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1. Introduction 

We will consider the branching random walk on the real line. An initial ancestor 
is at the origin. He has children, the first generation, and these have positions 
which form a point process on the line. These children in their turn have 
children, independently of each other. The positions of the children of a first 
generation person, relative to his own position form a point process; this point 
process has the same distributions as the one giving the positions of the initial 
ancestor's children. This gives the second generation. Subsequent generations 
are formed in the same way. Branching random walks are essentially the same 
as spatially homogeneous branching processes and are closely related to cluster 
fields, both of which are discussed in [14]. 

Let {z~ ")} be the positions of the nth generation people and let 

z~"~(t)= ~ {r: z~"~<__t}, 

the number of nth generation people to the left of t. The increasing function F 
defined by 

F(t)=E[Z(I)(t)] 

(which is assumed to be finite for all t) satisfies 

F"* (t) = C [Z (")(t)] 

where F"* is the n-fold Stieltjes convolution of F. Throughout this paper we will 
assume that F ( ~ ) >  1 so that the Galton-Watson process formed by the genera- 
tion sizes survives with positive probability. We will also assume that F is non- 
degenerate, that is that F has more than one point-of-increase. The Laplace- 
Stieltjes transform of F will be denoted by m, that is 

m(O)= ~ e-~ 
co 

In [-5] it was established that, under certain conditions, (Z(n)(na)) 1/~ and 
(Fn*(na)) 1/~ behave similarly for large n; in fact an analogue of Chernoff's 
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18 J.D. Biggins 

theorem on the asymptotic behaviour of (F"*(na)) 1/" was established for 
(Z(")(na)) ~/". This is a rather crude result, the exponent n -1 smothers much 
potential variation between the two sequences. Bahadur and Ranga Rao [3] 
have given a more precise result on the size of F"*(na) (their proof is valid even 
when F ( o o ) > l  as was noted by Kingman [12]) and an analogue of this result 
for Z(")(na) is a consequence of the result established here. Let ~b be in the 
interior of {0: re(O)< oo}, which is assumed to be non-empty, and let 

m'(~) 
b -  m(~)' 

then, subject to certain conditions holding, 

Z(")(nb) 
W(qb) < 0o a.s. (1.1) 

F"*(nb) 

(where W(qb)>O if the process survives). This tells us how the number of nth 
generation people to the left of nb grows with n, hence the paper's title. 

Notice that (1.1) is formally analogous to 

Z(")(~176 ~ W a.s. 
F"*(oo) 

when F(c~)< o% which is, stated in a slightly unusual form, a classical result in 
the theory of the Galton-Watson process. In that case {Z(")(oo)/F"*(oo)} is a 
martingale and W is its limit. In fact the limit variable W(~b) in (1.1) is also the 
limit of a martingale sequence. To be specific the sequence 

, ,  _ exp(-Oz~ ")) Se-~ 
W~"'(O)= )L ~ - 

r mtu~ re(O)" 

is a non-negative martingale whenever re(O) < oo. This martingale is discussed in 
[4] and the convergence of it to a non-degenerate limit is investigated there. The 
limit of this martingale, W(O), when 0 = ~b is the limit random variable appearing 
in (1.1). 

In the next section we will prove for F"* the result whose analogue for Z (") 
we will finally establish. The main result, Theorem B will be stated at the end of 
that section. The remainder of the paper is devoted to the proof of this main 
result. (Section four contains results on the relationship between the moments of 
W(1)(~b), W(qS) and sup {W(S)(~b): s}, these may be of some independent interest.) 

2. The Tails of  F"* 

A slight generalization of Theorem 1 in [3] will now be proved. The method of 
proof is different from theirs. 

