>0\right\}$, and let a^{+} $=\max (a, 0)$. Then, for any $i \in S$

$$
\begin{align*}
& \left\|P^{(n)}(i, \cdot)-P^{(n-1)}(i, \cdot)\right\| \\
& \quad=\frac{1}{2} \sum_{k \in S}\left[\sum_{j \in S} P(i, j) P^{(n-1)}(j, k)-\sum_{j \in S} P(i, j) P^{(n-2)}(j, k)\right]^{+} . \tag{7}
\end{align*}
$$

Further (6) and (7) imply

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \left\|P^{(n)}(i, \cdot)-P^{(n-1)}(i, \cdot)\right\| \\
& \leqq \lim _{n \rightarrow \infty} \sum_{j \in S^{\prime}} P(i, j)\left\|P^{(n-1)}(j, \cdot)-P^{(n-2)}(j, \cdot)\right\|=0
\end{aligned}
$$

and the implication (ii) \rightarrow (iii) is proved.
Suppose now that (iii) holds and assume that $\mathscr{I} \subset \mathscr{T}$ a.s. In this case there exists a set $A \in \mathscr{T}$ such that $\mathscr{P}(T A \Delta A)>0$ and we can suppose without loss of generality that Λ and $T A$ are disjoint. Indeed, if Λ and $T A$ are not disjoint then in view of Proposition 1 we can arrange to have such a situation by taking $\Lambda \cap(T A)^{c}$ instead of Λ.

By a well known procedure which goes back to Blackwell [3], we know that if we take $B_{n}=\left\{j: \mathscr{P}\left(A \mid X_{n}=j\right)>\delta\right\}$ with $\delta>\frac{1}{2}$ then $\left\{B_{n}\right\} \in \mathbb{S}$ is the sequence corresponding to A in the isomorphism alluded to in Theorem B (see also [1]). Further, according to the same Theorem B, this isomorphism commutes with T and therefore $\lim _{n \rightarrow \infty}\left\{X_{n} \in B_{n+1}\right\}=T A$ a.s. Now, if $i \in B_{m}$ and n is sufficiently large

$$
\mathscr{P}\left(X_{n+m} \in B_{n+m} \mid X_{m}=i\right) \geqq \delta \quad \text { and } \quad \mathscr{P}\left(X_{n+m+1} \in B_{n+m+1} \mid X_{m}=i\right) \geqq \delta
$$

and taking into account that B_{n} and B_{n+1} are disjoint for all n, we get $\| P^{(n)}(i, \cdot)$ $-P^{(n-1)}(i, \cdot) \| \geqq 2 \delta-1>0$ which is a contradiction and the proof is complete.

Remark. As in the case of the tail σ-field considered in [7], a property like (ii) may prove useful when dealing with recurrence type conditions, whereas (iii) expressing a "global property" seems less adequate in handling such situations with probabilistic methods. A criterion of this type can be used to derive the triviality of the tail σ-field, by proving first, what is often simpler, the triviality of \mathscr{I} and then \mathscr{I} $=\mathscr{F}$ a.s. We notice that in this way we can give an alternative proof of the triviality of the tail σ-field for a Markov chain assuming a trivial \mathscr{I} and satisfying the property $P\left(\omega: X_{n+1}(\omega)=X_{n}(\omega)\right.$ i.o. $)=1$, a result which was first established by Küchler in [13], where he gave a full description of the tail σ-field structure of a birth and death process. It is possible to show that in this case $\lim _{n \rightarrow \infty} z_{n}(\omega)=1$ a.s. in the same way as in the alternative proof of the Blackwell and Freedman 0-1 law given in [7].

3. The Structure of \mathscr{I}

We consider now the vector chain $\left\{Y_{n}: n \geqq 0\right\}$ with $Y_{n}=\left(X_{n}^{(1)}, X_{n}^{(2)}\right), n \geqq 0$, defined on the probability space $(\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{\mathscr{P}}) ;\left\{X_{n}^{(1)}: n \geqq 0\right\}$ and $\left\{X_{n}^{(2)}: n \geqq 0\right\}$ being two independent copies of $\left\{X_{n}: n \geqq 0\right\}, \tilde{\Omega}=\Omega \times \Omega, \tilde{\mathscr{F}}=\mathscr{F} \otimes \mathscr{F}$ and $\overline{\mathscr{\mathscr { P }}}=\mathscr{P} \otimes \mathscr{P}$.

Let us further define, for any nonnegative integers m and n, the random variable

$$
\beta_{m, n}(\tilde{\omega})=\frac{1}{n} \| \sum_{t=1}^{n}\left(P^{(l)}\left(X_{m}^{(1)}, \cdot\right)-P^{(l)}\left(X_{m}^{(2)}, \cdot\right) \|\right.
$$

Denote by I_{0} the completely nonatomic set and by I_{1}, I_{2}, \ldots the atomic sets occurring in the representation of Ω corresponding to \mathscr{I}.

The assertions "for almost all $\tilde{\omega}$ " or "a.s." in the statement of the following Theorem will be understood to hold with respect to $\check{\mathscr{P}}$.
Theorem 2. (i) There exists the limits
$\lim _{n \rightarrow \infty} \beta_{m, n}(\tilde{\omega})=\beta_{m}(\tilde{\omega})$,
$\lim _{m \rightarrow \infty} \beta_{m}(\tilde{\omega})=\beta(\tilde{\omega}) \quad$ a.s.
(ii) $\beta(\tilde{\omega})=2$ for almost all $\tilde{\omega} \in I_{0} \times I_{0} \cup \bigcup_{u \neq u^{\prime}} I_{u} \times I_{u^{\prime}}$,
$\beta(\tilde{\omega})=0$ for almost all $\tilde{\omega} \in I_{u} \times I_{u}, u=1,2, \ldots$
Proof. It is easy to see that $\frac{1}{n}\left\|\sum_{l=1}^{n}\left(P^{(l)}(i, \cdot)-P^{(l)}(j, \cdot)\right)\right\|$ converges (see e.g. Derriennic [9] p. 115) since if we denote $f(n)=\left\|\sum_{l=1}^{n}\left(P^{(l)}(i, \cdot)-P^{(l)}(j, \cdot)\right)\right\|$, then $f(n)$ can be shown to be a subadditive function i.e. $f(m+n) \leqq f(m)+f(n)$ for all $m, n \in N$ and therefore $\lim _{n \rightarrow \infty} f(n) / n=\inf _{n \geqq 1} f(n) / n$. Hence $\lim _{n \rightarrow \infty} \beta_{m, n}(\tilde{\omega})=\beta_{m}(\tilde{\omega})$ exists for all $\tilde{\omega} \in \tilde{\Omega}$.

