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w 1. Introduction and the Main Theorems 

Stable distributions play an evergrowing role as a natural generalization of the 
normal law. For  the description of them let X, X1, X2, ... be i.i.d, random 
variables, S n = X  1 -JFX2Av . . . -~X  n and let F x be the distribution function of ran- 
dom variable X. 

Definition (see [1]). The distribution function F x is called strictly stable if it is 
not concentrated in zero and for each n there exists constant d, > 0 such that 

Fs~ (1) 

It follows (see e.g. Feller [1]) that the constants d, = n 1/~ are the only possi- 
ble normalizing constants and 0 < ~ < 2 .  Thus, formula (1) is rewritten as fol- 
lows" 

Fso(x)=Folj~x(x). (2) 

P. L6vy's Theorem. F x is strictly stable i f  (2) is realized at n = 2 and n =  3. 

It is interesting that, generally speaking, the realization of (2) only for n = 2 
is yet insufficient for the stability of F x. 

P. L6vy's Example (Feller [1], Chap. 17). The characteristic function f ( t )  
= exp {~b (t)}, 

tp(t)=2 ~ 2-k (cos2k t - -1 )  
k = - c o  

has the property f ( t )=f2( t /2) ,  i.e. Fs2(X ) =F2x(X), but it is not strictly stable. 

Our aim is to investigate the stability of P. Levy theorem, i.e. having as- 
sumed that the assumptions of the theorem 

f ( t )= fk ( t / k l /~ ) ,  ~E(0, 2], k =2, 3, (3) 

f ( t ) = E e x p ( i t X ) ,  are valid only approximately (with some error ~) we shall 
prove that its conclusions are also approximately realized and shall measure 
this approximation. 
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Depending on the fact in which domain (finite or infinite) the perturbed 
version of the relation (3) is considered, two theorems are formulated. 

Let us make the following evident remark before the formulation of the 
theorems. For any characteristic function f ( t )  and any number pe(0, 1) there 
exists a positive numbers s (depending, generally speaking, on f and p, finite or 
infinite) such that 

s = inf{[tl:Lf(t)[ =p}. (4) 

When I f ( t )[>p,  t e ( - o o ,  oo) it is evidently assumed that s=  oo. 

Theorem 1. Let  for  some ee(0, 2] and T > 1 the following two conditions be val- 
id (k = 2, 3): 

I f( t)  --fk(t/kl/~)h <e  for  }tl < T. (5) 

Then there exists constant C depending only on o~ such that for  
ItL <min  (T, s -"1~ +~)): 

I f ( t ) - exp  { - l a l  exp (iD sign t)s,=ltl=}L < Czpe ' /~  (6) 

where d = 2 1 n f ( 2 - 1 / = s . ) ,  D = a r c t g ( I m A / R e A ) ,  s . = s  when s < T  and s . = l  
when s > T, 

, /= 1/(b + max(l ,  c~)), z p = { p a l n ( 2 / ( p + l ) ) } - *  

and, finally,  b is some absolute constantl  b > 1. 

The result of Theorem 1 may be improved in the case s < T in the following 
way. 

Corollary. Let  for  some ee(0, 2] and 1 < T<= c~ the conditions (5) be valid for  k 
=2, 3. I f  s < T then there exists a constant C depending only on ~ such that for  

[tI<=g 
I f ( t ) - e x p  {-IA,[ exp (iD s sign t)s ~ltl=}l < C~pe ", (7) 

where As = 2 l n f ( 2 -  */= s), D s = arc tg (Im As~Re As). 

If the condition on the perturbed version of Eq. (3) is satisfied on the whole 
axis, then estimation (8), stronger than (6), is valid. The order of ~ in estimation 
(8) is the same as in estimation (7). 

Theorem 2 . / f  (5) is valid for  k =  2, 3 and T = oo then either 

[ f ( t ) - e x p  { - A I t ? } l <  Co", Itl < oo, (8) 

where A is a constant depending only on f, ~, sign t, and C depending only on o~, 
or f ( t )  is almost degenerate, namely for  e < 1/4 

If(t)l >(1 +1 /1 -4e ) /2  > 1-28.  (9) 

1 Constant b is considered in detail in [2] 
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w 2. The Main  L e m m a s  

In the Diophant ine  approximat ion  theory it is known (see Fe l 'dman  [2]) that  
there exist absolute constants b and b' such that for any natural  r and k 

Ir ln 2 - k  ln 31> b'r -b. 

These absolute constants b and b' are considered in the same paper [-2]. 