Consider the measure 

e-  q4x + b ) 
F(dx) F(dx  + b). 

m(4)) 
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It is easy to check that F is a distribution function centred on zero with a finite 
variance which will be denoted by 0 -2 . In fact 

rn(4 ) \ m ( ~ ) /  

and is strictly positive because F is non-degenerate. Furthermore the Laplace- 
Stieltjes transform of F, 

e- ~ = e~ rn(O + 4) 
m(q~) ' (2.1) 

converges in a neighbourhood of the origin. The important property of F, which 
can be proved quite easily by induction is that 

e-4~nb 
F"* (dx) =e -r m( (a)" F"* (dx + nb). (2.2) 

The concave function ( is defined by 

(a) = inf {0a + log m (0): 0} 

so that, by calculus, 

~(b) = q5 b + log m(~b) 

and hence (2.2) can be rewritten as 

Fn*(dx)=e-~X e-nr F"*(dx + nb). (2.3) 

The local version of the central limit theorem, which I will now describe, 

gives very precise information about the measure a2]/~nF~*(dx) as n tends to 
infinity. By using the formula (2.3) this can be converted into information about 
Fn*(dx). 

For d > 0  let Ld= {nd: neE} then the distribution function F is either lattice 
of span d, in which case all of the points of increase of F lie in c + L a for some 
0 N c < d and this holds for no larger d, or it is non-lattice, in which case we will 
describe it as lattice with span d = 0. We will let L o =IR. Notice that F and F 
have the same span. 

Let Ed(dx ) attach weight d to each point of L d and let ~o(dx) be Lebesgue 
measure on the real line. A function f will be called directly integrable with 
respect to t' a if, when d>0.  5 [f(x)[ Ee(dx ) < m and if, when d=0 ,  f is directly 
Riemann integrable ([9], Chapter XI, using the obvious extension of this 
definition to functions defined on ( -  oo, oe)). Notice that in either case f must be 
bounded on L a. 

When d > 0 define 

c ,=nc -d (nc /d ) ^  

where (x)^ is the largest integer not greater than x, and when d = 0 let c, = O. In 
the former case the points of increase of F n* are contained in c , + L  a where 
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0___ c, < d. The version of the local limit theorem that we will use is the following 
one; ~(x) is the standard normal density. 

If _P is lattice with span d and f is directly integrable with respect to fa then 

sup a]/n ~f(x + y -c . )F"*(dx) -~ f (x )~(x  ;Y~nC~) (a(dx ) = A . ~ 0  (2.4) 

as  /1---+O0. 

This result follows easily from the results of [10] (Sect. 49), which covers the 
case d>0 ,  and E153 (Lemma 2), which covers the case d=O. 

This local limit theorem together with the formula (2.3) yield the following 
theorem. We assume from now on that F has span d ~ 0. 

Theorem A. If  e4'Xg(x) is directly integrable with respect to ~ then 

t:r ~ee er (y - c') sup ,~(b) Sg(x +Y-G-nb)F~*(dx)  
y~ La 

\ aVn / I 

as n ~  oo. 
Let us write B, for (o 2 l /~n  e-"~(b)e -4'c~) then the following corollary follows 

easily from Theorem A. 

Corol lary  I. B .  S g (x - c.  - n b) F"* (d x) ~ ~ e ~x g (x) (d(dx). 

If we assume that 4)<0 and let g be the indicator function of [0, Go) then, 
since F"* has all of its points of increase in c .+nb+L d 

y g ( x - c . - n b )  F"*(dx)=F"*([nb+c., oo))=F"*([nb, 0o)) 

and so 

B,F"*([nb, oo))--+ d( eed) -1 /f d>0.  

This is Theorem I of [3]. 
Similarly if d > 0  and yeL d then 

B,F"*({y +cn +nb})~de 4'y 

whilst if d = 0 and I = [y, x + y) then 

B,F'*(nb+I)~4) -1 eeY(e Cx- 1). 

We can now state the main result of this paper, which is an analogue for Z (n) 
of Corollary I. In all that follows e~Xg(x) is assumed to be directly integrable 
with respect to E e. 
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Theorem B . / f  

((b) > 0 (2.5) 

and for some e > 0 

d~ W(1)(q~)) ~+~] < cz3 (2.6) 

then 

B.Sg(x--c.--nb)Z~")(dx)--, W(4))Se6Xg(x)dd(dX) a.s. (2.7) 

a s  n---+ oo .  

It can be seen from the discussion just before Theorem A in 1-4] that there is 

an open interval (O1,O2) such that ~ ( b ) = ( { - m ' ( r  " if and only if 
\ m(~)! 