The existence of $\beta(\tilde{\omega})$ will be proved in the course of the proof of (ii).
Because I_{0} is completely nonatomic, for any $\varepsilon>0$ we can find $n(\varepsilon)$ disjoint sets $I(1), \ldots, I(n(\varepsilon))$, such that $I_{0}=I(1) \cup I(2) \cup \ldots \cup I(n(\varepsilon))$ and $0<\mathscr{P}(I(s))<\varepsilon / 4$ for $1 \leqq s \leqq n(\varepsilon)$. Let $C(s)=\left\{j: \mathscr{P}\left(I(s) \mid X_{0}=j\right)>1-\varepsilon / 4\right\}$. As we have seen before $\lim \left\{X_{n} \in C(s)\right\}=I(s)$ a.s. with respect to \mathscr{P} for $s=1,2, \ldots, n(\varepsilon)$. It follows that $n \rightarrow \infty$ $\lim _{1 \rightarrow \infty} P^{(l)}(i, C(s))=\mathscr{P}\left(I(s) \mid X_{0}=i\right)$. Take now $i_{1} \in C(s)$ and $i_{2} \in C\left(s^{\prime}\right)$ with $s \neq s^{\prime}$. Then $1 \rightarrow \infty$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \| \sum_{l=1}^{n}\left(P^{(l)}\left(i_{1}, \cdot\right)-P^{(l)}\left(i_{2}, \cdot\right) \|\right. \\
& \geqq \\
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{l=1}^{n}\left(P^{(l)}\left(i_{1}, C(s)\right)-P^{(l)}\left(i_{2}, C(s)\right)\right) \\
& \quad+\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{l=1}^{n}\left(P^{(l)}\left(i_{2}, C\left(s^{\prime}\right)-P^{(l)}\left(i_{1}, C\left(s^{\prime}\right)\right)\right)\right.
\end{aligned}
$$

$$
\geqq 2-\varepsilon .
$$

It follows that $\lim \inf \beta_{m}(\tilde{\omega})>2-\varepsilon$ for almost all $\tilde{\omega} \in I(s) \times I\left(s^{\prime}\right)$. However, we can further split each of the sets $I(s), s=1, \ldots, n(\varepsilon)$ into disjoint subsets whose probabilities are smaller than $\varepsilon^{\prime} / 4$, for any preassigned ε^{\prime} smaller than ε. Using the same reasoning as above we get, in particular, that $\lim _{n \rightarrow \infty} \inf \beta_{m}(\tilde{\omega})>2-\varepsilon^{\prime}$ for almost all $\tilde{\omega} \in I(s) \times I\left(s^{\prime}\right)$ and because we can apply the same reasoning to any subsets of $I(s)$, $s=1, \ldots, n(\varepsilon)$ we deduce that $\beta(\tilde{\omega})=2$ for almost all $\tilde{\omega} \in I_{0} \times I_{0}$.

The proof of $\beta(\tilde{\omega})=2$ for almost all $\tilde{\omega} \in \bigcup_{u \neq u^{\prime}} I_{u} \times I_{u^{\prime}}$ is easier and will be left to the reader.

We shall prove now that $\beta(\tilde{\omega})=0$ for almost all $\tilde{\omega} \in I_{u} \times I_{u}, u=1,2, \ldots$ According to Theorem 1 of [9], for any $i_{1}, i_{2} \in S$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n}\left\|\sum_{l=1}^{n}\left(P^{(l)}\left(i_{1}, \cdot\right)-P^{(l)}\left(i_{2}, \cdot\right)\right)\right\| \leqq 2 \sup _{A \in \mathscr{\mathscr { A }}\left(i_{1}, i_{2}\right)}\left(\mathscr{F}_{i_{1}}(\Lambda)-\mathscr{P}_{i_{2}}(A)\right) \tag{8}
\end{equation*}
$$

where $\mathscr{P}_{i}(\Lambda)=\mathscr{P}_{v}\left(\Lambda \mid X_{0}=i\right)$ for any initial probability v such that $v_{i}^{(0)}>0$ and $\mathscr{I}\left(i_{1}, i_{2}\right)$ is the invariant σ-field of the Markov chain assuming the initial probability $\lambda=\frac{1}{2}\left(\delta\left(i_{1}\right)+\delta\left(i_{2}\right)\right)$.

