# The Central Limit Theorem for Non-Separable Valued Functions 

Niels Trolle Andersen<br>Institute of Mathematics, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark

## 1. Introduction

The main purpose of this paper is to formulate and investigate the central limit theorem for functions which are not assumed to be separable-valued nor measurable. The inspiration is a part of a paper by Dudley and Philipp [2, Theorem 1.1] but the aim is to use the setting and some results in HoffmannJørgensen [5, Chap. 7].

Let $f$ be a function from a probability space $(S, \mathscr{S}, \mu)$ into a Banach space $(B,\|\cdot\|)$. We say that $f$ satisfies the central limit theorem if there exists a Radon probability measure $\gamma$ on $(B,\|\cdot\|)$ so that

$$
\lim _{n} \int^{*} g\left(n^{-\frac{1}{2}} \sum_{i=1}^{n} f\left(s_{i}\right)\right) \mu^{\mathbb{N}}(d s)=\lim _{n} \int_{*} g\left(n^{-\frac{1}{2}} \sum_{i=1}^{n} f\left(s_{i}\right)\right) \mu^{\mathbb{N}}(d s)=\int g d \gamma
$$

for all bounded, real-valued continuous functions $g$ on $(B,\|\cdot\|)$, where $\left(S^{\mathbb{N}}, \mathscr{S}^{\mathbb{N}}, \mu^{\mathbb{N}}\right)$ is the countable product of $(S, \mathscr{S}, \mu)$. It turns out that $f$ satisfies the central limit theorem if and only if the normalized sums are eventually tight, i.e. if for all $\varepsilon>0$ there exists $K \subseteq B$, compact, so that

$$
\limsup _{n}\left(\mu^{\mathbb{N}}\right) *\left(n^{-1 / 2} \sum_{i=1}^{n} f\left(s_{i}\right) \notin G\right)<\varepsilon \quad \forall G \supseteq K \text { open }
$$

and if and only if the normalized sums can, in limit be approximated by finite dimensionally, measurable functions. Furthermore, it turns out that the statements above imply that $f$ is weakly integrable and that the limit measure $\gamma$ is a gaussian measure, whose covariance function is determinated by $f$.

In the following section, I shall describe the notation and the basic definitions and results. In Sect. 3, I shall state and prove the main results.

## 2. Notation and Basic Definitions and Results

Let $(S, \mathscr{S}, \mu)$ be a probability space, $(M, d)$ a linear metric space equipped with the Baire $\sigma$-algebra $\mathscr{M}, M^{\prime}$ the dual space of $M, C(M)$ the set of bounded, real-
valued continuous functions on $M$, and $\mathscr{K}(M)$ the set of compact subsets of $M$. We say that $f: S \rightarrow M$ is $\mu$-measurable or a random variable on $(S, \mathscr{S}, \mu)$ if $f$ is ( $\mathscr{P}(\mu), \mathscr{M})$-measurable, where $\mathscr{S}(\mu)$ is the $\mu$-measurable sets. We say that $f$ is weakly $\mu$-measurable ( $\mu$-integrable) if $x^{\prime}(f)$ is $\mu$-measurable ( $\mu$-integrable) for all $x^{\prime} \in M^{\prime}$ and that $f$ is Bochner $\mu$-measurable if $f$ is $\mu$-measurable and $f(S \backslash N)$ is separable for some $\mu$-nullset $N \in \mathscr{S}$. We let

$$
L_{w}^{2}(M, \mu)=\left\{f: S \rightarrow M \mid x^{\prime}(f)^{2} \text { is } \mu \text {-integrable } \forall x^{\prime} \in M^{\prime}\right\} .
$$

The outer resp. inner $\mu$-measure is denoted $\mu^{*}$ resp. $\mu_{*}$ and if $f$ is a $\overline{\mathbb{R}}$ valued function on $S$, where $\overline{\mathbb{R}}=[-\infty, \infty]$, then the upper resp. lower $\mu$-integral of $f$ is denoted $\int_{S}^{*} f d \mu$ resp. $\int_{* S} f d \mu$ and the upper resp. lower $\mu$-envelope of $f$ by $f^{*}$ resp. $f_{*}$. Furthermore we denote the $\mu$-hull resp. $\mu$-kernel of a subset $A$ of $S$ by $A^{*}$ resp. $A_{*}$.

We say that an $S$-valued random variable $\varphi$, defined on some probability space $(\Omega, \mathscr{F}, P)$ and with distribution $\mu$, is $P$-perfect if

$$
P^{*}(\varphi \in A)=\mu^{*}(A) \quad \forall A \subseteq S
$$

Non-measurable sets and functions, envelopes and perfect random variable are investigated closely in [1].