0G(O1, O2). Also, by Theorem A of that paper g [W(r  = 1 if and only if 

~(1~1,O2) and s162 

Hence the conditions of this theorem suffice to ensure that d o [W(r = 1. (When 
this holds it is easy to check, by letting u ~  oo in (2.1) of [4] that if the process 
survives W(qS) >0  a.s.) 

The condition that ( (b )>0  ensures that B , ~ 0 ;  otherwise B , ~ .  Since 
Z(")(t) is an integer valued funtion its similarity with F"*(t) will be less marked 
when F"*(t) is small. To illustrate this if r  and ~(b)<0 then, as is shown in 
[-5], Z(")(nb)=0 for all but finitely many n. 

As for F we can deduce that (2.7) implies that 

B,Z(")({nb+y+c,})~ W(r a.s. 

when d > 0  and y~L d, and that a.s. 

B,Z(')(nb + I) ~ r  1 eCY(eCX_ 1) W(r a.s. 

when d = 0  and I=[y,x+y).  
If we take r =0  then b =  -m'(O)/m(O) and is the 'centre'  of the first genera- 

tion. In this case Theorem B is very similar to Theorem 2 of [2] and the proof of 
Theorem B given here follows theirs quite closely. In the next section we will 
establish a decomposition of the left hand side in (2.7) which will form the basis 
of the proof. 

3. The Basic Decomposition 

We will assume from now on that b =0, so that 

m ' (0 )=0  and ((b) = ((0) =log m(r 

Then the Condition (2.5) is equivalent to 

re(g,) > 1. 
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This assumption does not involve any loss in generality. To see this suppose that 
b4=0. From the original branching random walk a new one can be constructed 
with the nth generation people at {z~")-nb}. Quantities in this new branching 
random walk are denoted by a subscript, T; then Z~)(t)=Z~")(t+nb), Wr(")(O) 
= W(")(O), and ~r(a-b)=~(a) .  Hence Theorem B holds for Z (") if it holds for Z~ ) 
with b = 0. 

Let us now define the measure Z (") by 

e-~X 
= 

thus for any interval I 

(I) = 2 e x p ~  z~")) (3.1) 

where the summation is taken over those r with z~")eI; in particular 

= 

This transformation of Z (") is of course like that given in (2.3) for F"*, and by 
taking expectations in (3.1) we see that 

g [Z(")(I)] = ff"*(I) 

and so 

e z (") 
)1 g [ ~  . . . .  m(4)" J = g [~f(x) Z(")(dx)] 

= Sf(x) F"* (dx). (3.2) 

As with F and F properties of Z (") can be deduced from those of Z ("). We can 
now rewrite (2.7) as 

a 2]/2~n~f(x- c,) Z(")(dx) ~ W(O) Sf(x) (e(dx) a.s. (3.3) 

where f(x)=e4~g(x),  and this is what we will prove. 
Let Z(')(dx;z~ ~)) be defined on the branching random walk which has z~ *) as 

its initial ancestor in the same way that Z(')(dx) is defined on the original 
branching random walk; thus 

(n + s) (s) 
Z( , ) ( i ; z~ ) )=~exp( -O(Zq  -z~  )) 

m(4))" 

where the summation is taken over those q for which z ("+~) is a descendant of z~ ~) - q  

and (z~'+S)-z~))eI. Given ~(~), the a-field generated by the first s generations, 
{Z(")(I;z~)): r} are independent copies of Z(")(I). Now 

.--. exp ( - q5 z~S)),... , (~) -(,,_ ~) . z(~) 
=~,. m(O) ~ J n t x + z  ,. )Z  (dx. r ) (3.4) 
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and it is upon this decomposi t ion  that  the proof  is based. The basic idea, which 
occurs in a number  of recent papers on branching processes, is that the right side 
of this equality is close to its expected value condit ional  on ~(~). We will be 
considering 

l /n~f (x -c , , )Z(" ) (dx) -x?exp( -~z~S))  l~nff(x+z~)-c,~)P~-~)*(dx).  (3.5) 
m ( ~ )  ~ - -  

which can be rewrit ten as 

~ . exp  ( - 4) z~ ~)) 
~-(s ]fin {~f(x + z}P - c,,)(2 (" s)(dx: z~ ~)) - F (" - ~) * (d x))}. (3.6) 

We will show that  as n tends to infinity, with s related to n in an appropr ia te  
way, this tends to zero almost surely. Then, when ( n - s )  is large we can use (2.4) 
to estimate the second term in (3.5). 