We show now that if I_{u} is an atomic set of \mathscr{I} and if at least one of the inequalities $\mathscr{P}_{i_{1}}\left(I_{u}\right)>0$ and $\mathscr{P}_{i_{2}}\left(I_{u}\right)>0$ holds, then I_{u} is also atomic with respect to $\mathscr{I}(i, j)$. Indeed, suppose the contrary; then according to Theorem A there exist two disjoint almost closed sets C_{u}^{\prime} and $C_{u}^{\prime \prime}$ such that $\lim _{n \rightarrow \infty}\left\{X_{n} \in C_{u}^{\prime}\right\}=\Lambda_{1}$ a.s. and $\lim _{n \rightarrow \infty}\left\{X_{n} \in C_{u}^{\prime \prime}\right\}=A_{2}$ a.s. with respect to \mathscr{P}_{λ} and $\mathscr{P}_{\lambda}\left(\Lambda_{1}\right) \mathscr{P}_{\lambda}\left(\Lambda_{2}\right)>0$. Further, because $\lim _{n \rightarrow \infty}^{n \rightarrow \infty} \inf \left\{X_{n} \in C_{u}^{\prime}\right\}$ and $\lim \inf \left\{X_{n} \in C_{u}^{\prime \prime}\right\}$ are both invariant and disjoint sets, then we must have either ${ }^{n \rightarrow \infty}$ $\mathscr{P}\left(\lim _{n \rightarrow \infty} \inf \left\{X_{n} \in C_{u}^{\prime}\right\}\right)=0$ or $\mathscr{P}\left(\lim _{n \rightarrow \infty} \inf \left\{X_{n} \in C_{u}^{\prime \prime}\right\}\right)=0$. But μ_{0} was supposed positive for all $i \in S$ and therefore this entails either $\mathscr{P}_{i}\left(\liminf _{n \rightarrow \infty}\left\{X_{n} \in C_{u}^{\prime}\right\}\right)=0$ for all $i \in S$ or $\mathscr{P}_{i}\left(\lim _{n \rightarrow \infty} \inf \left\{X_{n} \in C_{u}^{\prime \prime}\right\}\right)=0$ for all $i \in S$ and the inequality $\mathscr{P}_{\lambda}\left(A_{1}\right) \mathscr{P}_{\lambda}\left(A_{2}\right)>0$ is con-
tradicted. Therefore I_{u} is an atomic set with respect to $\mathscr{I}(i, j)$.
Notice now that if we denote $S_{n}=\left\{i: \mu_{i}^{(n)}>0\right\}, \quad n=0,1, \ldots$ then $S_{0} \supseteq S_{1} \supseteq \ldots \supseteq S_{n} \supseteq \ldots$. Indeed, we can prove this by induction if we take into account that $\mu_{i}^{(0)}$ was supposed positive for all $i \in S$. Take now $i_{1}, i_{2} \in S_{m}$. Then for any $I_{u}, u \geqq 1$ we get $\mathscr{P}\left(I_{u} \mid X_{0}=i_{1}\right)=\mathscr{P}\left(I_{u} \mid X_{1}=i_{1}\right)=\ldots=\mathscr{P}\left(I_{u} \mid X_{m}=i_{1}\right)$ and similarly $\mathscr{P}\left(I_{u} \mid X_{m}=i_{2}\right)=\mathscr{P}\left(I_{u} \mid X_{0}=i_{2}\right)$. Further (8) yields

$$
\begin{align*}
\lim _{n \rightarrow \infty} & \frac{1}{n}\left\|\sum_{l=1}^{n}\left(P^{(l)}\left(X_{m}^{(1)}=i_{1}, \cdot\right)-P^{(l)}\left(X_{m}^{(2)}=i_{2}, \cdot\right)\right)\right\| \\
& \leqq 2\left|\mathscr{P}\left(I_{u} \mid X_{m}=i_{1}\right)-\mathscr{P}\left(I_{u} \mid X_{m}=i_{2}\right)\right|+2 \sup _{\substack{A \in \mathscr{P}\left(i_{i}, j\right) \\
A \subset I_{u}}}\left(\mathscr{P _ { i }}(\Lambda)-\mathscr{P}_{i_{2}}(\Lambda)\right) \tag{9}
\end{align*}
$$

Choose now $C_{u}(\varepsilon)=\left\{i: \mathscr{P}_{i}\left(I_{u}\right)>1-\varepsilon / 4\right\}$ and take $i_{1}, i_{2} \in C_{u}$. Then (9) implies

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left\|\sum_{l=1}^{n}\left(P^{(l)}\left(X_{m}^{(1)}=i_{1}, \cdot\right)-P^{(l)}\left(X_{m}^{(2)}=i_{2}, \cdot\right)\right)\right\| \leqq 2 \frac{\varepsilon}{4}+2 \frac{\varepsilon}{4}=\varepsilon .
$$

But $\lim _{m \rightarrow \infty}\left\{X_{m} \in C_{u}(\varepsilon)\right\}=I_{u}$ a.s. with respect to \mathscr{P} for any $\varepsilon>0$ and the Theorem follows.

Let us define, for any nonnegative integers m and n, the random variable

$$
\gamma_{m, n}(\omega)=1-\frac{1}{2 n}\left\|\sum_{l=1}^{n}\left(\mu^{(l+m)}(\cdot)-P^{(l)}\left(X_{m}, \cdot\right)\right)\right\|
$$

To study $\left\{\gamma_{m, n}(\omega)\right\}$ we shall need the following
Lemma 1. For any m, n and i

$$
\left\|\sum_{l=1}^{n}\left(\mu^{(l+m)}(\cdot)-P^{(l)}(i, \cdot)\right)\right\| \geqq\left\|\sum_{l=2}^{n+1}\left(\mu^{(l+m)}(\cdot)-P^{(l)}(i, \cdot)\right)\right\| .
$$

Proof. We recall that if v is a signed measure with $v(S)=0$ then, $\|v\|=2 \sup _{A \subset S} v(A)$.
Further

$$
\begin{aligned}
& \left\|\sum_{l=2}^{n+1}\left(\mu^{(l+m)}(\cdot)-P^{(l)}(i, \cdot)\right)\right\| \\
& \quad \leqq 2 \sup _{B \subset S^{2}} \sum_{l=1}^{n}\left[\mathscr{P}\left(\left(X_{l+m}, X_{l+m+1}\right) \in B\right)-\mathscr{P}\left(\left(X_{l+m}, X_{l+m+1}\right) \in B \mid X_{m}=i\right)\right] \\
& \quad=2 \sup _{B \subset S^{2}} \sum_{l=1}^{n} \sum_{\left(j_{1}, j_{2}\right) \in B} P\left(j_{1}, j_{2}\right)\left(\mu_{j_{2}}^{(l+m)}-P^{(l)}\left(i, j_{1}\right)\right) \\
& \quad \leqq\left\|\sum_{l=1}^{n}\left(\mu^{l+m)}(\cdot)-P^{(l)}(i, \cdot)\right)\right\| .
\end{aligned}
$$

Theorem 3. (i) There exist the limits
$\lim _{n \rightarrow \infty} \gamma_{m, n}(\omega)=\gamma_{m}(\omega)$,
$\lim _{m \rightarrow \infty} \gamma_{m}(\omega)=\gamma(\omega) \quad$ a.s.
(ii) $\gamma(\omega)=0$ for almost all $\omega \in I_{0}$, $\gamma(\omega)=P\left(I_{u}\right)$ for almost all $\omega \in I_{u} u=1,2, \ldots$

Proof. First notice that by the triangle inequality and by the above Lemma 1

$$
\begin{aligned}
& \left\|\sum_{l=1}^{n+p}\left(\mu^{(l+m)}(\cdot)-P^{(l)}(i, \cdot)\right)\right\| \\
& \quad \leqq\left\|\sum_{l=1}^{n}\left(\mu^{(l+m)}(\cdot)-P^{(l)}(i, \cdot)\right)\right\|+\left\|\sum_{l=1}^{p}\left(\mu^{(l+m)}(\cdot)-P^{(l)}(i, \cdot)\right)\right\|
\end{aligned}
$$

Therefore, as in the case of the expression considered in Theorem 2

$$
f(n)=\left\|\sum_{l=1}^{n}\left(\mu^{(l+m)}(\cdot)-P^{(l)}(i, \cdot)\right)\right\|
$$

is a subadditive function and hence $\lim _{n \rightarrow \infty} \gamma_{m, n}(\omega)=\gamma_{m}(\omega)$ exists for all m.
The existence of $\gamma(\omega)$ will be obtained in the course of the proof of (ii).
To prove that $\gamma(\omega)=0$ for almost all $\omega \in I_{0}$ we can proceed in the same way as in the proof of Theorem 2 and we leave it to the reader to work out the details.