L e m m a  I (O. Yanushkevichiene [3]). Let  m be an arbitrary integer and to>0 
and let e be an arbitrary small positive number satisfying the condition 

- ~bM -- (b' m / l n  3)1/% - ~ >= 2 b(l - b)(b'/ln 3) l/b- 1, (10) 

M = 2.3V(ln 3) 1 +b/((21/b _ 1) b'Tb). 

Then there exist an integer m' and an integer n' corresponding to m' such that 

Im' f l 2 - n '  [r e ~, (11) 

O < m - m '  < M e  ~b, (12) 

where/~1 = - 7 - 1  ln2, f i2= - 7 - i  ln3. 

Let  us note that  there is a positive e satisfying (10) since, according to [2], 
b > 1. L e m m a  1 is trivial in the case m = 0 - then m' = n' = 0 is chosen. 

The next lemma, probably  of independent  interest, is very useful in the fol- 
lowing: 

L e m m a  2 2. Let  ;g(t) be a complex-valued function and let rt(6)= sup Iz(t)l. I f  we 
have Itl _-<,~ 

IZ(t)l >21z(t/21/=)l- [r(t)l, 7 > 0  

and Ir(t)l<e for - T < t < T ,  T > I ,  then for any 6 in the interval (0, 1]: 

n (a )<2n(1)6=+e .  

Corollary. Let  a characteristic function f (t) satisfy 

In f ( t ) =  2 in f(t/21/~) + r(t), (13) 

f (t) #:O and [r(t)l < e for - T <_t < T, T > I. I f  [z[< T, [tol <= T - [ t o  - Z[, then 

fln f ( to)  - l n  f (z)[  = Hi t  o - z [  ~ + 2e, (14) 

where H = 2  sup [ln f ( t o ) - l n  f(z)[. 
z: Ito-zl < 1, z~[- T, T] 

Proof  of  Lemma 2. Accord ing  to the condit ion of the L e m m a  

2 Lemrna 2 is proved together with L. Klebanov 
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sup IZ(t)l _-> 2 sup ]Z(t/211~)[ - sup Ir(t)l , 
Itl~a It[~a [tl=<a 

n(3) >= 2n(3/21/=) - e, (15) 

n (a/21/=) < ~ (3)/2 + e/2. 

Having supposed in (15) that  3 =  1 we obtain:  

1t(2-1/=) < rt (1)/2 + e/2. 

Cont inuing in a similar way we get that  

n(2 2/ct) ~ n(2-1/~)/2 + e/2 < n(1)/2 2 + e/2 2 + e/2, 

U(2 -k/~) < n(1)/2 ~ + e/2 k + . . .  + e/2 2 + e/2. 

Let  us note  that  for any 6E(0, 1) there exists a non-negative integer k=k(5 )  
such that  

2-k/~> 3 > 2-(k+ ~)/~. 

Consequent ly  by the monotonic i ty  of the function n(3) 

rt(6) < n(2 -k/~) < n (1)/2 k + e 

< 2 n ( 1 ) 6 ~ + e  

which was to be proved. 
For  the p roof  of the corol lary let Z be the complex valued function defined 

on the interval [ - T ,  T]  by 

Z(u) = in f (u  + to ) - ln  f(to), 

and put  n (6 )=  sup [Z(u)l. 
I,l=<a 

Making use of Eq. (13) and L e m m a  2, we conclude that  

n(3) < 23 ~ sup {lln f (u) - In f(to)J : u ~ [ -  T, T]  c~ [t o - 1, t o + 1]} + 2e. 

N o w  it is enough to let 3 = l t o - Z  [. 
The  corol lary is proved.  
Lemmas  1 and 2 are used essentially in the proof  of L e m m a  3 on which, in 

turn, the proofs of the theorems are based. 

L e m m a 3 .  Let for some ~ ( 0 ,  2] the following two conditions be satisfied (k 
=2 ,  3): 

If(t) --fk(t/kl/=)[--<_e, Itl =< 1. (16) 

Furthermore let there be a constant p6(O, 1) such that 

If(t)[>p for It[-<_ 1. (17) 

Then there exists a constant C, depending only on ~ such that for I t ] < l  

I f ( t ) - e x p  {-IA~[ exp (iD1 sign t)[tl~}l < Clp-3(e+en]tl~), 
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where 
Al=21nf(2-1/~),  ~/= 1/(b + m a x  (1, ~)), 

D 1 = arc tg (Im A1/Re A1), 

b> 1 is some absolute constant. 

