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1. Introduction 

The main purpose of this paper is to formulate and investigate the central limit 
theorem for functions which are not assumed to be separable-valued nor 
measurable. The inspiration is a part of a paper by Dudley and Philipp I-2, 
Theorem 1.1] but the aim is to use the setting and some results in Hoffmann- 
Jorgensen [5, Chap. 7]. 

Let f be a function from a probability space (S, 5 P, #) into a Banach space 
(B, I1" L]). We say tha t  f satisfies the central limit theorem if there exists a 
Radon probability measure 7 on (B, II " I[) so that 

l imSg n -~ f(sg) #~(ds)=l imSg n -~ f(s~) #N(ds)=~gd7 
n i = 1  n , \ i = 1  

for all bounded, real-valued continuous functions g on (B, I1" LI), where (S ~, 5 eN, #~) 
is the countable product of (S, 5 P, #). It turns out that f satisfies the central 
limit theorem if and only if the normalized sums are eventually tight, i.e. if for 
all e > 0  there exists Kc_B, compact, so that 

limsup(#~) * n -1/2 f(si)r  <e VG~_K open, 
n i =  

and if and only if the normalized sums can, in limit be approximated by finite 
dimensionally, measurable functions. Furthermore, it turns out that the state- 
ments above imply that f is weakly integrable and that the limit measure 7 
is a gaussian measure, whose covariance function is determinated by f. 

In the following section, I shall describe the notation and the basic definitions 
and results. In Sect. 3, I shall state and prove the main results. 

2. Notation and Basic Definitions and Results 

Let (S, 5 P, y) be a probability space, (M, d) a linear metric space equipped with 
the Baire ~-algebra rig, M' the dual space of M, C(M) the set of bounded, real- 
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valued continuous functions on M, and Jf'(M) the set of compact subsets of M. 
We say that f :  S ~ M  is #-measurable or a random variable on (S, 5 D, #) if f is 
(5~(/~), Jg)-measurable, where 5P(#) is the #-measurable sets. We say that f is 
weakly #-measurable (#-integrable) if x'(f)  is #-measurable (#-integrable) for all 
x'eM' and that f is Bochner #-measurable if f is #-measurable and f ( S \  N) is 
separable for some #-nullset NcSC We let 

LZ(M, #) = {f: S---~Mlx'(f) 2 is #-integrable Vx'~M'}. 

The outer resp. inner #-measure is denoted #* resp. /~, and if f is a ~ -  
valued function on S, where IR= [ - o o ,  oo], then the upper resp. lower #-in- 

tegral of f is denoted ~ f d #  resp. ~ f d #  and the upper resp. lower #-envelope 
S *S 

of f by f *  resp. f , .  Furthermore we denote the #-hull resp. #-kernel of a 
subset A of S by A* resp. A,.  

We say that an S-valued random variable cp, defined on some probability 
space ((~, ~ ,  P) and with distribution #, is P-perfect if 

P*(q~A)=#*(A) VA~_S. 

Non-measurable sets and functions, envelopes and perfect random variable 
are investigated closely in [1]. 

The following definitions are due to Hoffmann-Jorgensen (see Chap. 7 in 
[5]). 

Definition 2.1. Let {f~} be a sequence of M-valued functions on a probability 
space (f2, o ~,  P). We say that {f,} converges weakly (~)  to 7, a Baire probabili- 
ty measure on M, if 

~gdT=lim~gof,  dP=l im~gof ,  dP Vg~C(M) (2.1.1) 
n ~ , 

and we say that {f,} is eventually tight if 

g e > 0  3 K ~ Y ( M ) : l i m s u p P * ( f , ( ~ G ) < e  VG~_K, open. [] (2.1.2) 
n 

Let us end this section with some results from [1]: 

Proposition2.2. Let f be a R-valued function on S and let ~o be an S-valued 
random variable defined on some probability space (f2, oj, p) and with distribution 
#. We have 

# * ( f > t ) = # ( f * > t )  Vt~lR (2.2.1) 

i f d #  = ~ f *  d# (if they exist) (2.2.2) 

f ,  oqo<=(focp),<(foq))*< f*oqo P-a.s. (2.2.3) 

f,o~0=(fo~0),, (fo~o)*=f*o~o P-a.s. /f (p is P-perfect (2.2.4) 

where f *  and f ,  are the #-envelopes of f and (fo~o)* and (fo~o), the P-en- 
velopes of f o~o. 
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Proof Look at I.(2.6.6), L(2.3.1), II.(2.1.1) and Theorem II.2.2, all in [1]. [] 