To prove that $\gamma(\omega)=P\left(I_{u}\right)$ for almost all $\omega \in I_{u}, u \geqq 1$ we notice first that

$$
\begin{align*}
\gamma_{m, n}(\omega)= & 1-\frac{1}{n} \sum_{j \in S}\left[\sum_{l=1}^{n} \sum_{k \in C(u)} \mu_{k}^{(m)}\left(P^{(l)}(k, j)-P^{(l)}\left(X_{m}, j\right)\right)\right. \\
& \left.+\sum_{l=1}^{n} \sum_{k \dot{\xi} C(u)} \mu_{k}^{(m)}\left(P^{(l)}(k, j)-P^{(l)}\left(X_{m}, j\right)\right)\right]^{+} \tag{10}
\end{align*}
$$

We choose further $C(u)=\left\{j: \mathscr{P}\left(I_{u} \mid X_{0}=j\right)>1-\varepsilon / 4\right\}$ for a certain preassigned $\varepsilon>0$.
We remark now that the first sum of the right hand side of (10) can be neglected since it is bounded by

$$
\sum_{k \in C(u)} \mu_{k}^{(m)}\left\|\frac{1}{n} \sum_{l=1}^{n}\left(P^{(l)}(k, \cdot)-P^{(l)}\left(X_{m}, \cdot\right)\right)\right\|
$$

which by Theorem 2 tends to 0 for almost all $\omega \in I_{u}$ as n and m go to infinity.
We shall now deal with the second sum of the right hand side of (10). It is easy to see that

$$
\begin{align*}
\lim _{m \rightarrow \infty} & \lim _{n \rightarrow \infty} \frac{1}{n}\left\|\sum_{l=1}^{n} \sum_{k \notin C(u)} \mu_{k}^{(m)}\left(P^{(l)}(k, \cdot)-P^{(l)}\left(X_{m}, \cdot\right)\right)\right\| \\
& -\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{1}{n}\left\|\sum_{l=1}^{n} \sum_{k \in C^{\prime}(u)} \mu_{k}^{(m)}\left(P^{(l)}(k, \cdot)-P^{(l)}\left(X_{m}, \cdot\right)\right)\right\|=0 \tag{11}
\end{align*}
$$

where $C^{\prime}(u)=\left\{j: \mathscr{P}\left(I_{u}^{c} \mid X_{0}=j\right)>1-\varepsilon / 2\right\}$. Indeed, the left hand side of (11) is bounded by $\lim _{m \rightarrow \infty} \mu^{(m)}\left(C^{c}(u) \Delta C^{\prime}(u)\right)$ which equals 0 since

$$
\lim _{m \rightarrow \infty}\left\{X_{m} \in C^{c}(u)\right\}=\lim _{m \rightarrow \infty}\left\{X_{m} \in C^{\prime}(u)\right\}=I_{u}^{c} \quad \text { a.s. }
$$

Therefore, it remains to prove that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty}\left(1-\frac{1}{2 n}\left\|\sum_{l=1}^{n} \sum_{k \in C^{\prime}(u)} \mu_{k}^{(m)}\left(P^{(l)}(k, \cdot)-P^{(l)}\left(X_{m}, \cdot\right)\right)\right\|\right)=\gamma(\omega) \tag{12}
\end{equation*}
$$

for almost all $\omega \in I_{u}$.
Note further that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{1}{2 n}\left\|\sum_{l=1}^{n} \sum_{k \in C^{\prime}(u)} \mu_{k}^{(m)}\left(P^{(l)}(k, \cdot)-P^{(l)}\left(X_{m}, \cdot\right)\right)\right\| \\
& \quad \geqq \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{l=1}^{n} \sum_{k \in C^{\prime}(u)} \mu_{k}^{(m)}\left(P^{(l)}\left(k, C^{\prime}(u)\right)-P^{(l)}\left(X_{m}, C^{\prime}(u)\right)\right) \\
& \quad \geqq(1-\varepsilon) \mathscr{P}\left(X_{m} \in C^{\prime}(u)\right) . \tag{13}
\end{align*}
$$

provided that $X_{m} \in C(u)$.
Now the limit in (13) does not exceed $\mathscr{P}\left(X_{m} \in C^{\prime}(u)\right)$, and if we take into account that $\lim _{m \rightarrow \infty}\left\{X_{m} \in C^{\prime}(u)\right\}=I_{u}^{c}$ a.s. implies $\lim _{m \rightarrow \infty} \mathscr{P}\left(X_{m} \in C^{\prime}(u)\right)=1-\mathscr{P}\left(I_{u}\right)$ we get that the limit in (12) exists and equals $\mathscr{P}\left(I_{u}\right)$ a.s. and the proof is complete.

4. Invariant Sets for Convergent Sequences

We recall that we have denoted $S_{n}=\left\{j: \mu_{j}^{(n)}>0\right\}$ for $n \in N$ and that $S_{0} \supseteq S_{1} \supseteq S_{2} \supseteq \ldots$. Since $\sum_{j \in S_{n}} P(i, j)=1$ for $i \in S_{n-1}$ we can easily deduce that $\lim _{n \rightarrow \infty}\left\{X_{n} \in S_{n+1}\right\}$ a.s. exists. But because $\left\{X_{n} \in\left[S_{n}-S_{n+1}\right]\right\}=\left\{X_{n} \in S_{n+1}\right\}^{c}$, it follows that $\lim _{n \rightarrow \infty}\left\{X_{n} \in\left[S_{n}-S_{n+1}\right]\right\}$ a.s. also exists. A Markov chain with the property $\mathscr{P}\left\{\limsup _{n \rightarrow \infty} X_{n} \in\left[S_{n}-S_{n+1}\right]\right\}=0$ will be said to be properly homogeneous and improperly homogeneous otherwise.