To explain how s and n are related let v and t / be  two positive integers with 
v < t / ( la ter  we will require that  t / -  v > 2 and that rl/v should be near one). Then  
for any n satisfying 

j" _-< n < (] + 1)" (3.7) 

where j is a positive integer, let 

s = f ;  (3.8) 

thus s=((n ~/'1) ~)v and so s grows like n ~/" but  is confined to a subsequence of the 
positive integers. If K is sufficiently large then 

# {n: s=j  v} <=gj "-1, (3.9) 

an estimate which will be useful. 
The  expression (3.6) can be writ ten as 

a~(s)Cn { Y~} 
r (3.10) 

where given ~(~){a,(s)} are constants and Y, are independent  r andom variables 
with zero mean. The  variables { Y,.} do not  all have the same distribution and so 
we will need a bound  on their tail behaviour.  For  large K t f (x) l<K and then 

l - ( n -  s) " Y~I<~K(Z (N: z~)) + 1) 

and Z('-~)(IR: z~ s)) has the same distribution as W(S)(~b). Let  

G(t) = ~  [(max {K, 1})(1 + s u p  {W(')(qb): n})<t] 

then for each r 

~[]Y~l<t]>G(t)  for all t (3.11) 

(no mat ter  what  values n and s take). Notice  that G(t)=0 for t < 1. In proving 
the main result we will need to impose a moment  condi t ion on G(t), that  is on 
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sup {W(")(~): n}. The relationship between moment conditions on W(1)(q~) and 
on sup {W(")(~b): n} is the subject of the next section. 

4. Relationships between Moments 

We will need to impose the condition that 

g[sup {W(")(qS): n} log6+ (sup {W~")(qS): n})] < oo (4.1) 

for some c~>~. In the first part of this section we will show that when 8[W(qS)] 
= 1 then sup {W(")(~b): n} and W(~b) have similar tail behaviour so that (4.1) is 
equivalent to 

g [W(qS)log~+ (W(~b))] < oo (4.2) 

for any 6>0. The result on the similarity of the tail behaviour of 
sup {W(")(~b): n} and W(~b) is a generalization of a known result for the Galton- 
Watson process, (i.e. for the case ~b=0) which was proved in [111 (Lemma 3.1). 
In the second part of this section it is shown that (4.2) holds for 6 > 0 when 

e [W(1)(~b)logl++~(W(1)(~b))] < oo. 

Here the technique used is a generalization of one used in [1] when qS=0. 
Related results have been obtained, using different methods, in [6] and [7]. 

Let Xi, i=1,2,. . . ,  be independent identically distributed random variables 
with zero mean and  let P be the set of all probability distributions on the 
positive integers. 

Lemma 1. For any ~ > 0 

inf ~ [ ~ p i X i >  - e l  >0. 
{pi} ~ P 

Proof. Let 

Xr  ={Xi  if X i < T  
if Xi> T, 

then ~ [ ~  piX~ > - ~] < Y' [~ piXi > - el. Let T be sufficiently large to ensure 
that 

g [EPi X[ ]  = g  [X[]  >�89 (4.3) 

Now suppose that for some {Pl} eP  

1 e 
[Z pixy > - <2 

which implies that 

(1 e ~ -  ) (2 ~ - ~ - )  1 5 +(T) 
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contradicting (4.3). Therefore 

inf N [ ~ p i X i > - e ]  >0 
{v~} ~ P => 2 ~ + T 

proving the lemma. 
Let 

w(')((~: z~S))=Z(")(~: z,(?) 

and let W(~b: z~ )) be the limit of this martingale (n and s are not related in any 
way in this section). If h(x) = 1 in (3.4) we can see that 

W(,)(O ) = ~  e x p ( -  q~z~ s)) 
m (qS) s W(" - ~) (~b: z}. ~)) (4.4) 

and letting n ~ oo gives 

W(4) = ~  e x p ( -  qSz~ ~)) 
r m(4) s W(~b: z~ )) (4.5) 

where, given ~('), { W(~b: z}.~))} are independent copies of W(q~). 
If #[W(4)~ = 1 and O < a <  1 then for some B>O the following lemma holds 

whenever t > 1. 