Proposition 2.3. Let f be a R-valued function on S and let (S ~, 5 a~, #N) be the 
countable product of (S, 50, #). We then have 

#*(llfll >t)-=(#~)*({s=(sj)cS~l llf(si)ll >t}) VteR,  V i e N  (2.3.1) 

(g~)* (max j=~ f ( s )  >3t)<=2(l+C,(t))~)* ( ~= i f ( s )  > t )  

Vt~N, VneN (2.3.2) 

m" N ,  .'= where C , ( t ) = i u n ( #  ) ( 1 ~  f ( s )  <-_t) -1. 

Proof Since the projection from S N into S M is #U-perfect for all M___N (see 
Proposition II.3.1 in [1]) (2.3.1) follows from Proposition 2.2 and since further- 
more b~]i~b~ll for boB" is even and subadditive (2.3.2) follows from Theorem 
III.1.2 in [1]. [] 

3. The Central Limit Theorem 

In all of this section we let (B, II " II) be a Banach space, (S, 5 ~, #) a probability 
space and (S N, 5 e~, #~) the countable product of (S, 5 ~, #). 

Furthermore, we let f be a B-valued function on (S, 5 ~ #) and we define the 
sequence of B-valued functions { U,(f)},~ N on (S ~, 5 p~, #~) by 

U,(f,s)=n -~ ~, f ( s )  Vs=(si)j~eS ~ VneN. 
j = l  

Definition 3.1. We say. that f satisfies the central limit theorem or 
feCLT(B,#),  if there exists a Radon measure 7: on (B, ]].H) such that 
u.(S) ~" 7:. [] 
Proposition 3.2. Let (f2, ~ ,P)  be a probability space, n=(nn).~ ~ a sequence of 
independent, identically distributed S-valued random variables on (f2, ~ ,  P), with 
common distribution #, and let for all n~N the B-valued function W n on ((2, Y ,  P) 
be defined in the following way 

W.(co) = U.(f)on(co)= U.(f, n(co))= n -~ ~ f(nj(co)) V coeO 
.i= 1 

then the following two statements hold: 

f 6CLT(B, #) ~ W.~ 7: (3.2.1) 

W,~ 7:, for some Radon measure~ 
:::~ f e CLT(B, 11). (3.2.2) 

7: on (B, ]i'll), and n is P-perfect ) I 
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Proof. Let ge C(B) then by (2.2.3) 

(go U,(f)) ,  o~ < (go W,), < (go W,)* < (go U,(f))* o~z P-a.s. 

and if u is P-perfect we have by (2.2.4) 

(go U,(f)) ,  ou = (go W,),, (go W,)* = (go U,(f))* o~, P-a.s. 

so using (2.1.1) and (2.2.1) the proof  is completed. [] 

Before investigating CLT(B,  #) we need the following nice results: 

Proposition 3.3. Let g be a real-valued function on (S, 50, #). I f  

lim ( # ~ ) * ,  ( {eS~' n -  1 i=li g ( s / ) - a  > e ) = 0  V~>0 

then g is #-measurable. 

Proof. See Example II.3.2 in [1]. [] 

L e m m a  3.4. Let g be a real-valued random variable on (S, 5 P, #) satisfying 

V ~ > 0  3 T: (#~)(I U,(g)l > T ) <  ~ V n e N  (3.4.1) 

then ~ g 2 d # <  oo. 
s 

Proof. By a s tandard symmetrizat ion argument  we can assume that  g is sym- 
metric. Let ~0 resp. q~, be the characteristic function of g resp. U,(g), then q~ is a 
real-valued positive function and cp,(t)=q~(t.n-~)" for all t~lR. 

Let 4 =  1/12, choose T in (3.4.1) and choose 6 so that  

[(1--elt)]<~ Vt: ]t]=<6 
then since 

1--p,(t)__< S Ii -elW"(g)ld#~ < 2~ + ~ Ii --e'W"(g)ld#N 
S N {IUn(g)[ _-< T} 

0__< 1--~o(tn-~)"_-<�88 Vl t l<6/r ,  Vn~N. 

For  all z~[0, 1] satisfying (1 - z " )< � 88  we have that  

(1 - z" )  = (1 -z) (1  + z +  ... +z"-1)>n3/4(1 -z) .  

