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1. Introduction and Summary 

Let S be a countable set of integers, N = {0, 1, ...} and (2 =S  ~. Define the variables 
{Xn(co): n>0} on f2 by Xn(co) = o),, where co =(COo, col, ...,e)n, ...). Let Y be the a- 
field generated by the variables {Xn(co): n > 0}. An initial probability vector #(o) 
=(#I~ ieS) and a (1-step) transition probability matrix P=(P(i,j);i, jeS) de- 
termine a probability measure ~ on ~- and a temporally homogeneous Markov 
chain {Xn(co): n>0} on (~2, ~ )  such that #~o)=~(X ~ = i) and P(i,j)=~(X~+ 1 
=j[ X n = i) provided that ~ ( X  n = i)> 0. Denote by {#(n): n > 0} the sequence of the 
absolute probability vectors, where #(n)=(#1"/;ieS ), #~"l=~(Xn=i)  and let Pn 
=(P(n)(i,j);i, jeS) be the n-step transition probability matrix. Throughout  the 
paper our results will refer to a Markov chain for which the initial probability 
vector is strictly positive (i.e. #I.~ 0 for all ieS) and r will correspond to such an 
initial probability vector. In the proofs we shall sometimes consider Markov chains 
assuming the same transition probability matrix P but a different initial probability 
vector, (say) 2, and in this case ~ will stand for the corresponding probability of the 
chain. We shall abbreviate ~,. for ~a(i) where b stands for the Dirac measure. 

Let ~,  be the a-field generated by X,,  and ~o~ the a-field generated by X,, 

Xn+t, ...,.Y-= f)  ~ will be said to be the tail a-field of the chain. A set A in a 
n = 0  

a-field N is called atomic with respect to N if ~(A) >0  and A does not contain two 
disjoint subsets of positive probability belonging to N. A set A in N is called 
completely nonatomic with respect to N if ~ ( A ) > 0  and A does not contain any 
atomic subset belonging to N. It is well known that, in general, f2 may be 

represented as ~2 = U An, where A o is completely non-atomic and A1, A 2 .. . .  are 
n ~ 0  

atomic sets with respect to N. If A~ =~?, N will be said to be trivial. 
If2 and v are two finite measures on a measurable space (X, Y') we denote by IlL 

-vi i  the total variation of )o-v i.e, ]l)~-vll =(2-v)+(X)+(2-v)- (X) ,  where (L 
- v )  + and ( 2 - v ) -  are the positive and negative parts of 2 - v  in its Jordan 
decomposition. It is easy to see that i fX  =S  and ~ is the class of all subsets of S, II-~ 
- v  ]1 = ~ 12(i)- v(i)I. Further A ~ will stand for the complementary set of A, A 1A A 2 

i e S  
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for the symmetric difference ofA 1 and A 2, Z for the set of the integers and R for the 
set of the real numbers. A shift function T" f2~t?  is defined by setting T(co0, co 1 . . . .  ) 
=(col, o)2,... ). We shall write TA--{Tco:a)~A}, T-1A={co:To)eA} and T~ 
= A. A set Ae~~ - is said to be invariant if T - ~ A - - A .  The class of all invariant sets, 
denoted by .,r is a o--field, called the invariant o--field. It is easy to see that both T and 
T -  ~ are countably additive maps from ~- into ~ Besides, T -1  preserves the 
disjointness of sets and commutes with complementat ion and countable in- 
tersections. These properties of T -  ~, not possessed by T, are probably accountable 
for the use of T -  1 in the definition and the investigations of the invariant sets from 
the very beginning of the ergodic theory. 

In a paper concerning the structure of ~,, Abrahamse [1] has shown that if T is 
restricted to the sets of J,, then it proves tractable and useful. He has first proved 
that T maps .F one-to-one onto itself and ~--- {AeJ. '  TA=A} (Theorem 1, [1]). 
This result implies that an invariant set can also be defined as a set with the property 
TA=A. To the further "rehabilitation" of T we remark that making use of the 
above mentioned result of I l l  we can prove that T restricted to g has also other 
desirable properties, which will be needed in what follows, expressed by the 
following 

Proposition 1. Suppose that A,A,,A2, ... belong to ~.. Then 
(i) TAC=(TA) c, 

(ii) T ~ A,= ~) TA,, 
n = l  n = l  

(iii) Tm§ for m, n~Z. 

We remark that these results hold in general, the Markov property being not 
used in their derivation. We shall say that A is a null set if ~(A) = 0. If ~(T~A) -- 0 for 
al l  nEZ, A will be said to be a small set. It is easy to see that if A is a null set then 
P(T-~A)-=O for all heN. Indeed, ~(T-~A[X~=i)--~(A[Xo=i)=O for all 
ie{j: u(~)>0}. However P ( T A )  is not necessarily null for any null set A and ,-j 
therefore not all the null sets are small sets. In Sect. 4 we identify a class of small sets 
that will prove useful in some applications. 

Suppose that ~ and ~ are two o--fields such that fq ~ ~ .  We shall say that 
= J(f a.s. if the sets of ~r are the sets of ~ modulo small sets and fq ~ 2/f a.s. 
otherwise. 

Let A =(A o, A p . . . )  be a sequence of subsets of S. We shall say that lim {X~eA~} 
n ~ c o  

--A a.s. if 

.~(AA lira inf{X~eA~}) =~(AA lim sup {X~eA~}) =0. 
n ~ o 3  n ~ o o  

A subset C of S will be said to be almost closed if lim {X~e C} exists a.s. and assumes 
n ~ o o  

positive probability. C will be said to be a transient set if lim sup { X ~  C} is a null 
n ~ o D  

set. Denote by 62 the class of all almost closed and transient sets, by ~ the class of all 
transient sets and by .A~ the class of all null sets in J .  It is easy to see that 62 is a 
boolean algebra and ~3 is an ideal in 62. The following basic result due to Blackwell 
[3] (see also Chung [5], Theorem 1, Sect. 17) exhibits the relationship between the 
elements of r and J .  
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Theorem A. To each invariant set A there corresponds a transient or almost closed set 
C such that A = l i m { X , ~ C }  a.s., according as A is a null set or not. This 

correspondence is an isomorphism fi'om J / Y  onto ~/23. 