Lemma 2 . . ~  [W(q~) => at] > B .~ [sup W(')(dp) >= t] > S ~  [W(q~) > t]. 
n 

Proof Only the first inequality requires proof. Let 

E,={W(')(~)>t, W(S)(qb)<t for O<s<n}  

then 

~ [W(c~) > at] >= ~ @  [W(~) > atlE,] ~ [E,], 
n 

but, using (4.5) 

E w ( r  > a t l e . ]  : ~ [ Z  exp ( - r z,! o') 
m(4)" 

[ ~  exp ( -  ~bz~")) 

> ~ [ ~  exp ( -  q~z~') 

- w < ' ) ( i J ) m ( 4 ) ) "  

W(r z}Y))>atlE,] 

at 
(w((~. <") zr ) -  1)> w<")(q~) 

(W((b : z~ ")) - 1) > a - 1 I E,] 

1 tE.] 

because W(')(~b)>t on E,. Now, given ~('), 

~ [ ~  exp ( -  4,z~')) > a - l ]  >o w(')(~)m(~)" (w(~): z~"))- 1) __>B 
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by Lemma 1, and B is independent of n. Since E ,E~ (") we deduce that 

[w(4)) > at] >=B ~ ~ [~,3 
/1 

= B ~ [sup W (')(4)) > t], 
n 

proving the lemma. 
The equivalence of (4.1) and (4.2) for any 6 > 0  is an immediate consequence 

of this lemma. 
Let h: IR + ~ IR + be a concave (and hence subadditive) function. The follow- 

ing lemma provides an estimate of g[W(4))h(W(4)))] in terms of certain mo- 
ments of W(1)(4)). 

,=0 \ m(4))" ] 

Proof. Using (4.4) we can rewrite g [W (" + 1)(4)) h(W(, + 1)(4)))1~(,) ] as 

m(4))" W(1)(4): z~"))h W(t)(4: z~")) 5(") 
m(4)) ~ 

exp(-4)z~ ")) w(a)(4): z(")]~h( S" e x p ( -  qSz~ ")) W(1)(4); z(sn))) < g  

+hlexp(- zr) 

= m(4))" \ re(C)" ]J 

where X has the same distribution as W(1)(~b) and is independent of the whole 
process, If we take expectations of this inequality we get 

# [W ("+ 1)(4)) h(W ("+ ')(4)))] < g [ W(')(4)) h(W(")(4)))] 

[ + ~  , x  j \ m(4))" / 

By Fatou's lemma g [W(4)) h(W(4)))] < lim inf g [W(")(4)) h(W(")(4)))] and so 

C[W(4))h(W(4)))]< ~ g X[. h Y"*(dx) 
r i m 0  

proving the lemma. 
(Although we shall not use the result is seems worth noting that when 

0 < 6 < 1  we can show that g[W(4)) l+~]<oo when g[WU)(4))l+~]<oo and 
m((l+6) 4))/m(4))~+~<1 by taking h(x)=x ~. Also it is easy to show using (4.5) 
that when d~ and Z u) is non-degenerate these conditions are also 
necessary to guarantee that g EW(4)) ~ +~3 < oo.) 

We will now take h to be defined by 

h(x) ~ c~ for x <x  o (4.6) 
=LCl+%log~ for X > X o > l ,  
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where c~>0 and Xo, Co,C a and c 2 are chosen to make h concave. Then 

h(xy) < K(1 + loga+ x + loga+ y) 

when K is large enough. (In the remainder of this paper inequalities involving K 

hold whenever K is large enough, K does not necessarily represent the same 
constant in different inequalities.) 