This definition is justified by the fact that if a chain is improperly homogeneous then the temporal homogeneity of its transition probabilities is of little use for the relevant sequence of sets $\left\{\left[S_{n}-S_{n+1}\right]: n=0,1, \ldots\right\}$ which consists of mutually disjoint sets and its states belonging to $\left[S_{n}-S_{n+1}\right]$ do not appear in the chain after time n.

In what follows we shall need the following
Lemma 2. If $\left\{X_{n}: n \geqq 0\right\}$ is a properly homogeneous chain, then any null set in \mathscr{T} is a small set.

Proof. We have already seen in the introduction that for any null set A, $\mathscr{P}\left(T^{-n} A\right)=0$ if $n \in N$. Suppose that $\Lambda \in \mathscr{T}$, and $\mathscr{P}(A)>0$. Since $\mathscr{P}\left(T A \mid X_{n}=i\right)$ $=\mathscr{P}\left(\Lambda \mid X_{n+1}=i\right)=0$ for $i \in S_{n+1}$ we get that

$$
\mathscr{P}(T A)=\sum_{i \in\left[S_{n}-S_{n+1}\right]} \mathscr{P}\left(T A \mid X_{n}=i\right) \mu_{i}^{(n)} \leqq \mathscr{P}\left(X_{n} \in\left[S_{n}-S_{n+1}\right]\right)
$$

But $\lim _{n \rightarrow \infty} \mathscr{P}\left(X_{n} \in\left[S_{n}-S_{n+1}\right]\right)=0$ and therefore $\mathscr{P}(T A)=0$. The proof can now be completed by induction.

Let $Y_{n}=a_{n}\left(X_{n}+b_{n}\right), n=0,1, \ldots$ where $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two sequences of constants and suppose that $\left\{Y_{n}: n \geqq 0\right\}$ converges almost surely to a random variable V. We shall say that V is a proper random variable if $\mathscr{P}(-\infty<\mathrm{V}<\infty)$ $=1$. V will be said to be nondegenerate if it is not a.s. constant. Denote by \mathscr{V} the σ-field generated by V and \mathscr{W} the class of invariant sets belonging to \mathscr{V}. It is easy to see that \mathscr{W} is a σ-field. In what follows we shall prove the following
Theorem 4. Suppose that $\left\{X_{n}: n \geqq 0\right\}$ is a properly homogeneous chain and $\left\{Y_{n}: n \geqq 0\right\}$ converges a.s. to a proper and non-degenerate random variable V. Then $\lim _{n \rightarrow \infty} a_{n+1} / a_{n}=\alpha$ and $\lim _{n \rightarrow \infty} a_{n+1}\left(b_{n+1}-b_{n}\right)=\beta$ exist and are finite and one of the following cases occurs
(i) $\alpha=1, \beta=0$ and $\mathscr{V}=\mathscr{W}$ a.s.
(ii) At least one of the inequalities $\alpha \neq 1$ and $\beta \neq 0$ holds, $\mathscr{W} \subset \mathscr{V}$ a.s., and \mathscr{W} is generated by the family of invariant sets

$$
\begin{aligned}
\mathscr{C}= & \left\{V \in \bigcup_{n=0}^{\infty}\left[a \alpha^{n}+\beta\left(\alpha^{n}-1\right)(\alpha-1)^{-1}, b \alpha^{n}+\beta\left(\alpha^{n}-1\right)(\alpha-1)^{-1}\right]^{*}\right. \\
& \cup \bigcup_{n=1}^{\infty}\left[(a-\beta) \alpha^{-n}-\beta \alpha^{-1}\left(\alpha^{-n+1}-1\right)\left(\alpha^{-1}-1\right)^{-1},\right. \\
& \left.\left.(b-\beta) \alpha^{-n}-\beta \alpha^{-1}\left(\alpha^{-n+1}-1\right)\left(\alpha^{-1}-1\right)^{-1}\right]^{*} ; a, b \in R\right\} \quad \text { if } \alpha \neq 1
\end{aligned}
$$

and

$$
\mathscr{C}=\left\{V \in \bigcup_{n=-\infty}^{\infty}(a+n \beta, b+n \beta)\right\} \quad \text { if } \alpha=1
$$

where $\left[x_{1}, x_{2}\right]^{*}$ stands for the closed interval $\left[x_{1}, x_{2}\right]$ if $x_{1}<x_{2}$ and for $\left[x_{2}, x_{1}\right]$ otherwise.

Proof. First, we notice that according to Theorem 4 of [8] the limits $\lim _{n \rightarrow \infty} a_{n+1} / a_{n}$ $=\alpha$ and $\lim _{n \rightarrow \infty} a_{n+1}\left(b_{n+1}-b_{n}\right)=\beta$ exist, $-\infty<\alpha, \beta<\infty$ and $\alpha \neq 0$. We shall further show that if x_{0} is a continuity point of F, where F is the distribution function of V, then $\alpha x_{0}+\beta$ is also a continuity point of F. Suppose, for definiteness that $\alpha>0$. Then for any $\varepsilon>0$

$$
\begin{align*}
F(\alpha & \left.\left(x_{0}+\varepsilon\right)+\beta\right)-F\left(\alpha\left(x_{0}-\varepsilon\right)+\beta\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i \in S} \mathscr{P}\left(Y_{n} \in\left(\alpha\left(x_{0}-\varepsilon\right)+\beta, \alpha\left(x_{0}+\varepsilon\right)+\beta\right) \mid X_{1}=i\right) \mu_{i}^{(1)} \\
& =\lim _{n \rightarrow \infty} \sum_{i \in S} \mathscr{P}_{i}\left(a_{n}\left(X_{n-1}+b_{n}\right) \in\left(\alpha\left(x_{0}-\varepsilon\right)+\beta, \alpha\left(x_{0}+\varepsilon\right)+\beta\right) \mu_{i}^{(1)}\right. \\
& =\sum_{i \in S} \mathscr{P}_{i}\left(V \in\left(x_{0}-\varepsilon, x_{0}+\varepsilon\right)\right) \mu_{i}^{(1)} . \tag{14}
\end{align*}
$$