Concluding the paragraph we note that it is sufficient to prove Lemma 3 as 
well as the theorems only for e=<e0(~ ) where to(a ) is a small positive number 
depending only on ~. Indeed in the case e>~0(a) it suffices to increase cor- 
respondingly the constant C =  C(~) or the constant C~ = CI(c 0 which are pres- 
ent in the formulations of the theorems and Lemma 3. 

w 3. Proof of Lemma 3 

Let at first t be positive, i.e. 0 < t_< 1. Having noted u = l n  t and adopting ~b(ln t) 
=ln f ( t )  from (16) and (17) we obtain for e<=pk/2 

g, (u) = k ~ (u +/~k-  1) + G -  1 (exp u), (18) 

i l k - l =  - ( l / c0  in k, k=2 ,  3; 

IRk_l(t)l<=2p-ke, 0 < t ~ l .  (19) 

The statement of Lemma 3 is trivial for e>pk/2 when C1 =2. 
In further considerations the following notation is useful: 

G (u) = ~ (u) exp ( - ~ u). 

Substituting this expression in (18) we obtain 

G(u)=G(u+fl j )+Rj(expu)exp(-~u) ,  j = l , 2 .  (20) 

Further investigation can be divided into five parts. 

1 ~ Let us consider the following sets: 

l l  I = {u: u =nil1 +mflz; n, m - nonnegative integers}, 

~[2 : {U: ]~1 <u:nfll +mf l2  ~0; n, m - integers}, 

U={u :  u=nflz +mfl2 <O, n,m - integers}. 

Let us note that the set ~[2 is dense in the interval (/~1, 0) and ~ is dense in the 
interval ( - 0% 0). 

It is easy to see that for arbitrary ue l I  the representation 

u=u 1 +u2, uleH 1, u2eH z (21) 

is true. In fact, let ue l i  and u<fl2. Let us determine m o = m i n  {m:m - natural, 
m f l z ~ U  }. If lu-mofi2l >ill, then obviously 

fil < u - m o i l  2 - i l l  =Uo--<0- (22) 
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Since uoel I  according to the structure of Uo, we conclude from (22) that  
Uoell 2. If lu -mof l2 l  <1fill, then instead of (22) we should consider 

fll KU--mofi2~O. 

Thus the validity of (21) is proved. 

2 ~ We are going to estimate IG(u ) -G(~I )  I. First  of all let us assume that  
ue l l l .  F r o m  the formula (20) we obtain:  

G(u) = G(nfil + raft2 ) = G ( ( n -  1)fi i +raft2 ) 

- R 1  (ex p {(n - 1 ) f i  i +raft2}) exp { - a ( n  - 1 ) f l  i + mfi2)} 
n--1 

. . . .  =G(f l  1 + m f i 2 ) -  ~ Rl(exp(Jf i l  +raft2)) 
j = l  

m--1 

x exp { - a ( j f i l  +mfi2)} = G(fil) - ~, Rz(exp(f i i+Jfl2))  exp { -~ ( f i i  +Jfi2)} 
n-1  j=0  

- ~, Ra(exp (jill +mfi2) ) exp { - a ( J f l i  +mfl2)}. (23) 
j = l  

Let  us note  that  according to (19) 

,~1 Ri (exp( j  fll +mfiz))  exp { -c~(jfll -{- mfi2)} 
j = l  

< 2 p -  2 e(exp { - c~(nfia + raft2)} - exp { - e(fli + raft2)}) 

=<2p-Zs exp ( -  eu). 

Similarly, 
m-1 

Rz(exp (fli +Jfi2)) exp(-c~(f i  1 +Jfiz)) 
j = o  

< p - 3 e  e x p ( - a ( f l i  + mfi2)). 

Consequent ly  taking into account  (23) we have 

]G(u) - G(flt)l < C2 e exp ( - e u), 

C 2 = 3 p  -3 

(24) 

3 ~ Now let u~t l  2. According to the definition of the s e t  l [  2 either u = n f l l  
-m/3  2 or u = m ~ 2 - n f l l  where n and m are non-negat ive integers. Both  cases 
are similar, therefore, for definiteness let us assume that  

l I 2 ~ u = n ~ l - - m f l 2 ,  n>=O, m>O. 