Since m(~b)> 1, for some w > 0 and/? > 1 

inf{e~Xm(qS): - w<_x<_w} > fl 

and so, letting I n = ( - 0 %  -nw)~o(nw, oo) 

/xe-4,y\ /xe-Oy\ 
~ h lm- -~)  Fn*(dy) <=h(x~-") + ~, h l m ~ -  ) F"*(dy) 

/ e  ~Y\\ _ 
<h(x•-")+ I K 1 +log~+ x +log~+ 1 ~  1! F"*(dy) 

i,~ \ m t q 0 / /  

<h(x~-")+ ~ K(1 +log~176 (4.7) 
In 

To apply the preceding lemma we must now consider the sum, over n, of this 
inequality. 

Let N = ((log/3)-t log (X/Xo)) ̂  then using (4.6) it follows that 

N 

n = 0  n = 0  n = N + l  

<h(x)N+ ~ CoX~-" 
n - N + l  

< h(x) log (X/Xo) + c o x o <_ K(1 + log~+ + 1 x). (4.8) 
- l o g  fi fi - 1 - 

T o  deal with the integral term in (4.7), and for similar calculations later, we 
will need bounds on the tail behaviour of F n*. The following lemma contains the 
necessary information. 

L e m m a  4. 

�9 <e-~ 
(i) F " * ( - y ) =  m--~  for 0>0. 

(i i)  F"*(I,)<c" for some c<1.  

Proof From (2.1) 

S e-O,p,,,(dyt=gm(~ 
\ m(43) ] 

and (i) follows from this. Let 

((a)=inf{Oa+logm(O(;~)" 0}, 
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then, since P has been assumed to be non-degenerate, ( (a)<0 for all non-zero a. 
From (i) it follows that 

F"* ( - nw) < exp (n(( - w)) 

and that 

1 - F" * (n w) < exp (n ~-(w)), 

and (ii) follows from these inequalities. 
For some c < 1 it is possible to choose t/> 0 such that 

e -"w m(q~ + t/) <c ;  
m(4) = 

this together with (i) of the preceding lemma justifies the following calculation; 

- . w  - r w  

n = O  - o o  n = O r = n - ( r + l ) w  

. = 0  r=? l  

< ~ ~ (r+l)~ ~ 
.=0r=. \ re(C) ] 

= ~ (r+l)~w~ -rw" ~ {m(O+tO~" 
r=0 .=0k re(C) / 

- r=o \ m(~) / 

< K  ~ ( r+l)acr<c~.  
r = O  

In a similar way 

~y6F"*(dy) and ~. ~ Fn*(dy) 
. = 0  n w  n = O  In 

can be shown to be finite. Combining these estimates with (4.7) and (4.8) we 
see that 

Sh( x e-r F"*(dy)<=K(l +logl++'x), 
. = o m ( 4 ) ) " /  

and so by Lemma 3 g [W(~b)log~+ W(q~)] is finite whenever 

# [W(1)(~b)lo81+ +~ W(1)(qS)] 

is finite (for ~ > 0). 
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5. The Proof  of  Theorem B 

The first part of the remainder of the proof consists of showing that (3.6) tends 
to zero almost surely as n tends to infinity. Using the notation for (3.6) 
introduced at (3.10) let 

fY~ if IY~I < at(s) -1 
Y '= ,0  if Ig~l > G(s)-*; 

in what follows G is often used for G(s), suppressing the dependence on s. Now 

r r r r 

and we will show that each of the three terms on the right of this identity tends 
to zero as n tends to infinity. 

1) It follows from (3.11), the fact that the Y/s have zero mean and the 
definitions (3.7) and (3.8) that 

[1 /nZa~f [P, , . ] ]<~Za ,. ~ tG(dt) 
a r  1 

< ( j + l ) " / 2 ~ a r  ~ tG(dt), 
a r  1 

which only changes when j changes. Let 
< log m(q~) then 

( J+ I ) " /2~G tG(gt)<(J+l)"/2 ( G )  tO(dt)+(~a~) s . 
a Z  1 e 

However, taking w = kbl- 1 (log m(~b) - m) 

[ ~  exp ( -  qSz~S))] 

g [ ~  a r ] ~  = g  m(~b)' d' 

<-_f~*(Is) 

and so by Lemma 4(ii) 

G [ ~  ( j+ 1) "/2 ~ ar (s)] < ~ ( j +  1) "/2 FS*(Is) 
j R j 

< F~ (J + 1) "/2 d r <  ~ .  