The following definitions are due to Hoffmann-Jørgensen (see Chap. 7 in [5]).
Definition 2.1. Let $\left\{f_{n}\right\}$ be a sequence of $M$-valued functions on a probability space $(\Omega, \mathscr{F}, P)$. We say that $\left\{f_{n}\right\}$ converges weakly $(\sim \rightarrow)$ to $\gamma$, a Baire probability measure on $M$, if

$$
\begin{equation*}
\int g d \gamma=\lim _{n} \int^{*} g \circ f_{n} d P=\lim _{n} \int_{*} g \circ f_{n} d P \quad \forall g \in C(M) \tag{2.1.1}
\end{equation*}
$$

and we say that $\left\{f_{n}\right\}$ is eventually tight if

$$
\begin{equation*}
\forall \varepsilon>0 \quad \exists K \in \mathscr{K}(M): \limsup _{n} P^{*}\left(f_{n} \notin G\right)<\varepsilon \quad \forall G \supseteq K, \text { open. } \tag{2.1.2}
\end{equation*}
$$

Let us end this section with some results from [1]:
Proposition 2.2. Let $f$ be a $\overline{\mathbb{R}}$-valued function on $S$ and let $\varphi$ be an $S$-valued random variable defined on some probability space $(\Omega, \mathscr{F}, P)$ and with distribution $\mu$. We have

$$
\begin{gather*}
\mu^{*}(f>t)=\mu\left(f^{*}>t\right) \quad \forall t \in \mathbb{R}  \tag{2.2.1}\\
\int^{*} f d \mu=\int f^{*} d \mu \quad(\text { if they exist })  \tag{2.2.2}\\
f_{*} \circ \varphi \leqq(f \circ \varphi)_{*} \leqq(f \circ \varphi)^{*} \leqq f^{*} \circ \varphi \quad P \text {-a.s. }  \tag{2.2.3}\\
f_{*} \circ \varphi=(f \circ \varphi)_{*}, \quad(f \circ \varphi)^{*}=f^{* \circ} \circ \varphi \quad P \text {-a.s. if } \varphi \text { is P-perfect } \tag{2.2.4}
\end{gather*}
$$

where $f^{*}$ and $f_{*}$ are the $\mu$-envelopes of $f$ and $(f \circ \varphi)^{*}$ and $(f \circ \varphi)_{*}$ the P-envelopes of $f \circ \varphi$.

Proof. Look at I.(2.6.6), I.(2.3.1), II.(2.1.1) and Theorem II.2.2, all in [1].
Proposition 2.3. Let $f$ be a $\overline{\mathbb{R}}$-valued function on $S$ and let $\left(S^{\mathbb{N}}, \mathscr{S}^{\mathbb{N}}, \mu^{\mathbb{N}}\right)$ be the countable product of $(S, \mathscr{S}, \mu)$. We then have

$$
\begin{align*}
& \mu^{*}(\|f\|>t)=\left(\mu^{\mathbb{N}}\right)^{*}\left(\left\{s=\left(s_{j}\right) \in S^{\mathbb{N}} \mid\left\|f\left(s_{i}\right)\right\|>t\right\}\right) \quad \forall t \in \mathbb{R}, \forall i \in \mathbb{N}  \tag{2.3.1}\\
& \left(\mu^{\mathbb{N}}\right)^{*}\left(\max _{k \leqq n}\left\|\sum_{j=1}^{k} f\left(s_{j}\right)\right\|>3 t\right) \leqq 2\left(1+C_{n}(t)\right)\left(\mu^{\mathbb{N}}\right)^{*}\left(\left\|\sum_{j=1}^{n} f\left(s_{j}\right)\right\|>t\right) \\
& \forall t \in \mathbb{R}, \forall n \in \mathbb{N} \tag{2.3.2}
\end{align*}
$$

where $C_{n}(t)=\min _{i \leqq n}\left(\mu^{\mathbb{N}}\right)^{*}\left(\left\|\sum_{j=1}^{i} f\left(s_{j}\right)\right\| \leqq t\right)^{-1}$.
Proof. Since the projection from $S^{\mathbb{N}}$ into $S^{M}$ is $\mu^{\mathbb{N}}$-perfect for all $M \subseteq \mathbb{N}$ (see Proposition II.3.1 in [1]) (2.3.1) follows from Proposition 2.2 and since furthermore $b \rightarrow\left\|\sum b_{i}\right\|$ for $b \in B^{n}$ is even and subadditive (2.3.2) follows from Theorem III.1.2 in [1].

## 3. The Central Limit Theorem

In all of this section we let $(B,\|\cdot\|)$ be a Banach space, $(S, \mathscr{S}, \mu)$ a probability space and $\left(S^{\mathbb{N}}, \mathscr{S}^{\mathbb{N}}, \mu^{\mathbb{N}}\right)$ the countable product of $(S, \mathscr{S}, \mu)$.