Let us determine 

m~=rni_ , - 1  = m ~ _ 2 - 2 = . . .  = m - i ;  n o = n  , 

n i = rain {n*: n* fli -mi f i2  < O, n* is natural}. 
(25) 
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It is not  difficult to show that  n~ can be changed within the following bounds  3: 

[miflz/f l l  ] <= rl i <= [miflz/f l l  ] 4- 1. (26) 

Using (20) for u e l I  2 we obtain:  

G(u)=  G(nfl l  - ra f t2  )=G(/Tf l l  - ( m - 1 ) f l 2 )  

+ R z ( e x p  (nil1 - m f l z ) )  exp ( - ~ ( n f i l  -mfl2))  

= G(nj` fij` - m  1 f12) + R2 (exp (nil1 -raft2)) 
n--1 

x exp ( -  c~(nfl a - mfl2)) - ~, R J̀  (exp(jflj` - m J̀  g2)) exp ( -  e(J/~l - ml fi2) 
j = n l  

i - 1  

=. . .  = G(n, fll - m i  fi2) + Z R2(exp(nlflj` --mzfl2)) exp(--  c~(n~fij` --tutti2) ) 
l = 0  

i n l - l - - j `  

- ~ ~ Rl(exp(jf l  1-mlf i2)  ) exp(-c~(jf l  1-m,f l2)  ). (27/ 
l = l  j=n~ 

N o w  let us apply L e m m a  1 for our  m. Since in this L e m m a  m' is natural,  
m ' < m  and according to our  definition m j = m - 1  then obviously there exists i 
such that  m ' = r n  i. Let  us show that  for n' determined by L e m m a  1 one of the 
following two conditions is true: either n' = n~ or n ' =  n i -  1. In  fact, according to 
(25) for fixed m i the natural  number  n~ is chosen so that the difference ni/~ 1 
-m~f l  2 were as close to zero on the left as possible. In  L e m m a  1 n' is chosen 

by the condit ion of  immediate  proximity to zero of  the number  n ' f l j ` -m'f l2  
without  regard to the direction of this proximity,  i.e. wi thout  regard to the 
sign. Consequently,  there are only two possibilities: if In ' f i j ` -m~f lz l=n' f lx  
--mifi  2 then n i = n ' - l  ; if In ' i l l -m i f i z l  -= - (n ' f l j ` - -mi f l2)  then ni=n' .  

N o w  it is not  difficult to estimate the sums in (27). First of  all let us com- 
pare the case u e ! l  2 with the case ue ! l j  or more  exactly with the relation (23). 
In the latter case, i.e. in (23), as we have seen, the role of  exponents is essen- 
tially taken into account  in all estimations. In (27) an exponential  multiplier is 
not  to be trusted since both  n~ and m I can be very large but their difference 
l~lf l  1 --mif l  2 can be very small and at the same time exp {--oc(nlfl 1 --mlfl2) } is 
close to 1. Since m~, ng together with l can be very large, the est imation of sums 
in (27) is impossible wi thout  lemmas of  the L e m m a  1 type. 

According to the relation (12) and the above remark there exists i such that  

i < M e-  ~b (28) 

and in addit ion 
Irn~2-n~j`-~j`l  ~ (29) 

(we assume n i = - n ' - 1  at first). 
Remember ing  (26) we easily find that  the exponential  multipliers in (27) are 

bounded :  for j = nl, ..., n z _ a - 1, 

exp ( - c~(j fix - tutti2)) < exp ( ,  ~((n 1_ 1 - 1)fla --tutti2)) 

< exp ( - c~(fl 1 + f12)) = 6. (30) 

3 [a] is the integer part of a 
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By (26), in the last expression of the equalities in (27) the number  of  sum- 
mands  other  than G(niB 1 -rni/?2) does not  exceed the number  i+i([~2/~1-1 +2)  
=4 i .  It  follows from (18), (28) and (30) that  

iG(n /? i _m/?2 ) _G(nl/? 1 _ mi/?2) I < C3el-~b, (31) 
where 

C 3 = 4 8 M ( p +  l)p -3. 

Now, taking into account  (29) let us estimate the modulus  of the difference 
G(ni/?i - rnl/?2 ) -  G(/?i ). Obviously,  for 0 < tj < 1 and uj = In t j, j = 1, 2 

] G(u~) - G(u2)l = It? ~ In f ( tO  - t ;  ~ in f(t2)l 

< t ;  ~ [ln f ( t l ) -  in f ( t2)  [ q- Iln f ( t z ) [ l t ;  ~ - t 2 ~1. (32) 

Accord ing  to (29) and the corollary of L e m m a  2, we have, for t I = exp ~1 and 17 2 

= exp (ni~ 1 --rrtl/?2), the inequality 

[ l n f ( t t ) - l n f ( t 2 ) [  =<4 C4[t I - tz [~  + 2e 
where 

C 4 = (ln 2 (l/p) + 47~2) 1/2. 