But

$$
\begin{equation*}
F\left(x_{0}+\varepsilon\right)-F\left(x_{0}-\varepsilon\right)=\sum_{i \in S} \mathscr{P}_{i}\left(V \in\left(x_{0}-\varepsilon, x_{0}+\varepsilon\right)\right) \mu_{i}^{(0)} \tag{15}
\end{equation*}
$$

and since $\mu_{i}^{(0)}>0$ for all $i \in S$ the continuity of F at x_{0} and (15) imply $\lim _{\varepsilon \rightarrow 0} \mathscr{P}_{i}\left(V \in\left(x_{0}-\varepsilon, x_{0}+\varepsilon\right)\right)=0$ for all $i \in S$. Using this in (14) we get that F is ${ }_{c \rightarrow 0}^{\varepsilon \rightarrow 0}$ continuous at $\alpha x_{0}+\beta$. We can similarly show that the continuity of F at x_{0} also
implies its continuity at $\alpha^{-1}\left(x_{0}-\beta\right)$ (We start with $F\left(x_{0}+\varepsilon\right)-F\left(x_{0}-\varepsilon\right)$ and proceed as in (14), etc. ...). It follows, by induction, that if x_{0} is a continuity point of F and if $\alpha \neq 1$, then

$$
\begin{aligned}
\left\{\alpha^{n} x_{0}\right. & +\beta\left(\alpha^{n}-1\right)(\alpha-1)^{-1},\left(x_{0}-\beta\right) \alpha^{-n} \\
& \left.-\beta \alpha^{-1}\left(\alpha^{-n+1}-1\right)\left(\alpha^{-1}-1\right)^{-1} ; n=1,2, \ldots\right\}
\end{aligned}
$$

are also continuity points of F.
By Lemma 2 we get that whenever $\lim _{n \rightarrow \infty}\left\{X_{n} \in A_{n}\right\}=A$ a.s., $\left\{A_{n}\right\} \in \mathbb{S}$ and $A \Delta \lim \left\{X_{n} \in A_{n}\right\}$ a.s. is a small set and in such a case Theorem B implies that $T A$ $=\lim _{n \rightarrow \infty}^{n \rightarrow \infty}\left\{X_{n} \in A_{n+1}\right\}$ a.s.

Consider now the event $\{a \leqq V \leqq b\}$ where a and b are continuity points of F. Then we can easily check that

$$
\begin{aligned}
& T\{a \leqq V \leqq b\}=\lim _{n \rightarrow \infty}\left\{a_{n}^{-1} a-b_{n} \leqq X_{n+1} \leqq a_{n}^{-1} b-b_{n}\right\} \\
&=\{a \alpha+\beta \leqq V \leqq b \alpha+\beta\} \quad \text { a.s. }
\end{aligned}
$$

Further if c is a jump point for F i.e. if $P(V=c)>0$ we can choose a decreasing sequence of numbers $\left\{c_{n}\right\}$ such that $\lim _{n \rightarrow \infty} c_{n}=0$ and $\left\{c-c_{n}, c+c_{n}: n=1,2, \ldots\right\}$ are continuity points of F. Proposition 1 (ii) implies that $T\{V=c\}=\bigcap_{n=1}^{\infty} T\{c$ $\left.-c_{n} \leqq V \leqq c+c_{n}\right\}=\{V=\alpha c+\beta\}$ a.s. An upshot of these considerations is $T\{a \leqq V \leqq b\}=\{a \alpha+\beta \leqq V \leqq b \alpha+\beta\}$ a.s. for any $a, b \in R$. We can similarly show that $T^{-1}\{a \leqq V \leqq b\}=\left\{(a-\beta) \alpha^{-1} \leqq V \leqq(b-\beta) \alpha^{-1}\right\}$ a.s. for $a, b \in R$.

Suppose now that $\lim _{n \rightarrow \infty} a_{n+1} / a_{n}=1$ and $\lim a_{n+1}\left(b_{n+1}-b_{n}\right)=0$. Then the above equality yields $T\{a \leqq V \leqq b\}=\{a \leqq V \leqq b\}$ a.s. and according to Theorem 6 of [1], $\{a \leqq V \leqq b\}$ is either an invariant set or differs from an invariant set by a small set. Because the family of sets $\{\{a \leqq V \leqq b\} ; a, b \in R\}$ generates \mathscr{V}, (i) follows.

Suppose now that at least one of the inequalities $\alpha \neq 1, \beta \neq 0$ holds. Then as we have seen before $T\{a \leqq V \leqq b\}=\{a \alpha+\beta \leqq V \leqq b \alpha+\beta\}$ a.s. If we choose a and b such that $\mathscr{P}(\{a \leqq V \leqq b\})>0$ and $a \alpha+\beta>b$ then $\{a \leqq V \leqq b\}$ and $T\{a \leqq V \leqq b\}$ are a.s. disjoint and as a consequence we get $\mathscr{V} \supset \mathscr{W}$ a.s.

We can inductively show that

$$
\begin{aligned}
& T^{n}\{a \leqq V \leqq b\}=\left\{a \alpha^{n}+\beta\left(\alpha^{n}-1\right)(\alpha-1)^{-1} \leqq V\right. \\
& \\
& \left.\quad \leqq b \alpha^{n}+\beta\left(\alpha^{n}-1\right)(\alpha-1)^{-1}\right\} \quad \text { a.s. } \\
& \text { for } n=1,2, \ldots
\end{aligned}
$$

and

$$
\begin{gathered}
T^{-n}\{a \leqq V \leqq b\}=\left\{(a-\beta) \alpha^{-n}-\beta \alpha^{-1}\left(\alpha^{-n+1}-1\right)\left(\alpha^{-1}-1\right)^{-1}\right. \\
\left.\leqq V \leqq(b-\beta) \alpha^{-n}-\beta \alpha^{-1}\left(\alpha^{-n+1}-1\right)\left(\alpha^{-1}-1\right)^{-1}\right\}
\end{gathered}
$$

for $n=1,2, \ldots$.