Abrahamse, in the already mentioned paper [1] has shown that an isomor- 
phism of the type referred to in Theorem A can also be established between some 
sequences of sets A = (A o, A1,---) such that lira {X,,E A,} exists a.s. and the sets of J,, 

n ~ c o  

with the difference that the r61e of the null sets is played here by the small sets. In 
analogy to the invariant sets case discussed above, we shall say that A is a totally 
transient sequence if lira sup{Xn~An} is a small set and A will be said to be a tail 

n ~ c , 3  

sequence if it is not a totally transient sequence and if limsup{X,~An} 
n ~ o o  

- l i m  inf{X, eA,,} is a small set. For  A = ( A o ,  A 1, ...) and B=(Bo ,  B t . . . .  ) we shall 
n ~ c o  

define AC =(A~o,A~,...), A u B = ( A o w B o ,  A 1 u B  1 . . . .  ) and Ac~B 
= ( A o ~ B o ,  A l c ~ B 1 , . . . ) , T A = ( A D A  2 . . . .  ) a n d T - 1 A = ( S ,  Ao .. . .  ). If we denote by 

the class of all totally transient and tail sequences and by ~ the class of all totally 
transient sets, then we can easily check that ~ is a boolean algebra and ~ is an ideal 
in ~. Denote by ~ the class of all small sets in J .  We shall say that A A lira { X , ~ A , }  

a.s. is a small set if AAlim sup{X,~A,,} and AAlim inf{X,,eA,} are small sets. 
I z ~  o3 n ~  

The following result is due to Abrahamse (Theorem 5, [1]). 

Theorem B. To each set A EJ-  there corresponds a totally transient or a tail sequence 
A = (A o, A ~,...) such that A A lira {X, sA,} a.s. is a small set, according as A is a small 

set or not. This correspondence is an isomorphism from J-/Jdl onto ~ / % ,  and 
commutes with T. 

The first criterion on the structure of the invariant a-field is due to Blackwell, 
who in the already mentioned paper [3] showed that a necessary and sufficient 
condition for the triviality of ,r is that every bounded solution ~b of the equation 

qS(i) = ~ P(i , j)  +(j) (1) 
.I~S 

be constant. Breiman [4] gave a characterization for some kind of atomic sets A of 
J in terms of the bounded solutions of the inequation 

qb(i)<= y P(i , j)  ~(j)  
jeC 

where C is an almost closed set corresponding to an invariant set A. 
Recently, Derriennic [9] proved for an arbitrary state space S, that J is trivial 

under any initial probability if and only if 

n 

lira -1 ~. P(J)(x, . ) -P( ; ) (y ,  ") =0,  x, ycS .  
n ~  co T~ j = l  

Derriennic's proof leans heavily on the properties of the contractions on a Banach 
space. 
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In the present paper we are concerned both with the structure of the invariant a- 
field and with its relation to the tail a-field. In Sect. 2 we give Some necessary and 
sufficient conditions for J - - Y  a.s. Our conditions are related to the quantities 

~(x)= lim IlPC")(x,')-P("-a)(x,')ll, x~S  (2) 
n ~ c o  

which were first considered by Ornstein and Sucheston [15], who proved that 
under certain assumptions ~(x) is either 0 or 2, a property that became known as 
"the 0-2 law". Subsequently, Derriennic [9] proved a very general 0--2 law and 
showed that i f J  = Y a.s. under any initial probability #c0), then a(x) = 0 for all x and 
sups (x )=2  otherwise. Ornstein and Sucheston's proof is based on La-operators 
x ~ S  

theory, whereas Derriennic used a combined martingale and operator-theoretic 
approach. 

Our approach is based on the martingale convergence theorem and does not use 
the notion of operator. Besides, one of the equivalent conditions for J - -  J -  a.s. is 
expressed by means of an a.s. convergent sequence, which proves adequate in some 
applications involving recurrence conditions. 

In Sect. 3 we give a result characterizing both the atomic and the completely 
non-atomic sets of J ,  which parallels the results given for the tail a-field in [6] and 
[123. 

In the final Section we study the invariant sets attached to a normed sequence of 
random variables which converges almost surely and explore their relation to the 
a-field generated by the limiting random variable. As an application, classes of 
invariant events are identified for some supercritical branching processes. 

2. T h e  C a s e  J = ~ -  a.s. 

For any state i such that #~1)>0 we shall define the random variables 

[_P(~)(i, _co,,) 

z,(co)=lP("- l'l(i, co,) 
if pC,- l)(i ' co,) > 0 

if P(" *)(i, co,)=0. 

The random variables {zn(co)}, defined in a slightly different way, were 
considered in [7] where they were used to give a unified martingale approach to 
some results of the tail a-field theory. We found out recently that similar random 
variables were considered before, in connection with Martin boundary theory, 
where their convergence was derived by using the space-time harmonic function 
theory (see e.g. [10]). 

We shall further show that the random variables {z,(co)} can be used to derive a 
criterion for J = Y a.s. 

Theorem 1. The following three statements are equivalent: 
(i) J = J -  a.s. 