Furthermore, we let $f$ be a $B$-valued function on ( $S, \mathscr{S}, \mu$ ) and we define the sequence of $B$-valued functions $\left\{U_{n}(f)\right\}_{n \in \mathbb{N}}$ on $\left(S^{\mathbb{N}}, \mathscr{S}^{\mathbb{N}}, \mu^{\mathbb{N}}\right)$ by

$$
U_{n}(f, s)=n^{-\frac{1}{2}} \sum_{j=1}^{n} f\left(s_{j}\right) \quad \forall s=\left(s_{j}\right)_{j \in \mathbb{N}} \in S^{\mathbb{N}} \quad \forall n \in \mathbb{N} .
$$

Definition 3.1. We say that $f$ satisfies the central limit theorem or $f \in C L T(B, \mu)$, if there exists a Radon measure $\gamma_{f}$ on $(B,\|\cdot\|)$ such that $U_{n}(f) \widetilde{\rightarrow} \gamma_{f}$.
Proposition 3.2. Let $(\Omega, \mathscr{F}, P)$ be a probability space, $\pi=\left(\pi_{n}\right)_{n \in \mathbb{N}}$ a sequence of independent, identically distributed $S$-valued random variables on $(\Omega, \mathscr{F}, P)$, with common distribution $\mu$, and let for all $n \in \mathbb{N}$ the $B$-valued function $W_{n}$ on $(\Omega, \mathscr{F}, P)$ be defined in the following way

$$
W_{n}(\omega)=U_{n}(f) \circ \pi(\omega)=U_{n}(f, \pi(\omega))=n^{-\frac{1}{2}} \sum_{j=1}^{n} f\left(\pi_{j}(\omega)\right) \quad \forall \omega \in \Omega
$$

then the following two statements hold:

$$
\begin{equation*}
f \in C L T(B, \mu) \Rightarrow W_{n} \widetilde{\rightarrow} \gamma_{f} \tag{3.2.1}
\end{equation*}
$$

$$
\left.\begin{array}{l}
W_{n} \widetilde{\rightarrow} \gamma_{f}, \quad \text { for some Radon measure }  \tag{3.2.2}\\
\gamma_{f} \text { on }(B,\|\cdot\|) \text {, and } \pi \text { is P-perfect }
\end{array}\right\} \Rightarrow f \in C L T(B, \mu)
$$

Proof. Let $g \in C(B)$ then by (2.2.3)

$$
\left(g \circ U_{n}(f)\right)_{*} \circ \pi \leqq\left(g \circ W_{n}\right)_{*} \leqq\left(g \circ W_{n}\right)^{*} \leqq\left(g \circ U_{n}(f)\right)^{*} \circ \pi \quad P-\text { a.s. }
$$

and if $\pi$ is $P$-perfect we have by (2.2.4)

$$
\left(g \circ U_{n}(f)\right)_{*} \circ \pi=\left(g \circ W_{n}\right)_{*}, \quad\left(g \circ W_{n}\right)^{*}=\left(g \circ U_{n}(f)\right)^{*} \circ \pi, \quad P \text {-a.s. }
$$

so using (2.1.1) and (2.2.1) the proof is completed.
Before investigating $C L T(B, \mu)$ we need the following nice results:
Proposition 3.3. Let $g$ be a real-valued function on $(S, \mathscr{S}, \mu)$. If

$$
\lim _{n}\left(\mu^{\mathbb{N}}\right)^{*}\left(\left\{\in S^{\mathbb{N}}\left|n^{-1} \sum_{i=1}^{n} g\left(s_{i}\right)-a\right|>\varepsilon\right)=0 \quad \forall \varepsilon>0\right.
$$

then $g$ is $\mu$-measurable.
Proof. See Example II.3.2 in [1].
Lemma 3.4. Let $g$ be a real-valued random variable on $(S, \mathscr{S}, \mu)$ satisfying

$$
\begin{equation*}
\forall \xi>0 \quad \exists T:\left(\mu^{\mathbb{N}}\right)\left(\left|U_{n}(g)\right|>T\right)<\xi \quad \forall n \in \mathbb{N} \tag{3.4.1}
\end{equation*}
$$

then $\int_{\mathrm{S}} g^{2} d \mu<\infty$.
Proof. By a standard symmetrization argument we can assume that $g$ is symmetric. Let $\varphi$ resp. $\varphi_{n}$ be the characteristic function of $g$ resp. $U_{n}(g)$, then $\varphi$ is a real-valued positive function and $\varphi_{n}(t)=\varphi\left(t \cdot n^{-\frac{1}{2}}\right)^{n}$ for all $t \in \mathbb{R}$.