Then f rom (17), (29) and (32) we conclude that for u I =/~1, uz=ni /? i -mi~2  

[G(ua)-  G(u2)[ < 8 C4t~2 le"' . . . .  iI  = + 4e + 2 C 4 le ~("*-"z)- 11 

< 16 C4E ~ + 4e + 4 C4ee ~ 

if e ~ max (1, ~) < 1/2. 
Consequently,  by (31) we have for u e ! l  2 and n i = n ' - I  

where 
IG(u)-G(/~I)I _-__ C5~", 

C 5 =  C 3 + 4 C 4 ( 4 + ~ ) + 4  , 

~l/(b + 1) for 0<c~<  1, 

t / = [ 1 / ( b  + e) for l<_e_<2. 

(33) 

It remains to consider the case u e ! l  2 and n~=n'. Obviously in this case in 
(27) one should consider not  the term G(ni/?i-mi/?2 ) but  the term G((n~+ 1)/?1 
-m~/?2), i.e. one should make  one step less  in (27). Thus, having noted the 
remainder  term in (27) by R 3 we obtain:  

G(n/? 1 - m/?2) = G((ni + 1)/? 1 - rni/?2 ) + R 3 

+ R i (exp (ni~ i - mifl2) ) exp ( -  c~(ni/?a - ml/~2)). 

Since, in this relation as well as in (27), L e m m a  1 is applied only to the term m i 
which in bo th  cases is the same, we see that  i t  is sufficient to repeat the argu- 
ments of (28)-(33). 

Consequently,  the est imation (33) holds true for any u~!I  2. 
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4 ~ Let  finally us l l .  Expressing this number  in the form (21) let us repeat  (23): 

6(u)  = 6 (u l  + u2) = a(n131 + rn132 + u2) = C(u~) 
i n - - 1  

- ~ R2(exp(131 d-jfl2ff-Ua)) exp(-c~(131 -+-j132q-u2)) 
j = o  
n - 1  

- ~ R 1 (exp 0"131 + m132 q- U2)) exp ( - ~(/'fia + m132 -t- U2) ). 
j = o  

Consequently,  as in (24) 

I G(u) - G(u2)l =< C 2 ~ exp ( - c~u). 

Hence,  as in (33) we conclude 

IG(u) -G(f i l ) l  < C2e exp ( - ~ u )  + Csen, usll.  (34) 

At  the end of the p roo f  in the case 0 <  t_< 1 it remains  to note  that  for any 
u s (  - ~ ,  0]  

I G(u) - G(11) I = l im [G(ui) - G(ll)I,  
i?oo 

because G(u) is cont inuous  on ( - o %  oo) and relat ion u = l i m u l ,  u~slI is valid 

for any u s ( - o %  0], i.e. (33) is valid for an arb i t ra ry  u s ( - o %  0]. Since 

O(lnt)=ln f(t), O(u)=exp(c~u)a(u), 
(34) means  that  

10(u) -6(131) exp (c~u)l < C2e + Cse" exp (~u), us (  - 0% 0] 

i.e. that  
Iln f ( t )  - 2 t ~ In f ( 2  - 1/~)1 < C e e + C 5 e" t ~. (35) 

5 ~ N o w  let - 1  < t <0 .  Let t ing t =  - z ,  0 < z <  1 we rewrite (35) in the following 
form:  

ln f (z)=Az~+r(z) ,  0 < z < l ,  

where A = 2 In f(2-1/~), 

Ir(z)l < C2g-~ C5Poqze. (36) 
Note  that  

f (t) = f ( - z) = f (z) = exp (A z ") exp (r (z)) (37) 

and put  A = - [ A I  exp(iD) where 

tg D = I m  A/Re A 

(while selecting the value D f rom the last equat ion one should take into consid- 
erat ion the signs of Re A and ImA).  