11(1) ~ t~ (ii) lira z,(co)= 1 a.s. for all i such that ~-i u, 
n ~  oo 

(iii) lira I]P(")(i,-)-P("-1)(i, ")11 =0  for all itS. 
n ~ a o  
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Proof Suppose  that  (i) holds and define the r a n d o m  variables 

, ,  , ~ ( X l = i l X . )  .~ (Xo=i lXn)  

We shall prove  that  lira G ( X , ) = 0  a.s. if and only if lira G(co)= 1 a.s. 
n ~ o o  n ~ 3 o  

By a well known proper ty  of M a r k o v  chains we get 

~ ( X I = i ] ~  ~) ~ ( X o = i t ~  ~176 
G ( X , ) -  u!l~ do~ 

N o w  the mar t ingale  convergence theorem (see e.g. [14] p. 409) yields 

~ ( X ~  = i l J )  -~(Xo = i lY)  
lim G(X~) #~) #~0) a.s. (4) 

n ~  

By e lementary  calculat ions we can deduce that  unless ~ ( X  0 = i] X,)  = 0, G(co) is the 
rat io of  the quanti t ies ~ ( X  1 = i] X,)/gl  ~) and N(X0 = i] X,)/#~ ~ which appear  on the 
right hand  side of(3) and in the case .~(X 0 = i] X,)  = 0, G(co) is defined as being equal  
to 1. 

As in [7] we get 

, ( o )  ~ ( x l  =it J-) .~ (5) 
l i m G ( c o ) =  ( X o = i l J )  u(~) 

/ / 4 0 0  ~ i  

for a lmost  all mE{co: ~ ( X o = i ] J ) > 0  }. 
Unlike the {z,(co)}, the r a n d o m  variables {G(X,,)} are defined wi thout  any 

modif icat ions  and their limit (4) is established without  the restrict ion: "for  a lmost  
all co~ {co: N ( X  o = i[ J )  > 0}" imposed  for the validity of(5). Therefore,  to complete  
the p roo f  of  the fact that  lira % ( X , ) = 0  a.s. if and only if lira z,(co)= 1 a.s. it will be 

n ~ o ~  n ~ o o  

sufficient to show that  there exists a sequence {C,: n > 0 }  such that  lira {X ,  eC ,}  
n ~ o o  

= Ao = {co" ~ ( X o  = it J - )  = 0} a.s. and that  P(" 1)(i,j) = P("~ (i,j) = 0 fo r j~  C,_ 1 w C,, 
n = 1, 2 . . . . .  Indeed, we know that  A o differs f rom a set in ~r at mos t  by a null set and 
according to T h e o r e m  A there exists a set C such that  lira {X,~ C} = A 0 a.s. It  is 

n ~ o o  

easy to see that  we can take C, = C - D,, where D, = {j: #~") > 0, ~ ( A o [ X ,  =j)  = 0}, n 
=0 ,  1, .. . .  Suppose  now that  for a certain k, P(k)(i,j)>O with j ~ C  k. Then by the 
C h a p m a n - K o l m o g o r o v  formula  ~ ( A  0 . (k). I X o = i ) > ~ ( A o I X k = y ) P  G j ) > 0 .  But 
f rom the definition of A o we obta in  ~ ( A o l X o = i ) = O  which is a contradict ion.  
Therefore  P~)(i,j) = 0 for j~  C,, n = 1, 2 . . . . .  Fur ther  ~ ( A o l X  1 = i) = ~ ( A o l X  o = i) 
= 0 and therefore P~"- 1)(i,j) = 0 f o r j ~  C, 1, n = 1, 2 . . . . .  Hence  lira G(X , )  = 0 a.s. if 

n ~ c o  

and only if lim G(co) = 1 a.s. 
r ~ o D  

We show now that  lira % ( X , ) = 0  a.s. is implied by (i). Suppose  the contrary,  i.e. 
n ~ o o  

that  there exists a set A~ such that  for co~Aa, ~(co) = lira G(X~) 4= 0. We m a y  take for 
n ~ o o  
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definiteness ~(co)>0 for o)~A 1. If we integrate (4) over A 1, after elementary 
calculations we get 

~(AI [X 1 =i)> ~(Al  lXo=i) 

which contradicts the assumption (i) and the implication (i)~(ii) is proved. 
Suppose now that (ii) holds. Then the dominated convergence theorem applied 

to the sequence {%(X,)} yields 

lim sup [.~(X,,~BIX 1 =i ) -~ (X ,~BlSo=i ) [  < lira ~ Ic~(X,)l d ~ = 0  
n ~ m  B c S  n ~  S 

which implies 

lim [[P(')(i, .)-P(" 1)(i, ")ll =0. (6) 
t / ~ o o  

We recall that the states i for which (6) was derived are subjected to the restriction 
#I 1) >0, which was assumed in the definition of {%(X~)}. We show now that this 
restriction can be removed. Because #I ~ was supposed positive for all i~S we need 
only consider the case #~~ and /~1)=0. Denote S '={j :y}l )>0},  and let a + 
=max(a,0). Then, for any ieS 

ii p(,)(i, . ) _ p ( , -  1)(i, ")11 
=�89 ~ [~ P(i,j)P('- ~)(j, k)- ~ P(i,j)P('- :)(j, k)] +. (7) 

kES  j ~ S  j e S  

Further (6) and (7) imply 

lim lIP(')(i, .)_p(n- 1)(i, ")11 
n ~ o o  

< l i m  ~ P(i,j)llP (" 1)(/ ' , ' ) -P(~-z)(j , ' ) l l=0 
n ~ o o  j e S '  

and the implication (ii)~(iii) is proved. 
Suppose now that (iii) holds and assume that J c 3-- a.s. In this case there exists 

a set A ~ J  such that ~(TAA A)>0 and we can suppose without loss of generality 
that A and TA are disjoint. Indeed, if A and TA are not disjoint then in view of 
Proposition 1 we can arrange to have such a situation by taking A c~ (TA) ~ instead 
of A. 