Now let toe[-~5/T, 6/T] be fixed then using (3.4.3) and (3.4.2) we get 

lim inf(1 - ~0 (t)) �9 t -  2 < lim inf n(1 - (p (to n--~) t o 2 
t ~ O  n ~ o o  

< lim inf -~ (1 - ~o (t o n-  })n) to 2 

__<(3t~o) - '  

so by Theorem2.3.1 in [6] the proof is completed. [] 

N.T. Andersen 

(3.4.3) 

(3.4.2) 
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Lemma 3.5. I f  { U,(f)} is eventually tight then f ~L2 (B, g). 

Proof By (2.3.1) 

#*(Nfll > t)=<(#•)*(N U,(f)]l >t/n)+(#N)*(HU,_I(f)][ > t / n - l )  (3.5.1) 

for Vn> 1 and if {U,(f)} is eventually tight 

Ve>0 3 n o > l  ~Y: (#N)*(][U,(f)II>T)<e Vn>n o (3.5.2) 

and if we use (3.5.1) and (3.5.2) we get 

V~>0 3 T: (#N)*([[ g,(f)[[ > Z ) < ~  V n > l  (3.5.3) 

Vx'eB' V~>0 3 Zx,~lR: (#~)*(IU,(x'(.f))l>Zx,)< ~ Vn__>l (3.5.4) 

lim(#~)*({seS~lln--~U,(x'(f))l>e})=O Ve>0. (3.5.5) 
n 

By (3.5.5) and Proposition 3.3 we have that x'(f) is #-measurable, and by (3.5.4) 
and Lemma 3.4 that Sx'(f)Zd# is finite i.e. fEL2(B,#). [] 

S 

We can now prove the following important result: 

Theorem 3.6. The following two statements are equivalent: 

f ~  CLT(B, #) (3.6.1) 

{U,(f)} is eventually tight. (3.6.2) 

Proof 
(3.6.1) ~ (3.6.2): Proposition 7.17 in [5]. 
(3.6.2) ~ (3.6.1): Let O={elX'lx'~B'}, then 0 is a selfadjoint semigroup of 

bounded, continuous and complex-valued functions on B (see e.g. Definition 
1.10 in [5]). By Lemma 3.5 feL2(B,  #) so x'(f) satisfies the real central limit 
theorem i.e. 

lim S e~X'(v"(f))d#N exists Vx'~B'. 
n ~ c ~  s N  

Now let bl,b2~B so that bl+-ba, then by Hahn-Banach theorem (see e.g. [3] 
Sect. II.3) we can find x'~B' such that x'(bO4=x'(b2). Furthermore it is possible 
to find t so that eitX'(bl)+e i~x'(b~) (take t = l  or ]/2). Since tx'~B' we find that 0 
separates points in B, so by Theorem7.11 (case3, Remark (1)) in [5] 
f~CLT(B,#) .  [] 

We will use the equivalence shown in Theorem 3.6 to find necessary and/or 
sufficient conditions for CLT(B, #). 

Proposition 3.7. I f  f 6 CLT(B, #) then 

V~>0 3 TeN:  (#N)*(I[ U,(N)][ > T ) < ~  Vn__>l (3.7.1) 

7f is a centered gaussian measure (3.7.2) 

x'(f)d# =0, ~ x'( f)y '( f)d# = ~ x'y'dTf < Go V x', y'eB' (3.7.3) 
S S B 
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3k61R: (#n~)*(llU.(f)]l >t)<k/ t  2 V t > 0  Vn=>l (3.7.4) 

j" IlfllPd#<oo, sup ~ jlU,(f)j]Pd#N<oo Vp<2  (3.7.5) 
S n S~l 

(#~),(n-�89 H G(f ) l l  ,4 ~ '  0 )=  1. (3.7.6) 

Proof From Lemma 3.5 and Theorem 3.6 follow (3.7.1)-(3.7.3) and (3.7.6) is a 
consequence of a theorem by M. Talagrand in [7]. Furthermore, (3.7.5) follows 
from (3.7.4). Now choose T in (3.7.1) with e= 1/9 and let 

C,(t) -1 = inf #~(11Uj(f)ll* <-_t/1/]), 
j < n  

then by (2.2.1) and (2.3.2) 

#(llf  LI* < t )"=  1 -#N(max I] f(sk)ll* >t)  
k<n 

k , ) 
> 1 - 2 # N (  max 2 f(sj)  >t/2 

\k<=n IIj=t 

> 1 - 2#~(1/G(f)I1" > t/6 l/n)(1 + C,(t/6)) 

> 1-2.1/9.(1 + 8/9) 