Hence  and f rom relat ions (36), (37) we obtain  for Itl < 1 

f (t) = exp { - I A I  exp (iD sign t) lt I ~} exp (r o (t)), 
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where for 1%(01 the est imation (36) holds true as it does for [r(t)l. This means 
that  for Itl<__l 

t f (t) - exp ( - [A[ exp (iD sign 0 [t]~)[ <= 2 C 2 ~ + 2 C s ~" It[ ~. (38) 

w 4. Proof of the Theorems and the Corollary 

It is obvious, that  

s=s ( f , p )= in f { l t ] :  If(t)] =p} >0.  (39) 

As already mentioned,  two cases are possible: s < T and s >__ T. 
Let  us consider, first of all, the case s < T. Then  instead of the characterist ic 

function f ( t )  we shall in t roduce the characterist ic function f s ( t )=f ( t s ) ,  for 
which 

1 
s(f~, p)=inf{[tl:  ]f(st)[ =p} = -  inf {s]t[" ]f(st)[ =V} = 1. (40) 

s 

It is not  difficult to verify that  if f ( t )  satisfies (5) for It1_-< T, then fs(t) satis- 
fies (5) for It1 <= T/s. By virtue of (40) relat ion (17) is true. Therefore  for fs we 
can apply L e m m a  3. Then  for [tl =< 1 we have: 

I f s ( t ) -  exp { -[Asl  exp (iD s sign t)It[ ~ } <= C 18 ~, (41) 

where A s = 2 In f~(2-1/~), V~ = arc tg (Im A J R e  As). 
Thus it remains to consider the domain  l<lt[<=T/s. For  this purpose we 

shall denote  
r (t) = L (t) _ f 2  (t/21/~). (42) 

According to the condit ions of the theorem, Ir(t)] <5  for [t] <=T/s. The  second 
inequali ty in the conditions, namely,  

i f( t )  -f3(t/31/~)l <--8, It] <: T 

is not  used in the considerat ion of the case It] > 1. Put  

h (t) = fs (t) - exp (n t It r), 
where 

B t = B,(s)= -[As] exp (iD s sign t )=  2 in fs(2-1/~ sign t). 

According to (42), 

h(t) = h 2 (t/21/~ ) + 2h(t/2 TM) exp (Bt] tl~/2) + r(t). (43) 

Having assumed that  

Ih(t)] 2 <= A = sup [ f s ( t ) -  exp (B, [t[~)] (44) 
Ifl < 1 

for ]t[ < to ,  where t o is an arbi t rary  number  from the interval [1, T/s), we shall 
prove that  this inequali ty holds true for [t[<=min(to 21/~, T/s). Since c~>0 and 
(44) holds for t o = 1 on account  of (41), this will then mean that  (44) is valid for 
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any real tE l - -T / s ,  T/s]. Put  

Note  that  for Itl <21/~to 

d = 1 + [c~ log 2 to]. 

2-(a+l)/~lt[<l. (45) 

Since according to the assumption,  (44) holds true for Itl <70, for any natural  m 

Ih(t/2m/~)lz <__ A (46) 
for Itl<to 21/~. 

According to (43), (44) and (46) in the interval Ifl <to21/~ we obtain:  

[h (t/2(m-1)/~)] < 2Jh (t/2m/~)] exp (Re B t It 1=/2 m) + A + ~, 

Ih(t)l < 2]h(t/2a/~)l exp (Re Btl tU2 ) + A + e 

< 22 I h (t/22/~)1 exp (Re Bt It] ~ (2- i + 2 -  2)) 

+2(A +e)  exp (Re Btltl~/2) + A + e < ... 

< 2a+ 1 ih(t/2(a+ 1)/~)1 exp (Re Bt J t]~/2) 

+ 2a+ 1 (A + e) exp (Re Bt I tU2)  + A + e. (47) 

As we have seen B t = 2  lnfs(2 -a/~ sign t), we obtain 

Re B t = 2 In [ f~(2-1/~ sign t)[ = 2 In [f~(2-1/~)1 = B. 

Having noted 

we see that  for I t [~ t  0 

G*(t) = 41tl ~ exp (Bltl~/2) 

2 a + 1 exp (Bit l=/2) 5 G* (to). 

Since G*(to) is even, it is easy to verify that the max imum G*(to) is reached at 
the points t ,  and ( - t , )  where 

t, =(2/(-~))1/~. 
Therefore,  

Ih(t)l < G* (t,)([h(t/2 (~+ 1)/~)1 + A + e) + A + e 

for to <lt[<min(21/~to,  T/s). 
have 

(48) 

Fur ther  by (40) fs(1)=p. Therefore  from (5) we 

Consequent ly  for e < ( 1 - p ) / 2  

IB1-1 ~ Iln (p + e)[ -1 < Iln ((p + 1)/2)1-t 

Since G* (t,) = 8/(elBI), (48) denotes that for t o < f tl < min (21/~ to, T/s) 

- 1  

Ih(t)l'< In (Ih(t /2(a+l)/ ' ) l+A+e)+A+e. (49) 
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According to (41) and (45) we correspondingly obtain: 

A =A(e)~0 for  e+0, 

ih(t/2(a+ 1)/~)1 < A. 