By a well known procedure which goes back to Blackwell [3], we know 
that if we take B~ = {j: ~ (A I X,  =j) > 6} with 6 >�89 then {B,} ~ is the sequence 
corresponding to A in the isomorphism alluded to in Theorem B (see also [1]). 
Further, according to the same Theorem B, this isomorphism commutes with 
T and therefore lim {X,,~B,,+ 1} = TA a.s. Now, if iEB m and n is sufficiently large 

~(X,+,,~B~+mIX,~=i)>5 and ~(X,+,~+leBn+m+lIXm=i)>c5 

and taking into account that B, and B,+ 1 are disjoint for all n, we get IIP(')(i,-) 
- P("- 1)( i, ")ll > 2 5  - 1 >0  which is a contradiction and the proof is complete. 
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Remark. As in the case of the tail a-field considered in [7], a property like (ii) may 
prove useful when dealing with recurrence type conditions, whereas (iii) expressing 
a "global property" seems less adequate in handling such situations with 
probabilistic methods. A criterion of this type can be used to derive the triviality of 
the tail a-field, by proving first, what is often simpler, the triviality of J and then J 
= J a.s. We notice that in this way we can give an alternative proof of the triviality 
of the tail a-field for a Markov chain assuming a trivial J and satisfying the 
property P(co: X~+~(Co)=Xn(CO)i.o.)= 1, a result which was first established by 
Kiichler in [13], where he gave a full description of the tail a-field structure of a 
birth and death process. It is possible to show that in this case lira z,(co) = 1 a.s. in 

the same way as in the alternative proof of the Blackwell and Freedman 0-1 law 
given in [-7]. 

3. The Structure of J 

We consider now the vector chain { Y," n > 0} with Y,, = ( X ~  1), X(n2)), Y/~ 0,  defined on 
the probability space (f},fi ,~); {X~I): n>0} and {X~2): n>0} being two inde- 
pendent copies of {X~: n>0}, ~ = f 2  x s ~ & = ~ |  and ~ = ~ |  

Let us further define, for any nonnegative integers m and n, the random variable 

8 ..... ((~)) = ~ l~=l(e(1)(X(m 1)~ -- P(l)(x,(2), ~ ) .  

Denote by I 0 the completely nonatomic set and by I1,I2,... the atomic sets 
occurring in the representation of f2 corresponding to J .  

The assertions "for almost all 05" or "a.s." in the statement of the following 
Theorem will be understood to hold with respect to ~.  

Theorem 2. (i) There exists the limits 

lira 8m,,(05) = 8m(05), 
n ~ c o  

lira 8m(05)=8(c5) a.s. 
m~o-2 

(ii) 8(05)=2 for almost all 05ci o XloW Q) I, xI , , ,  

8(05) =0  for almost all 05~I, • I,, u= 1, 2, .... 

" .)) Proof. It is easy to see that nl ~1 (P(~ -p(O(j, converges (see e.g. Derriennic 

" ")) , then f(n) __~I(P (~ (i,.) - P(~)(j, can be shown [9] p. ll5) s ince i fwedenotef (n)= z= 

to be a subadditive function i.e. f (m + n) <f(m) +f(n) for all m, n~N and therefore 
limf(n)/n= inff(n)/n. Hence lim 8,,,,,(05)=8m(05) exists for all 05~.Q. 

n ~  n ~ l  n ~  
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The existence of/3((5) will be proved in the course of the proof of (ii). 
Because I 0 is completely nonatomic, for any e > 0 we can find n(e) disjoint sets 

I(1),...,I(n(e)), such that Io=I(1)wI(2)•...wI(n(e)) and O<~(I(s))<e/4 for 
l_<s_<n(e). Let C(s)={j:~(I(s)lXo=-j)>l-e/4 }. As we have seen before 
l im{X, EC(s)}=I(s) a.s. with respect to ~ for s=l,2,...,n(e). It follows that 

lim P(~)(i, C(s))=~(l(s)lXo=i ). Take now ilsC(s) and ia~C(s' ) with s4=s'. Then 
l ~ c o  

1 " .) 
lim - ~ (P(r ")-P(Z)(i2, 

n ~ o a  H / = 1  

1 " 
> lim ~ ~(P(~)(iI, C(s))-P(~)(iz, C(s))) 

r l~cO l - -  =i 

+ lim 1 ~ (P(~)(i2, C(s')-P(~)(il, C(s'))) 
n ~  Yl l =  1 

>_2-e. 

It follows that lim inffl,~((5)> 2 - e  for almost all (5eI(s)• I(s'). However, we 
n ~ o o  

can further split each of the sets I(s), s= 1, ..., n(e) into disjoint subsets whose 
probabilities are smaller than e'/4, for any preassigned e' smaller than e. Using the 
same reasoning as above we get, in particular, that lim inf/3m((5) > 2 -  e' for almost 

n ~ c o  

all (5~I(s) x I(s') and because we can apply the same reasoning to any subsets of I  (s), 
s = 1 .. . .  , n(e) we deduce that fl((5)= 2 for almost all (5~I 0 • I o. 

The proof of fl((5)= 2 for almost all (5e ~) 1, • I~, is easier and will be left to the 

reader. 
We shall prove now that /3((5)=0 for almost all (seI, xI , ,  u = l , 2 , . . .  