>�89 V t ~ [ 6 T l / n ,  6 T l / ~ l )  V n > l  

i.e. by  (2.2.1) 

# ( l l f l l * > t ) < l - 2  -a/" 6 l / n T < t < 6 l / n - + l T  Vn>0 (3.7.7) 

so we can copy the proof of Lemma 4.9 in [4] (p. 94) where we use (3.7.7) 
instead of symmetrization. [] 

Theorem 3.8. I f  f ~  CLT(B,  #), t~ is a N+-valued function on ~ +  and q~ is a ~ -  
valued function on B such that 

tp is increasing, continuously differentiable (3.8.1) 

0(0) =0, S t~'(t)/t2dt < oo (3.8.2) 
0 

r is continuous ?f-a.s. (3.8.3) 

3 k ~  V x s B :  Iq~(x)l<k+O(llxl[) (3.8.4) 
then 

lim i r ~=l im ~ q~(Un(f) )d#N 
n S N n , S  N 

= ~ q)d?:< oo. (3.8.5) 
B 

Proof. By (3.8.1) there exists a ~+-valued,  continuous and increasing function 
on ~ +  so that 

~(0)= 1, t~(t) t~oo " 0% ~ O'(t)~/(t)/t2 dt < oo. 
0 
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Let 0o be defined by 0 ; ( t )=0 ' ( t )~ ( t )+ l / / t  for all t eN+ ,  with the condition 
0o(0) = 1, then 

0(0  ,. O'(t) , oo, lim - - = l l m ~ = u  
O~ t ~  t ~  Oo(t) Ooft) 

i.e. 
V~>O 3to: O(t)<=O(to)+~Oo(t) VteR+ 

i.e. 
0o satisfies (3.8.1) and (3.8.2) (3.8.6) 

V~>0  ~K 1 VxeB: I~o(x)l<K~ +~Oo(llxH). (3,8.7) 

By Example II.1.5 and Theorem II.1.2 both in [1] we have that 0o([Ig.(/)H)* 
=0o(11 un(f)H*) ~-a.s. so if we use (2.2.2), (2.2.1) and (3.7.4) we get 

3 kslR: S 0o(11 g,(f)lj)dl ~ =  ~ 0~(0#~(11 g,(f)ll*>t)dt 
S N 0 

__</~ VneN. (3.8.8) 

Since y: is gaussian there exists c eR ,  so that 7i{x~Blllxll>t}<c/t 2 for all 
t e N + ,  so using (3.8.7), (3.8.6) and (3.8.3) we get 

~. Oo([Ixll)~fdx < ~ ,  I cPdT: < ~176 (3.8.9) 
B B 

i.e. (3.8.7)-(3.8.9) prove (3.8.5) by (7.8.12) in [5]. [] 

Remark. Theorem 3.8 tells us that the convergence (2.1.1) can be extended to 
some unbounded functions. Remark that ~p given by ~(x)=0(Llxll) for x~B 
satisfies (3.8.3) and (3.8.4) and that O(t)=t p satisfies (3.8.1) and (3.8.2) for p<2, 
i.e. (3.8.5) holds for IIU,(f)]l p for p<2 .  

Proposit ion 3.9. CLT(B, #) is a linear space. 

Proof Let f l ,  f2~CLT(B,I~), aeN  and 4>0,  then by Theorem 3.6 and (2.1.2) 

V i = l , 2  3 K~eJC(B): lim sup (#N)* (U, (f~) q~ G) < ~ 
n 

VG~_Ki, open. (3.9.1) 

Since K1/a is compact and G~_K I iff G/a~_K1/a, we have that {U~(af~)} is 
eventually tight, i.e. by Theorem 3.6, that af~eCLT(B, I~). 

Let G~_K1 +K2, then using that K~, K 2 and K1 + K  2 are compact we have 
for all aeK 1 and all bsK  2 

3 r(a, b)>0:  x+yeG VxsB(a,r(a,b)), VyeB(b,r(a,b)) 

where B(x, r)={yeBI IIx-yll <r}, r e R + .  Using the compactness we get 

nl(b) 