Therefore, there exists a positive constant e , = e , ( e , p )  such that for 0 N e < e ,  

- *  

According to Lemma3 and notation (44) we have A >__e. Then (49) and (50) 
mean that (44) is valid for Itl<min(21/~to, T/s) and hence (44) is valid for any 
real t in the interval [ - T / s ,  T/s]. Therefore according to (49) we have in this 
interval 

[h(t)L< 2 in +1 (e"+e). (51) 

For the completion of the case s<  T (and also of the Corollary of Theo- 
rem 1) it is sufficient to realize a conversion from f~(t) to f ( t )  and make use of 
(51). 

Now suppose that s > T. That  means 

If(t)l >p for Itl < T. (52) 

Let us slightly change the proof concerning the case s < T. Namely, considering 
only It[ <m in  (T, e -"/(1 +~)), i.e. assuming a priori t o <e  -"/(1 +'), we shall use the 
following estimation instead of (47): 

Ih(O] < 2 a +1 ih(t/2(a+ 1)/~)[ + (2a+ 1 + 1)(A + e) (53) 

(remember that Re B , = 2  In If(2-1/~)] <0  and that, for s >  T, it is not necessary 
to introduce function fs(t)). Having noted now that 

2a+l <4t~ ~4~-.~/(1 +~) 

we obtain from (53) that 

I h(t)l < 4e-"~/(1 +~)(ih(t/2(e+l)/~)[ + A + e) + A + e. 

According to (45) and Lemma 3 (which is applicable because of (52)) we get: 

]h(t)] < 5 C 1 e,/<l +~) + (4e-'~/(1 +~) + 1)(A + e). 

Now it remains only to change assumption (44) into 

I h(t)[ 2 =< A = e,/(1 +~) 

for any ]tl<t o where t o is an arbitrary number from the interval 
[1, min (T, e -"/(1 +'))]. 

Theorem 1 and its Corollary are completely proved. 
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Let us pass to the proof of Theorem 2. According to (5) for k--2  we have: 

f(t)=f2(t/2a/~)+r(t), Ir(t)l<c, Itt<oo. (54) 

Let us denote 

From (54) 

Thus for e ~ 1/4 either 

or  

I=inf{lf(t)l: Itl =< ~}.  

I =<I2 +sup  {Ir(t)l: Itl ~ 00} =<I2+ G 

12 - I + c > O .  

I> (1  + l / 1 - 4 e ) / 2  (55) 

I <(1 - ] / 1  - 4e)/2. (56) 

Inequality (55) means that f(t) is almost degenerate and relation (9) is valid. 
If inequality (56) is valid, then there exists a point 0 < z o < oo such that for 

< 1/4 
If(zo)l = 1/2. (57) 

Let us denote 

According to (57) 
I f ( t ) l  = If(tZo)l. 

= s(~, 1/2)  = min {Itl: I~(t)l = 1/2}  < 1. 

Now it remains to apply the Corollary of Theorem 1 to the characteristic func- 
tion ~(t) and to carry out the reverse conversion from ~ to f which is trivial 
because of the relation T =  or. 

Theorem 2 is proved. 

w 5. S u p p l e m e n t s  

1 ~ It is well known that the class of stable distributions forms a four parame- 
ter set of functions F(x; e, /3, 7, 2) with parameters 0<c~__<2, -1__</3<1, 
- oo < 7 < oo, 2 > 0. Besides, the characteristic function of the stable law can be 
written as follows: 

In y(t) = it 7 --2 [tl~{o(t, c~,/3), (58) 
where 

lexp ( i~/3K(cOsignt]z ! for ~=l, 
o)(t, oq /3) 

i 

[l+ifi~lnItrsignt for c~=l, 
= 2 

K ( c  0 = 1 - ] 1  - el = rain  (~, 2 - ~). 