According to Theorem 1 of [9], for any i~, izeS 

lim 1_ ---ln ~(P!~  2 sup ( ~ ( A ) - ~ ( A ) )  (8) 
n ~ o o  12 = A ~ J ~ ( i l , i 2 )  

where ~(A)=@~(A[Xo=i) for any initial probability v such that v(~ and 
J(i~, i2) is the invariant a-field of the Markov chain assuming the initial probability 

= �89 ~ (i9). 
We show now that i f I ,  is an atomic set of J and if at least one of the inequalities 

~ ,  (I~) > 0 and ~. (I~) > 0  holds, then I ,  is also atomic with respect to J(i,j). Indeed, 
suppose the contrary; then according to Theorem A there exist two disjoint almost 
closed sets C'~ and C~' such that lim {X~e C'~} =A  1 a.s. and l im{X, eC~} =A 2 a.s. 

n ~ c o  t l ~ o o  

with respect to ~ and ~o(A1)~z(A:)>0. Further, because lira inf{X, eC',} and 
n ~ o o  

lira inf{X,e C~'} are both invariant and disjoint sets, then we must have either 
n ~ o o  

�9 ' 0 ~ ( l i m  lnf tX,  eC ,} )=0 .  But #o was supposed positive ~(limlnf{X,~C~})= or ' s " 
n ~ c o  n ~ o o  

�9 l )  for all i~S and therefore this entails either ~( l im mf{X,~C,~)=O for all i~S or 

~ ( l i m  inf{X,~C~})=0 for all i~S and the inequality ~ x ( A a ) ~ ( A : ) > 0  is con- 
n ~ o 9  
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tradicted. Therefore I ,  is an atomic set with respect to J(i,j). 
Notice now that if we denote S ,={i : /~")>0} ,  n = 0 , 1 , . . ,  then 

So~_SI~_...~_S,~_ .... Indeed, we can prove this by induction if we take into 
account tha t /4  o) was supposed positive for all i~S. Take now il, i 2 eSm. Then for any 
I , ,  u > l  we get ~(I~[Xo=i l )=~(I~lX~=i~)=. . .=~(I~lXm=il )  and similarly 
~( I  u [X m = i2) = ~ ( I ,  I X 0 = i2). Fur ther  (8) yields 

lim _1 " ")) (/) ( 1 )  (l) (2 )  _ Z ( P  (Xm = i ~ , ' ) - P  ( X , , - i 2 ,  
n ~ r /  / = 1  

<2]~( I , [Xm=i i ) -~ ( I , [X , ,= i2 ) [+2  sup (~ i (A) -~ , .  (A)). (9) 
A ~ ,.# ( i ,  j )  

A c l  c 

Choose now C.(e) = {i: ~, (I.) > 1 - e/4} and take il, i2 ~ Cu" Then (9) implies 

lim 1 ~, (p(0(X},) = i 1 , . ) _  (~) (2)=i2,.)) ~ g P (X,, < 2 ~ + 2 ~ = ~ .  
n ~  Y/ / = 1  ~4 l+ 

But lira {Xm~C,(e)}=I . a.s. with respect to ~ for any e > 0  and the Theorem 
m ~ o o  

follows. 
Let us define, for any nonnegative integers m and n, the random variable 

1 ~__~l(p(l+~)(.) _ p(O (X,~, .) ) 
Vm'~(c~ 1 - ~ n  

To study {7m,,(co)} we shall need the following 

Lemma 1. For any m, n and 

~=l(t~('+m)(')-P("(i,')) >= i~=i(#('+m)(')-P(O(i,')) . 

Proof We recall that  if v is a signed measure with v(S)=O then, Hvl[ = 2  sup v(A). 
A c S  

Further  

i~(~(,+m)(.) _ )) p(l)(i, . 

< 2 sup ~ [~((Xt+, ,  , X~ +m+ 1) eB) - ~a((Xz+m, X~ +m+ i)eBlXm = i)3 
B c S 2  l = 1 

= 2 s u p  ~ • P(j>j2)(l~Ji+m)-P(t)(i,j~)) 
B c S 2  I = 1 ( j t , j 2 ) e B  

<= z~l(p(l+")(" )-- Pr " )) 

Theorem 3. (i) There exist the limits 

lim 7m,.(o~) = 7re(co), 
n ~ o o  
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lira 7m(co)=?(@ a.s. 
m ~ o o  

(ii) 7(co)=O for almost all cO6Io, 
7(co)=P(I,) for almost all co6I~ u = 1, 2, .... 

Proof First notice that by the triangle inequality and by the above Lemma 1 

;~=i(12u+m)(')--P(l'(i,')) 

.)) P .)) < ~(#(l+m)(.)--p(1)(i, + ~=l(ll(l+m)(')-P(1)(i, . 
1 = 1  I =  

Therefore, as in the case of the expression considered in Theorem 2 

f(n) = ~=l(]A(l+m)(") --P(~)(i,')) 

is a subadditive function and hence lira 7m,,(CO)= 7,,(C0) exists for all m. 
n ~ o o  

The existence of ?(co) will be obtained in the course of the proof of (ii). 
To prove that y(co) = 0  for almost all coeI o we can proceed in the same way as in 

the proof  of Theorem 2 and we leave it to the reader to work out the details. 
To prove that ?(co)=P(I,)  for almost all coeI,,  u >  1 we notice first that 

1 [, 
7m,,(@= 1-- n i~S" l~l-- kr #(m)(P(l)(k,J)--  P( l ' (Xm'J) )  

z = 1 k e G ( u )  