VbEK 2 ~ nl(b)~N ,,(b) ~ {%(b)}~=1 - K 1  : K1 - U B(%(b), r(%(b), b)). 
j=l 
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Put r (b) = inf {r(aj(b), b) l 1 <j < n 1 (b)}, then r(b) > 0 and by compactness 

n2 

?n2~N, {bi)~=l c--K2 : K2 ~_ ~) B(bi, r(bl)). 
i ~ l  

Let G 1 = ~ ,1(@,)B(aj(bl), r(aj(bi), 
?l 2 

bl)) and G2= U B(bl, r(bi)) then Gz~K~ and 
i = 1  j = l  i - - 1  

G 2 ~ K 2 ,  and if xEG1, y s G  2 then 

3 bs{b~}7~= ~, B ae{aj(b)}"~'=~]): yeB(b, r(b)), xsB(a,  r(a, b)), 

and since r(b)<r(a,b) we have that x+y~G.  Thus GauG2~_G so by 3.9.1 and 
subadditivity of the outer measure we get 

lira sup (#~)*(U,(f+ g)q~ G) _<_lira sup (l~N)*(U,(f)q~G~ or U,(f)c}G2) 
n n 

__<2~ 

i.e. { U,( f+ g)} is eventually tight so by Theorem 3.6 the proof is completed. [] 

The next two lemmas and two theorems show that f belongs to CLT(B,  #) 
if and only if U,(f)  can, in limit, be approximated by finite dimensional, 
measurable functions, which can be taken as continuous projections. 

Lemma 3.10. I f  f ~ CLT(B,I~) and h is a B-valued, linear, continuous function on B 
so that dimh(B)< o% then 

hof~CLT(B, t~) ,  g = ( f - h o f ) ~ C L T ( B , # )  (3.10.1) 

7g = 5~(q) (3.10.2) 

where q: B ~ B  is given by q ( x ) = x - h ( x )  for x~B and 5e(q) is the distribution 
of q under ? y. 

Proof For all x'~B' we have that x'oheB' and since dim(ho f (S ) )<  oe we have 
that h o f e C L T ( B ,  #) and then by Proposition 3.9 g~CLT(B,I~). Furthermore 
x'oq~B' so q is a gaussian B-valued random variable and by (3.7.3) we have 

~q(xl x'~)= S 
B 

=S 
S 

=S 
B 

that 
(x'lo q)(x2oq)d?r = 5 (x',oq(f))(x' 2oq(f))d# 

S 

(x' 1 ( f  -- h of))(x'2 ( f  - h of))dt~ 

xlx'2dTg, Vx'I,x'2~B' 

i.e. ~(q)  and yg have the same covariance function and therefore equal. [] 

Lemma3.11. Let 7 be a gaussian Radon measure on a Banach space (B, ][" I]) 
with mean zero and covariance-function a, then there exists a sequence {hn}n~ ~ of 
finite dimensional continuous projections on B such that 

hn: B - * B  and h ,+loh,=h n Vn~N (3.11.1) 

hn(x) ~ , x 7-a.a. x~B. (3.11.2) 
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Proof. Since 7 is Radon we have that L2(7) is a separable Hilbert space and B' 
is a linear subspace of L2(~,). Let H'=clL~,(B'), then ~ '  is separable and there- 
fore there exist, an orthonormal base {l',} for ~ '  so that {l',}~B'. Let 
l ,=jl ' , (x)xd7 for all n~N then since l',(x)x is Bochner-integrable we have 

B 

{/,}, and 

/)(//) = ~ l,i(x)l}(x)dy={O1 i=t=j B i = j .  (3.11.3) 

Now for all n~N define h, by 

h,(x)= ~ l)(x)lj V x~B 
]= 1 

then h, is a linear, continuous function, dimh,(B)< oc and 

) h,(h,(x))= l l'i(x)li lj 
j = l  i = 1  

= ~ l)(x)tj 
j = l  

= h. (x) 

h,+l(h,(x))=j~=l.= l) i= l'i(x)l i lj 

= ~ tj(x)lj 

(3.11.4) 

j = l  

= h, (x) (3.11.5) 

i.e. (3.11.4) shows that h n is a projection and (3.11.5) shows (3.11.1). Now if x' 
= ~ ajl)~B' then 

! t ! x'oh,= ~ ajlj li(x)l i aft) VnEN 
j e N  i = 

i.e. 
x ' oh ,~x '  in L2(y) Vx'~B' (3.11.6) 

which by Theorem 5.3 in [4] (p. 99) (3.11.6) implies that 

x'oh, , ~  ~ x' y-a.s. V x' eB'. (3.11.7) 

Using that {l'n} are independent N(0, 1) random variables we have that x' and 
h, are gaussian so by (3.11.7) and Theorem 5.3 case (1) in [-4] (p. 99) 

3 h : B ~ B : h n  n~ ~h 7-a.s. (3.11.8) 

Now there exists a separable, linear subspace B o of B so that h6B o 7-a.s. and 
7(Bo)= 1. Let {x,} ,~ be dense in Bo, then by Corollary 2.III.14 in [3], there 
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exists {x',},~Nc_B' o so that for all n~N we have x',(x,)= Hx, ll and IIx'nll = 1, i.e. 