Substituting (58) for (3) we see that 7 = 0  for e + l  and /3--0 for e = l .  This 
means that P. Levy's theorem characterizes in reality the subclass 9)l of the 
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class of stable laws, investigated by V.M. Zolotarev [51 in detail. The character- 
istic functions of the class 9Jl can be written in the following way: 

In y(t) = - exp {v- 1/2 {ln It[ + v -�89 ircO sign t + ~ (1 - vl/2)}}, 

v >  1/4, 101 <min(1 ,  2 1 / v -  1), - o o < z < o o  
(59) 

and ~ 2 = - F ' ( 1 ) = 0 . 5 7 7 . . .  is Euler's constant. 
A natural question arises: under which conditions a function of the form 

e x p ( - I A  ] exp(iD signt)s-~lt] ~) that appears in (6)-(8), is an element of class 93l? 
It  is obvious that it is always an element of class 9J/ if we know in addition 
that I m A = 0 .  This case is considered in greater detail below in 2 ~ Having 
noticed that 

0 = - - 2 D v l / 2 / ~  

we shall consider the general case. Thus, from the conditions (59) it remains to 
check that 

7C 
IDI-<_ ~ min(v - 1/2, 2 - v -  1/2). (60) 

The right-hand side of inequality (60) will be denoted by ~. (60) is equivalent to 
the following inequality 

Jim A/Re A[ < tg 4- (61) 

Let us recall that A=lnf(xo),  where x o is defined in the course of the proof  
of the theorems. Let us note that if in (3) c~4=2 (i.e. the case of characterization 
of the normal law is excluded), then, for any characteristic function f satisfying 
the conditions of Theorems 1 or 2, there exists a number  z o > 0 such that 

[Im in f(Zo)/Re in f(Zo)[ < tg 4- (62) 

In fact, we can obtain the smallness of I m 2 1 n f ( z 0 ) + R e  21nf(zo) from the 
corollary of Lemma 2, more exactly from (14) assuming there that z o is suf- 
ficiently close to zero. However,  one should not conclude from here about  the 
smallness of the ratio in (62). The above smallness can be obtained if one no- 
tices that Re lnf(zo)=ln[f(Zo) I. Now it remains to apply Theorem 1 or The- 
orem 2 to characteristic function If(t)[ 2 and to obtain closeness with the class 
of symmetric stable laws. 

Let us suppose now that for c~ + 2 (v + 1/4) we found a number  z o such that 
(62) is valid. Can we take x o for Zo? To be more exact, can we prove the 
theorems in such a way that x o is chosen not in the course of proof, but it is 
assumed a priori that Xo=Zo? The answer is positive. It can be done by sub- 
stituting the point x 0 = 2  -1/~ for the required point z o in L e m m a 3  (such a 
change was made in the paper [3] by O. Yanushkevichiene). One succeeds to 
do so rather often by means of replacing f(t) by fyo(t)=f(tyo) where Yo 
___ 21/~z0. 

Thus the case c~=2 (or which is the same v = l / 4 )  remained unconsidered 
because in this case the right-hand side of (60) equals zero. Under  the con- 
ditions in (3) this is a well known theorem of G. Polya and besides it is suf- 
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ficient to require the realization of (3) only for k=2 .  This case was widely 
investigated (see the paper [4] of R. Yanushkevichius and O. Yanushkevichiene 
and references in that paper) and for this reason we will not consider it in 
greater detail. Let us only denote that there are some limitations on moments  
in all the papers on the estimations of stability of G. Polya's theorem. As we 
have seen already they are absent in our Theorems 1 and 2. 

2 ~ Let us recall the definition of the A-metric 

A(X, Y) = min max max IE exp (i tX) - E exp (it Y)[, , 
T>0 2 [tl=<T 

which is equivalent to the Levy metric L in the sense that L-convergence of the 
sequence {X,} implying A-convergence of this sequence and vice versa. This 
metric is especially convenient in those cases where the proofs of statements 
are carried out in terms of characteristic functions. 

Proposition. Let X1, X2 ,  X 3 be i.i.d, symmetrical random variables. I f  

j=l  

for k=2, 3 and some ~ ( 0 ,  2], then there exist a symmetrical stable random vari- 
able Y and a constant C, depending only on c~, such that 

,~(X~, Y) < Ce "/(1 +~). 

For  the proof  of this proposition it is sufficient to note that I m A  =0,  to 
assume p = 1/2, and to make use of Theorem 1. 

3 ~ The function e x p ( - l A I  exp(iDsignt)s,~ltl  ~) in (6) and analogously in (7) 
and (8) can be written in another form: exp (2 In f ( 2 - 1 / % ,  sign t)s,~lt[~). The 
latter representation has been already used in the proof  of Theorem 1. 

Finally, let us note that for T <  co, instead of the characteristic s defined in 
(4) it makes sense to use the characteristic 

sr  = m i n  {It[ _-< T: [f(t)l =p}, 

since for its finding less information than for s is required. This, however, was 
not our task because we wanted to simplify the proof. The modification of the 
proof  is obvious. 
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