We choose further C(u)= {j: ~ ( I ,  IX o = j ) >  1 -e /4}  for a certain preassigned e > 0. 
We remark now that the first sum of the right hand side of(10) can be neglected 

since it is bounded by 

1 " )_p(O(Xm ' ")) E #(k ") - E (P(O( k," 
kEC(u) n l = 1 

which by Theorem 2 tends to 0 for almost all c ~ I .  as n and m go to infinity. 
We shall now deal with the second sum of the right hand side of (10). It is easy to 

see that 

1 n ~ ")) 
lira 

m~co 

-lim lim-1 ,=~___i ~, #(km)(P(O(k,')-P(n(Xm,'))=0 (ix) 
m~oo n~oo Yl keC'(u) 

where C'(u)={j:~(I[,]Xo=j)>l-~/2}. Indeed, the left hand side of (11) is 
bounded by lira I~(m)(C~(u)A C'(u)) which equals 0 since 

m ~ c o  

�9 ~ " ' - I .  hm {XmeC (u)} = hm {Xm~C (u)}-  ~ a.s. 
m ~ c o  t n ~ o o  
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Therefore, it remains to prove that 

(1 1 ~ ~ ~,,)(p(~)(k,.)_p(~)(Xm,.) ) )='/(co) (12) lim lim - ~ n  
r n ~ o o  n ~ o v  k e C ' ( u )  

for almost all toni,. 
Note further that 

1 ,:~ -P(')(xm,')) lim 2nn Z I~i")(P(1)( k, ") 
n ~  oe k ~ C '  (u) 

_> Um 1 ~ ~ u~m)(P(')(k, c'(u))-P(')(x.,, C'(u))) 
n ~ o o  n l =  1 k~C'(u) 

=> (1 - ~) ~ ( x ~  C'(u)). (13) 

provided that X,,~ C(u). 
Now the limit in (13) does not exceed .~(Xm~ C'(U)), and if we take into account 

that lira {X,,~C'(u)} =I~ a.s. implies lira ~(X,,~C'(u))= 1 -~( I~)  we get that the 
m ~ c o  m ~ o o  

limit in (12) exists and equals ~(I,)  a.s. and the proof is complete. 

4. Invariant Sets for Convergent Sequences 

We recall that we have denoted S,={j: /~ ' )>0} for n~N and that 
So~_$1~_$2~_ .... Since ~ P ( i , j ) = l  for i~S,_ 1 we can easily deduce that 

j e S ~  

lim {X,~S,+ 1} a.s. exists. But because {X,~[S, -S ,+ i]} = {X,~S,+ 1} c, it follows 

that l i m { X ~ [ S , - S , + I ]  } a.s. also exists. A Markov chain with the property 

.~{ l imsupX~[S~-S,+x]}=O will be said to be properly homogeneous and 
n ~ o 9  

improperly homogeneous otherwise. 
This definition is justified by the fact that if a chain is improperly homo- 

geneous then the temporal homogeneity of its transition probabilities is of little 
use for the relevant sequence of sets {[S~-S,+I]:  n=0, 1, ...} which consists of 
mutually disjoint sets and its states belonging to [S , -S ,+ I ]  do not appear in 
the chain after time n. 

In what follows we shall need the following 

Lemma 2. I f  {X~: n>0} is a properly homogeneous chain, then any null set in .Y-- is 
a small set. 

Proof. We have already seen in the introduction that for any null set A, 
~ ( T - " A ) = 0  if n~N. Suppose that A~Y,, and .~(A)>0. Since ~(TAIX ,=i )  
=~(AJX,+ 1 = i )=0  for ieS,+ 1 we get that 

.~(TA)= ~ ~(TAIX,=i )#I . ' )<~(X,~[S-S ,+I] ) .  
i ~ [ S , , -  S~ + d 

But l im.~(X,~[S , -S ,+~])=0  and therefore .~(TA)=0. The proof can now be 
n ~ o 3  

completed by induction. 
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Let  Y,=a,(X,+b,) ,  n = 0 , 1 , . . ,  where {a,} and  {b,} are two sequences of 
constants  and suppose that  {Y, :n>0}  converges a lmost  surely to a r a n d o m  
variable V. We shall say that  V is a proper random variable if . ~ ( -  oo < V  < oo) 
= 1. V will be said to be nondegenerate if it is not  a.s. constant.  Deno te  by ~U the 
a-field genera ted by V and ~/U the class of  invar iant  sets belonging to ~ It  is 
easy to see that  ~K is a a-field. In what  follows we shall p rove  the following 

Theorem4 .  Suppose that { X , : n > 0 }  is a properly homogeneous chain and 
{ Y,:n > 0} converges a.s. to a proper and non-degenerate random variable V. Then 
l ima,+l /a ,=~ and l ima ,+ l (b ,+ l -b , )=  fi exist and are finite and one of the 

tl ~ oo n ~ oo 

following cases occurs 
(i) c~ --- 1, fi = 0 and ~U = ~r a.s. 

(ii) At least one of the inequalities ~ + 1 and fi # O holds, ~/I# c ~U a.s., and ~/U is 
generated by the family of invariant sets 

~g = Ve~=o[aC~" + B(c~" - 1)(c~ - 1)- 1, b c~" + fl(cP - 1)(c~ - 1)- 1] .  

u @ [ - (a - f l )g  " - f i ~ - l ( c ~ - ' + l - 1 ) ( a - l - 1 ) - l ,  
n = l  

(b-fi)o~-"-fio~- l(o~-"+l-1)(~- l - 1 ) -  l]*; a, beR}  if ~ #1  

and 

{VE =U_oo (a+nfi, b+nfi)} / f r  
cg 

where [Xl,X2]* stands for the closed interval [Xl,X2] /f x 1 < x  2 and for [x>xz] 
otherwise. 