Using the countable additivity of T and Proposition 1 (iii) we get that if $\Lambda \in \mathscr{V}$, $\psi(\Lambda)=\bigcup_{n=-\infty}^{\infty} T^{n} \Lambda \in \mathscr{W}$ and that $\psi(\Lambda)$ is the smallest invariant set containing Λ. It follows that \mathscr{C} is the class of smallest invariant sets containing \mathscr{C}_{1} $=\{\{a \leqq V \leqq b\} ; a, b \in R\}$. It is not difficult to see that ψ commutes with complementation, countable unions and intersections and since \mathscr{C}_{1} generates \mathscr{V} it follows that \mathscr{C} generates \mathscr{W} and the proof for the case $\alpha>0$ is complete. The other cases can be treated in the same way.

Corollary. Suppose that $\left\{X_{n}: n \geqq 0\right\}$ is a properly homogeneous chain, $\left\{Y_{n}: n \geqq 0\right\}$ converges a.s. to a proper random variable V and \mathscr{I} is trivial. Then one of the following two cases occurs
(i) V is constant with probability 1 ,
(ii) V assumes the countable set of values

$$
\begin{aligned}
& \left\{\gamma \alpha^{n}+\beta\left(\alpha^{n}-1\right)(\alpha-1)^{-1} ; n=0,1, \ldots\right\} \\
& \quad \cup\left\{(\gamma-\beta) \alpha^{n}-\beta \alpha^{-1}\left(\alpha^{-n+1}-1\right)\left(\alpha^{-1}-1\right)^{-1} ; n=1,2, \ldots\right\} \quad \text { if } \alpha \neq 1
\end{aligned}
$$

and

$$
\{\gamma+n \beta ; \quad n=\ldots-1,0,1, \ldots\} \quad \text { if } \alpha=1
$$

for some $\gamma \in R$.
Proof. Suppose that F is strictly increasing on a certain interval (a, b) and that $\alpha>0$. Then we can choose two numbers $a^{\prime}, b^{\prime} \in(a, b)$ such that $F\left(b^{\prime}\right)-F\left(a^{\prime}\right)>0$ and either $a^{\prime} \alpha+\beta>b^{\prime}$ or $b^{\prime} \alpha+\beta<a^{\prime}$. Assume for definiteness that $a^{\prime} \alpha+\beta>b^{\prime}$; we get that $A=\bigcup_{n=-\infty}^{\infty} T^{n}\{a \leqq V \leqq b\}$ is an invariant set and $0<\mathscr{P}(A)<1-\left(F\left(a^{\prime} \alpha\right.\right.$ $\left.+\beta)-F\left(b^{\prime}\right)\right)<1$ which contradicts the triviality of \mathscr{F}. Therefore V is a discrete random variable. Suppose now that γ is a number with the property $\mathscr{P}(V$ $=\gamma)>0$. Then Proposition 1 (iii) in conjunction with Lemma 2 implies that $\mathscr{P}\left(T^{n}\{V=\gamma\}\right)>0$ for all $n \in Z$. Since $\bigcup_{n=-\infty}^{\infty} T^{n}\{V=\gamma\}$ is an invariant set, its probability must be 1 and the proof is complete.

We shall further give a result that parallels Theorem 4(ii) in the case when the sequence $\left\{Y_{n}: n \geqq 0\right\}$ converges a.s. to an improper random variable and $\lim a_{n+1} / a_{n}=\infty$. Such a situation occurs for some branching processes with $n \rightarrow \infty$ infinite mean (see [17]) where $\lim X_{n} / a_{n}=V$ a.s. with $\mathscr{P}(V=\infty)>0$ and $\mathscr{P}(V \neq\{0, \infty\})>0$. Using a reasoning similar to that employed in the proof of Theorem 4 we can show that $\lim _{n \rightarrow \infty}\left\{a \leqq a_{n}\left(X_{n+1}+b_{n}\right) \leqq b\right\}=T\{a \leqq V \leqq b\}$ a.s. Further $T\{a \leqq V \leqq b\}$ assumes positive probability provided that $\mathscr{P}(\{a \leqq V \leqq b\})>0$. Under these conditions Theorem 1.1 of [16] implies that $V_{1}=\lim _{n \rightarrow \infty} a_{n}\left(X_{n+1}+b_{n}\right)$ exists a.s. It is not hard to see that $\lim _{n \rightarrow \infty} a_{n+1} / a_{n}=\infty$ entails

$$
\mathscr{P}\left(\{-\infty<V<\infty, V \neq 0\} \cap\left\{-\infty<V_{1}<\infty, V_{1} \neq 0\right\}\right)=0
$$

and hence, unlike the situation described by Theorem 4(ii), V_{1} is not expressible as a function of V.

Theorem 5. Suppose that $\left\{X_{n}: n \geqq 0\right\}$ is a properly homogeneous Markov chain, $\left\{Y_{n}: n \geqq 0\right\}$ converges a.s. to an improper and nondegenerate random variable V and that $\lim _{n \rightarrow \infty} a_{n+1} / a_{n}=\infty$. Then $\lim _{n \rightarrow \infty} a_{n}\left(X_{n+k}+b_{n}\right)=V_{k}$ exists a.s. and is nondegenerate for all $k \in Z ; \mathscr{W} \subset \mathscr{V}$ a.s. and \mathscr{W} is generated by the family of invariants sets \mathscr{D} $=\left\{\bigcup_{n=-\infty}^{\infty}\left\{a \leqq V_{n} \leqq b\right\}, a, b \in R\right\}$.