V x ~ B o \  {0 } ~neN:  Itx-x ll<lllxll 
and 

V x s B o \  {0} 3 neN:  x',(x)=x'(x,)+x'~(x - x , )  

= Ilx.ll- IIx -x.II 
>�89 llx[I 

i.e. we have 

3 {x',} __ B' 

and by (3.11.7) and (3.11.8) 

x ' , (h(x)-x)=O VneN 

VxeBo"-  {0} 3heN:  x',(x) > 0 (3.11.9) 

/~-a.a. x~B. (3.11.10) 

Now using the properties of B o, (3.11.9) and (3.11.10) we find that h(x)=x for 
/~-almost all x~B. [] 

Theorem 3.12. I f  f e CLT(B, t~) then there exists a sequence {hk} of finite dimen- 
sional, continuous projections on B so that 

hk(X)~X 7fa.s., hk+a(hk)=h k Vk~N (3.12.1) 

lim sup ~ q~(llU,(f-hkOf)n)d/~ k~oo' 0 (3.12.2) 
n s N  

whenever q} is a lR+-valued, increasing, continuously differentiable function on 
~ + satisfying 

oo  

(p(0)=0, ~ cp'(t)/t2dt < oo. (3.12.3) 
0 

Proof Using Lemma 3.11 on 7/, there exists a sequence {hk}k~ ~ of finite dimen- 
sional, continuous projections on B so that (3.12.1) is satisfied, and since ~0 is 
continuous and q}(0)=0 we have by (3.11.2) 

cp(llx -hk(x)ll) ~ 0  7fa.a. x~B. (3.12.4) 

From Theorem 3.8 and Lemma 3.10 we get 

Vk~N: lim i CP(llU,(f--hk~ q}(l[X--hk(X)ll)dTI" (3.12.5) 
n sIN B 

Now let q(x)=supl[X-hk(X)ll, then q is a seminorm and by (3.11.2) and 
n 

Theorem 3.4 in ([4], p. 79) we have that ~ q2d7/ is finite. Since ~o is increasing 
B 

and satisfies (3.12.3) we get that there exist K ~ R  

(p (t) =< ~o (1) + t 2 ds<=K(l+t 2) Vts]R+ 
0 

i . e .  

~o(][x --hk(X)ll)<--_K(1 + Ilx --hk(X)ll 2) =<K(1 + q2(x)) 

so (3.12.2) follows from (3.12.4), (3.t2.5) and the Lebesgue dominated con- 
vergence Theorem. [] 
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Theorem 3.13. I f  for all e > 0  there exists g~CLT(B,#)  so that 

lim sup i ~(U,(g))d# ~ ~P(U,(f))d# ~ -  i <e 
n SN SN 

whenever (p is a real valued function on B satisfying 

I~o(b)l < 1, ko(a)-(p(b)l<Ha-bll Va, beB 

then f ~  CLT(B,  #). 

Proof Follows from Corollary 8.11 in [-51. 

Example 3.14. Assume that f satisfies the conditions in Theorem 1.1 in [2], i.e. 
for all m e n  exists a B-valued function A m on B so that 

A, ,o f  is measurable, dim Am(B ) < oo 

ff Amof dt~=O, ~ IlA,,ofll2dp< oo 
s s 

~no(m) Vn>no:  (#~)*(][Un(f-Amof)] I > l /m)< l/m. (3.14.3) 

Now (3.14.1) and (3.14.2) imply that A , , o f ~ C L T ( B , # )  and if (p is a function 
satisfying the conditions in Theorem 3.13 then 

flu o(U"( f  - Am~ f))d#~q 

< [. 1 A IIU,(f-A, ,of) l[dp ~ 
s N 

< 1/m + (/~)*(H U,( f -A , ,o f ) l l  > l/m) 

i.e. f ~ C L T ( B , # )  by Theorem 3.13. Furthermore Theorem 3.12 tells us that A m 
can be taken as a continuous projection, i.e. Theorem 3.12 and Theorem 3.13 
gives us necessary and sufficient conditions for f ~  CLT(B, #). [] 

(3.14.1) 

(3.14.2) 
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