Proof. First, we notice that  according to Theo rem 4 of [8] the limits lira a,+ 1/a, 
n ~ o o  

= ~  and lira a,+l(b,+ 1 - b , ) = f i  exist, - o o  <c~, f i<  oo and ~ # 0 .  We shall further 
n ~ o o  

show that  if x 0 is a continuity point  of F, where F is the distr ibution function of 
V, then C~Xo+ fi is also a continuity point  of F. Suppose, for definiteness that  
c~ > 0. Then  for any e > 0 

V (c~(x o + ~) + fl) - F (~(x o - e) + fi) 

= lira ~(Y~e(c~(Xo-e)+f l ,  c~(Xo+e)+fl)lX 1 = 0 # I  1) 
n + m  i e S  

= lira ~ i ( a , ( X ,  1 +b,)e (c~(Xo-e)+fl,  ~(Xo+e)+fi)#l 1) 
n ~ o ~  i E S  

= Y ~ ( v ~ ( x o  "~ - -  G, X 0 DC g ) )  [~i  " (14) 
i e S  

But 

F (~ o + ~) - F (~ o - 0 = ~ ~ (V~ (x o - ~, x o + 0)  ~o~ (15) 
i e S  

and since /4~  for all ieS the cont inui ty of F at x o and (15) imply 
l i m ~ ( V e ( x o - e ,  Xo+O)=O for all ieS. Using this in (14) we get that  F is 
e ~ 0  

cont inuous  at ~x o + ft. We can similarly show that  the cont inui ty of F at x o also 
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implies its cont inui ty at ~-l(Xo-fi) (We start  with F ( x o + O - F ( x o -  0 and 
proceed as in (14), etc . . . .  ). It  follows, by induction,  that  if x 0 is a cont inui ty point  
of F and if c~ 4= 1, then 

{~" Xo + fl(c~ ~ -  1 ) ( ~ -  1) -1,  (x o - f l )  cr -~ 
_ _ f l ~ - - l ( ~ - - n + l - - 1 ) ( ~  1--1)--1; n = l ,  2, ...} 

are also cont inui ty points  of  F. 
By L e m m a 2  we get that  whenever  lim{X, EAn}=A a.s., {A,}E~, and 

n ~ c o  

AA lim {X, EA,} a.s. is a small set and in such a case T h e o r e m  B implies that  TA 
n~oo  

= l i m { X n e A , + l }  a.s. 
n ~ o o  

Consider  now the event { a <  V<b} where a and b are cont inui ty points  o f F .  
Then we can easily check that  

T{a< V <b} = lim {a f  I a-b,<=Xn+ 1 <a[ 1 b -b , }  
ii ~ oo 

= {ac~ + fi <_ V <_b~ + fi} a.s. 

Fur ther  if c is a j u m p  point  for F i.e. if P(V= c)>  0 we can choose a decreasing 
sequence of numbers  {cn} such that  lim c , = 0  and {c -c  n, c+c,: n =  1, 2 . . . .  } are 

n~o3  

continui ty points  of F. Propos i t ion  l(ii) implies that  T{V=c}= ~ T { c  
n = l  

-cn<V<=c+c,}={V=c~c+fi} a.s. An upshot  of  these considerat ions is 
T{a<_V<<_b}={a~+fl<_V<_bc~+fi} a.s. for any a, bER. We can similarly show 
that  r -  X {a< V <b}= {(a- fi)c~- l <_ V <(b-  fl)c~ - l} a.s. for a, beN. 

Suppose  now that  lira an+l/an= 1 and l i m a , + l ( b , +  1 - b , )  =0 .  Then the above  
n ~ o 9  

equali ty yields T{a<__ V<b} = {a <_ V<_b} a.s. and according to Theo rem 6 of r l ] ,  
{a<<_ V<_b} is either an invar iant  set or differs f rom an invar iant  set by a small 
set. Because the family of sets {{a<  V<b};a, beR} generates ~ (i) follows. 

Suppose  now that  at least one of the inequalities c~4= 1, f14:0 holds. Then  as 
we have  seen before T{a<V<b} = { a ~ + f l _ <  V<_bc~+fl} a.s. If  we choose a and 
b such that  N({a<_V<b})>O and ac~+fi>b then {a<V<b} and r{a<V<b}  
are a.s. disjoint and as a consequence we get ~ D r a.s. 

We can inductively show that  

r"{a<_ V<_b} = { a c g n + f l ( o f  - 1) (c~- 1) -1 ~ V 

< b c ~ " + f l ( e " - l ) ( ~ - l )  -1} a.s. 

for n =  1,2, . . .  

and 

T - ' { a < V < b } = { ( a - f i ) ~  n - -  ]~0~-- 1 ( ~ - n +  1 - -  1 ) ( ~  1 - - 1 ) - - 1  

<_v<_(b-p) ~-"-fi~-1(~-"+~-1)(~ 1-1)-1} 
for  n = 1 , 2 , . . . .  



94 H. Cohn 

Using the countable additivity of T and Proposition l(iii) we get that if A e~ ,  

O(A)= @ T'Ae~/~ and that 0(A) is the smallest invariant set containing A. It 
n = - o 9  

follows that qf is the class of smallest invariant sets containing cg~ 
={{a<_V<_b};a, beR}. It is not difficult to see that ~ commutes with com- 
plementation, countable unions and intersections and since cgl generates < it 
follows that cg generates ~/U and the proof for the case c~>0 is complete. The 
other cases can be treated in the same way. 

Corollary. Suppose that {X,: n>0} is a properly homogeneous chain, {Y,: n=>0} 
converges a.s. to a proper random variable V and J is trivial. Then one of the 
following two cases occurs 

(i) V is constant with probability 1, 
(ii) V assumes the countable set of values 

{7 c~" + fi(c~"- 1)(c~- 1) 1; n = 0 ,  1,. . .} 
w { ( 7 - - f l ) ~ ' - - f l ~ - l ( ~ - " + l - - 1 ) ( ~  1 - - 1 ) - a ; n = l , 2 , . . . }  if c~#l 

and 

{7+nil;  n = . . . -  1,0, 1,...} if c~=l 

for some 7eR. 