Furthermore 

{5.1) 

R = { r : a r ( s ) > e  -m*} where 0 < m  

e m S  e m s  

< K(E  G) S t (log t) "/2v G dr) = K W (~)(0) ~ t (log 0 "/2 ~'G (dr) 
e m s  e m ~  

--+0 as j ~ o o  
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if tl/v is less than three for then by the results of the preceding Sect. (2.6) implies 
that 

St  (log r) ~ G(dt) < oc. 
0 

Therefore, using (5.1), 

~ 2 a ~ E ~ 3 - ~ ~  a.s. 
r 

a s  n ---~ oo. 

2) It follows from (3.11) and the definition of ~ that 

•[Z at(r,- ~ ) * 0 ] ~  (~)] < Z  ~ G(dt) 
a Z  1 

and so, using the fact that ar=m(4))-~exp(-4z~ ~)) and (3.2), 

[zj ] ~ [ ~  a,(Y~- g ) * 0 ]  < g G(dt) 

= ~ e*'m(dP)~(e,,!(o, G(dt)) fs*(dy). (5.2) 

It is convenient to introduce a simple transformation of f defined by 

F(Ody +log m(4)) = f(dy) 

(F is degenerate at logm(0) when ~b=0); P has mean logm(4) and variance 
4 2 o -2. Now (5.2) becomes 

~ [ Z  a,(Y,.- g ) * 0 ] <  ~ e' ~ 6(dt)f~*(dy) 
- -  c o  e Y  

(,:[) =~ e'P~*(dy) G(dt)__<~t ~s*(dy) G(d0. 
1 1 

Therefore, using (3.9), 

~ [ 2 a r ( Y ~ - g ) ~ = 0 ] < ~ t  Kj "-t ~PS*(dy) G(dt), 
n 1 j - 

where s=j ~. Let O<m<logm(qS) then if w=kb] -1 (logm(qS)-m) 

PS*(sm)<F~*(Is). 
Let J =((m- ~ log t)~/~)~ then, using Lemma 4(ii) 
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J 

j.-' pS* (log t) __< 2 j"-'Ps*(sm)+ 2 J"-'~S*(l~ 
j = l  j = l  j = l  

<= j,-l dv + 2 j,-1 
j = l  j = l  

__< K (1 + J.) =< K (1 + (log 0"/~). 

Therefore, if t//v is less than 3/2 
co 

~, .~ [ ~  ar(Y ~ - g)  4= 01 _-< K ~ t(log t) ~/~ G(&) < o% 
n 1 

when (2.6) holds, and so 

]ffn~, ar (Y~- g) = 0 

for all but finitely many n. 
3) To complete the first part of the proof we will need the following inequality 

which is based on the ideas in [131; it holds for 1 <ct<2,  

(s) K ( _  ~ t~G(dt)+2 ~ G(dt) ~[l~G(Y~-e[~])l>vl~ ]<~i  2"a~ ! a r  }" (5~ 

TO prove this let ~r(u) be the characteristic function of ~ - d ~  then, using 
Proposition 8.2.9 in [81, 

v - L  

-~[IF~ a . ( ~ - o ~ [ ~ ] ) l  >vl~ (~)3 <=Kv [. I 1 - [ [  ~..(a..u)[ du 
0 r 

v - '  aru d u < K v ~  ~-' <=K2v S 1--1~r(aru) ~ c~ ~ f ~ a~u ~[f ~-~[g]lq du 
r 0 aar u~ 0 