The finite mean supercritical branching processes (see [2]) and the irregular branching processes with infinite mean (see [17]) provide examples of Markov chains to which Theorems 4 and 5 respectively apply. Let us notice that any nondegenerate supercritical branching process $\left\{Z_{n}: n \geqq 0\right\}$ is a properly homogeneous chain. Indeed, suppose that x and y are two states such that $P(1, x) P(1, y)>0$ and let t be the greatest common divisor of the numbers $\{i: i \geqq 1, P(1, i)>0\}$. According to a result by Dubuc (Proposition 2, [11]) there exists a number d such that any $j \in\left\{i: x^{n}+d \leqq i \leqq y^{n}-d\right\}$ with $j=x^{n}(\bmod t)$ is accessible at time n from 1 (i.e. $P^{(n)}(1, j)>0$) for $n=1,2, \ldots$. If we choose $x=\min \left\{i: i \geqq 1, P^{(n)}(1, i)>0\right\}$ then we can prove that for n sufficiently large $\mu_{j}^{(n)}>0$ for all $j=x^{n}(\bmod t)$ with $j>x^{n}+d$. Toward this aim let us notice that given $\mu_{2}^{(0)}>0$, if we choose n such that $y^{n}-d>2 x^{n}+2 d$ then any $j \in\left\{i: 2 x^{n}+2 d \leqq i \leqq 2 y^{n}-2 d\right\}$ with $j=2 x^{n}(\bmod t)$ is accessible at time n from 2. But $\left\{i: x^{n}+d \leqq i \leqq y^{n}-d\right\}$ and $\left\{i: 2 x^{n}+2 d \leqq i \leqq 2 y^{n}\right.$ $-2 d\}$ overlap and therefore $\mu_{j}^{(n)}>0$ for all $j \in\left\{i: x^{n}+d \leqq i \leqq 2 y^{n}-2 d\right\}$ with j $=x^{n}(\bmod t)$. Further $\mu_{4}^{(0)}>0$ and $y^{n}-d>2 x^{n}+2 d$ also implies that $\left\{i: 2 x^{n}\right.$ $\left.+2 d \leqq i \leqq 2 y^{n}-2 d\right\}$ and $\left\{i: 4 x^{n}+4 d \leqq i \leqq 4 y^{n}-4 d\right\}$ overlap, etc. We conclude that for n sufficiently large $\mu_{j}^{(n)}>0$ for all $j=x^{n}(\bmod t)$ with $j>x^{n}+d$. Therefore $\left[S_{n}-S_{n+1}\right] \subset\left\{1,2, \ldots, x^{n}+d\right\}$.

Suppose now that $m=E\left(Z_{1}\right)<\infty$. Then the Seneta-Heyde theorem ([2], p.30) asserts that there exists a continuously distributed random variable W and some norming constants $\left\{c_{n}\right\}$ with $\lim _{n \rightarrow \infty} c_{n+1} / c_{n}=m$ such that $\lim Z_{n} / c_{n}=W$ a.s. Now $c_{n}=c_{n} / c_{n-1} c_{n-1} / c_{n-2} \ldots c_{1}$ yields that there exists a number A and an integer k such that $c_{n} \geqq A(m-\varepsilon)^{n-k}$ for a preassigned $\varepsilon>0$ and a sufficiently large n. If we choose ε such that $m-\varepsilon>x$ and take into account that $\mathscr{P}(W>0)$ $=\mathscr{P}\left(\lim _{n \rightarrow \infty} Z_{n}=\infty\right.$ a.s. $)$ we get that $\lim _{n \rightarrow \infty} \mathscr{P}\left(Z_{n} \in\left[S_{n}-S_{n+1}\right]\right)=0$. Hence $\left\{Z_{n}: n \geqq 0\right\}$ is properly homogencous.

In the infinite mean case $\left\{Z_{n}: n \geqq 0\right\}$ grows quicker to infinity and the general theory of such processes given by Schuh and Barbour [17] can be easily seen to imply that these processes are properly homogeneous (in both the regular and irregular cases).

We mention that Athreya and Ney [2] Chapter 2, p. 96 have identified the invariant sets $\left\{\bigcup_{n=-\infty}^{\infty}\left\{m^{n}<W \leqq m^{x+n}\right\}, x \in R\right\}$ for a finite mean supercritical branching process, under the additional assumption that $E\left(Z_{1} \log Z_{1}^{+}\right)<\infty$. This result is a particular case of Theorem 4(ii). Athreya and Ney derived two different proofs of their result on p.96-97 of [2] but neither of them seems extendable to the general case considered here.

References

1. Abrahamse, A.F.: The tail σ-field of a Markov chain. Ann. Math. Statist. 40, 127-136 (1969)
2. Athreya, K.B., Ney, P.E.: Branching Processes. New York: Springer 1972
3. Blackwell, D.: On transient Markov processes with a countable number of states and stationary transition probabilities. Ann. Math. Statist. 26, 654-658 (1955)
4. Breiman, L.: On transient Markov chains with application to the uniqueness problem for Markov processes. Ann. Math. Statist. 28, 499-503 (1957)
5. Chung, K.L.: Markov chains with stationary transition probabilities. 2nd Edition. New York: Springer 1967
6. Cohn, H.: On the tail events of a Markov chain. Z. Wahrscheinlichkeitstheorie verw. Gebiete 29, 65-72 (1974)
7. Cohn, H.: On the tail σ-field of the countable Markov chains. Rev. Roumaine Math. Pures Appl. 4, 850-858 (1976)
8. Cohn, H.: On the norming constants occurring in convergent Markov chains. Bull. Austral. Math. Soc. 17, 193-205 (1977)
9. Derriennic, Y.: Lois "zero ou deux" pour les processus de Markov. Applications aux marches aléatoires. Ann. Inst. H. Poincaré. Section B. XII, 2, 111-129 (1976)
10. Doob, J.L.: A Markov chain theorem. Probability and Statistics. (H. Cramér memorial volume) ed. U. Grenander, 50-57. Stockholm and New York: Almqvist and Wiksel, 1959
11. Dubuc, S.: Etats accessibles dans un processus de Galton-Watson. Canad. Math. Bull. 17, 111113 (1974)
12. Griffeath, D.: Partial coupling and loss of memory for Markov chains. Ann. Probability 4, 850858 (1976)
13. Küchler, U.: Über die σ-Algebra der asymptotischen Ereignisse bei diskreten Geburts- und Todesprozessen. Math. Nachr. 65, 321-329 (1975)
14. Loève, M.: Probability Theory. Third Edition. Princeton: Van Nostrand, 1963
15. Ornstein, D. and Sucheston, L.: An operator theorem on L_{1} convergence to zero with applications to Markov kernels. Ann. Math. Statist. 41, 1631-1639 (1970)
16. Padmanabhan, A.R.: Convergence in probability and allied results. Math. Jap. 15, 111-117 (1970)
17. Schuh, H.-J., Barbour, A.: On the asymptotic behaviour of the branching processes with infinite mean. Advances Appl. Probability 9, 681-723 (1977)

Received September 10, 1977; in revised form January 2, 1979