Proof. Suppose that F is strictly increasing on a certain interval (a, b) and that 
c~>0. Then we can choose two numbers a', b'e(a,b) such that F(b')-F(a')>O 
and either a' c~ + fi > b' or b' c~ + fi < a'. Assume for definiteness that a' c~ +/3 > b'; 

we get that A =  0 T"{a<V<b}  is an invariant set and O<N(A)<I-(F(a'c~ 
n ~  - (x] 

+/3)-F(b'))< 1 which contradicts the triviality of J .  Therefore V is a discrete 
random variable. Suppose now that 7 is a number with the property ~ ( V  
=7)>0 .  Then Proposition l(iii) in conjunction with Lemma2 implies that 

~ ( T " { V = 7 } ) > 0  for all neZ. Since 0 T"{V=7} is an invariant set, its 
n = - o o  

probability must be 1 and the proof is complete. 
We shall further give a result that parallels Theorem 4(ii) in the case when 

the sequence {11,:n>0} converges a.s. to an improper random variable and 
lim a,+l/a,=oo. Such a situation occurs for some branching processes with 

n ~ o o  

infinite mean (see [-17]) where l i m X j a , = V  a.s. with N ( V = ~ ) > 0  and 
n ~ c o  

.~(V=t= {0, c~})>0. Using a reasoning similar to that employed in the proof of 
Theorem 4 we can show that lira {a < a,(X~ + 1 + b,) < b} = T {a < V < b} a.s. Fur- 

n ~ o o  

ther T{a<= V<b} assumes positive probability provided that ~ ( { a <  V<b})>0 .  
Under these conditions Theorem 1.1 of [16] implies that VI= lim a,(X,+l+b,)  

n ~ o o  

exists a.s. It is not hard to see that lira a,+l/a,= oo entails 
n ~ c o  

~ ( { - c ~  < V< oo, V *O} c~{-c~ < vl < c~, vl *o})=O 

and hence, unlike the situation described by Theorem 4(ii), V1 is not expressible 
as a function of V. 



On the Invariant Events of a Markov Chain 95 

TheoremS. Suppose that {X/n>__0} is a properly homogeneous Markov chain, 
{ Yn: n > 0} converges a.s. to an improper and nondegenerate random variable V and 
that lira a,+ x/a, = oo. Then lira a,(X,+ k + b,)= V k exists a.s. and is nondegenerate 

n ~ O ' D  n ~ o o  

for all kr ~ a.s. and ~#/ is generated by the family of invariants sets 

={=0~ ~{a<Vn<b} ' a ' beR}"  

The finite mean supercritical branching processes (see [2]) and the irregular 
branching processes with infinite mean (see [17]) provide examples of Markov 
chains to which Theorems 4 and 5 respectively apply. Let us notice that any non- 
degenerate supercritical branching process {Z,,: n > 0} is a properly homogeneous 
chain. Indeed, suppose that x and y are two states such that P (1 ,x )P (1 ,y )>0  
and let t be the greatest common divisor of the numbers {i: i>l,P(1,  i)>O}. 
According to a result by Dubuc (Proposition 2, [11]) there exists a number d 
such that any j~ {i: x" + d < i < v n - d} with j = x "(mod t) is accessible at time n 
from 1 (i.e. P(n~(1,j) > 0) for n = 1, 2,. . . .  If we choose x = min {i: i > 1, P(~)(1, i) > 0} 
then we can prove that for n sufficiently large #~'~>0 for all j = x " ( m o d t )  with 
j >xn+d. Toward this aim let us notice that given #(2~ if we choose n such 
that S - d > 2 x n + 2 d  then any je{ i :  2x"+2d<_i<_2y~-2d} with j = 2 x " ( m o d  0 is 
accessible at time n from 2. But { i : x " + d < i < y " - d }  and {i:2xn+2d<_i<2y ~ 
- 2 d }  overlap and therefore #}")>0 for all j~{ i :x"+d<i<_2y"-2d}  with j 
=x"(modt) .  Further #(4~ and y " - d > 2 x " + 2 d  also implies that {i:2x" 
+2d<_i<_2y"-2d} and {i:4xn+4d<_i<4y"-4d} overlap, etc. We conclude 
that for n sufficiently large # ~ > 0  for all j=x"(modt) with j>x"+d.  Therefore 
[Sn--S,+l] ~{1,2, ...,x"+d}. 

Suppose now that m=E(Z~)<oo. Then the Seneta-Heyde theorem ([2], 
p. 30) asserts that there exists a continuously distributed random variable W and 
some norming constants {c,} with lim cn+l/c,=m such that l imZ,]c ,=W a.s. 

n ~ c o  

Now c,=c,,/c,_~c, 1/c~_2...c~ yields that there exists a number A and an 
integer k such that c, > A (m-e)" -k  for a preassigned e > 0 and a sufficiently large 
n. If we choose e such that m - e > x  and take into account that ~@(W>0) 
= ~ (lira Z,, = ~ a.s.) we get that lim ~ ( Z ,  ~ [-S, - S, + ~]) = 0. Hence {Z,: n > 0} is 

properly homogeneous. 
In the infinite mean case {Z,: n > 0} grows quicker to infinity and the general 

theory of such processes given by Schuh and Barbour [17] can be easily seen to 
imply that these processes are properly homogeneous (in both the regular and 
irregular cases). 

We mention that Athreya and Ney [2] Chapter 2, p. 96 have identified the 

invariant sets { 0 {m"<W<m~+'} 'x~R} f~ a finite mean s u p e r c r i t i c a l , ~ =  oo 

branching process, under the additional assumption that E(Z~ l o g Z / ) <  oo. This 
result is a particular case of Theorem4(ii). Athreya and Ney derived two 
different proofs of their result on p. 96-97 of [2] but neither of them seems 
extendable to the general case considered here. 
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