<= i ~  ~ - ~  F a:  ~ " . ~ _ a~ ~[I ~11, 
r r 

and, from the definition of ~ and (3.11) it can be seen that 

at- 1 

- ~ G(dt) + G G(dt), ~EIEI ] <  S t~ -~ 
1 a t -  1 

proving (5.3.). 
By taking the expected value of (5.3) we deduce that 

~ []]/nS G(~- 6~ [~])[ >v] 
Kn~/2 

= e -y(~-~) t~G(dt)+e y G(dt ~*(dy) 
< 1ff - o o ~ .  , e j 

K oo logt - \ G(dt)]" =-~{!(t=k!trt ' /2e-y( '- l) l f f 'S*(dy)-kj  rt'/2eYFS*(dy)) 
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We will need to sum this inequality over n. 
If J and m are defined as in part (2) of this section then 

7 rffl2e-Y(~Z-1)F'*(dY)~-K ~,, ?(1+2)-1 7 e-Y(e-l'-~S*(dY) 
n = l l o g t  j = l  logt 

< K  j" (Z+z) -* t -~+~(1-pS*( log t ) )  
J 

+,=o,+1 ~ J"( l+2)- I ( t -~+lPS*(sm)+e-S"(=- l ) )}  

<=K { t-~+l Jn(l+ } ) + t - e + l  ~ jn( l+2)- l  cj~+ ~ jn( l+2)- l  j=a 

~ K  {t-~+ l Jn(* +z) + t-~+ l + Jn(* +J2) -1 e-S~m(~-l)} 

tt / 1 + ~--]/v _~_ t - ~ + 1 }  < g ~t-~+ l t l o .  t~ t z,/  
and 

oo 

y, 
n = l  

log t 

5 n~/2 eYFS*(dY)<=Kt( 1 +(log 0 "(1 +~)ff). 

Therefore 

K~O 
~'l-I1/ny~a,(g-gl-g])l>v3 <~ ~ t(log " 1+~- ~ t) ( 2 ) / G ( d t )  

n = l  U 1 

which is finite when (2.6) holds, provided that e and tl/v are both sufficiently 
near one. Hence 

l / h E  ar(~-- g [~3) -* 0 a.s. 

a s  n ----~ o0 .  

This completes the proof that (3.5) tends to zero almost surely as n tends to 
infinity. 

We must now consider the behaviour of 

exp ( - ~b z}'~))m(0) s ~ n  ~f(x  + z~S)-c.)F('-s)*(dx) 

as n tends to infinity. All of the points of increase of F s* lie in c s + L  d and so 
z~S)~cs + L d a.s., therefore 

z~ ~) + c._s~c._ s + cs + L d = c, + L~. 

Hence z,(S)- c, + c . _ ~ s L  d and so by (2.4) 

a ~ 5 f (x  + (z~ ~ - c, + c, _ s) - c, _ ~) _P(" - s), (dx) 

s  

w h e r e  A~_ ~ ~ 0 as x -~ oo. 
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Fur the rmore  

K ~7 exp ( - ~b z~ ~)) {IzlPI + rc, I} _<_ 
m(4,) o-1/2  

K ( (s eXPm(qS) ~ (  - ~b z('~)) .,1 _i<~n-n ~ ~ Iz,. '[ 4-W(S)(+) for n > l  
F - -  

but  

33 

(5.4) 

i~l j~2? [U, ,. , ~176 1 [,y, iz(~)l exp ( -  ~z(9)_lm(~) s J =  j~=i~7~lx IF~*(dx)  

--<o,2,U=o !2  <oo '= ./=1 
if ~7-v > 2, which we will assume, therefore (5.4) tends to zero as n tends to 
infinity. Consequent ly  

exp ( -  qbz~ s) ) 
+ z r - c,,) F (dx) 

- WU)(qS) f f ( x )  ~ (d(dx) --* 0 a.s. 

as n--, oc. Combin ing  this with the fact, proved in the first part  of  this section, 
that  (3.5) tends to zero, we deduce that  

l a l / n  ~ f (x  - c,,) Z(")(dx) - W(qS)(2 re) -~ ~f(x)  # a ( d x ) l -  0 a.s. 

as n-+ 0% and as was noted at (3.3) this is equivalent to the assertion of  Theorem 
B. 
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