Let $\xi=1 / 12$, choose $T$ in (3.4.1) and choose $\delta$ so that

$$
\left|\left(1-e^{i t}\right)\right|<\xi \quad \forall t:|t| \leqq \delta
$$

then since

$$
\begin{gather*}
1-\varphi_{n}(t) \leqq \int_{S^{\mathbb{N}}}\left|1-e^{i t U_{n}(8)}\right| d \mu^{\mathbb{N}} \leqq 2 \xi+\int_{\left\{\left|U_{n}(\xi)\right| \leqq T\right\}}\left|1-e^{i t U_{n}(g)}\right| d \mu^{\mathbb{N}} \\
0 \leqq 1-\varphi\left(t n^{-\frac{1}{2}}\right)^{n} \leqq \frac{1}{4} \quad \forall|t| \leqq \delta / T, \forall n \in \mathbb{N} . \tag{3.4.2}
\end{gather*}
$$

For all $z \in[0,1]$ satisfying $\left(1-z^{n}\right) \leqq \frac{1}{4}$ we have that

$$
\begin{equation*}
\left(1-z^{n}\right)=(1-z)\left(1+z+\ldots+z^{n-1}\right) \geqq n 3 / 4(1-z) . \tag{3.4.3}
\end{equation*}
$$

Now let $t_{0} \in[-\delta / T, \delta / T]$ be fixed then using (3.4.3) and (3.4.2) we get

$$
\begin{aligned}
\liminf _{t \rightarrow 0}(1-\varphi(t)) \cdot t^{-2} & \leqq \liminf _{n \rightarrow \infty} n\left(1-\varphi\left(t_{0} n^{-\frac{1}{2}}\right) t_{0}^{-2}\right. \\
& \leqq \liminf _{n \rightarrow \infty}\left(1-\varphi\left(t_{0} n^{-\frac{1}{2}}\right)^{n}\right) t_{0}^{-2} \\
& \leqq\left(3 t_{0}^{2}\right)^{-1}
\end{aligned}
$$

so by Theorem 2.3.1 in [6] the proof is completed.

Lemma 3.5. If $\left\{U_{n}(f)\right\}$ is eventually tight then $f \in L_{w}^{2}(B, \mu)$.
Proof. By (2.3.1)

$$
\begin{equation*}
\mu^{*}(\|f\|>t) \leqq\left(\mu^{\mathbb{N}}\right)^{*}\left(\left\|U_{n}(f)\right\|>t / n\right)+\left(\mu^{\mathbb{N}}\right)^{*}\left(\left\|U_{n-1}(f)\right\|>t / n-1\right) \tag{3.5.1}
\end{equation*}
$$

for $\forall n \geqq 1$ and if $\left\{U_{n}(f)\right\}$ is eventually tight

$$
\begin{equation*}
\forall \varepsilon>0 \quad \exists n_{0} \geqq 1 \quad \exists T:\left(\mu^{\mathbb{N}}\right)^{*}\left(\left\|U_{n}(f)\right\|>T\right)<\varepsilon \quad \forall n \geqq n_{0} \tag{3.5.2}
\end{equation*}
$$

and if we use (3.5.1) and (3.5.2) we get

$$
\begin{gather*}
\forall \varepsilon>0 \quad \exists T:\left(\mu^{\mathbb{N}}\right)^{*}\left(\left\|U_{n}(f)\right\|>T\right)<\varepsilon \quad \forall n \geqq 1  \tag{3.5.3}\\
\forall x^{\prime} \in B^{\prime} \quad \forall \xi>0 \quad \exists T_{x} \in \mathbb{R}:\left(\mu^{\mathbb{N}}\right)^{*}\left(\left|U_{n}\left(x^{\prime}(f)\right)\right|>T_{x^{\prime}}\right)<\xi \quad \forall n \geqq 1  \tag{3.5.4}\\
\lim _{n}\left(\mu^{\mathbb{N}}\right)^{*}\left(\left\{\left.s \in S^{\mathbb{N}}| | n^{-\frac{1}{2}} U_{n}\left(x^{\prime}(f)\right) \right\rvert\,>\varepsilon\right\}\right)=0 \quad \forall \varepsilon>0 . \tag{3.5.5}
\end{gather*}
$$

By (3.5.5) and Proposition 3.3 we have that $x^{\prime}(f)$ is $\mu$-measurable, and by (3.5.4) and Lemma 3.4 that $\int_{S} x^{\prime}(f)^{2} d \mu$ is finite i.e. $f \in L_{w}^{2}(B, \mu)$.

We can now prove the following important result:
Theorem 3.6. The following two statements are equivalent:

$$
\begin{gather*}
f \in C L T(B, \mu)  \tag{3.6.1}\\
\left\{U_{n}(f)\right\} \quad \text { is eventually tight. } \tag{3.6.2}
\end{gather*}
$$

Proof.
(3.6.1) $\Rightarrow$ (3.6.2): Proposition 7.17 in [5].
(3.6.2) $\Rightarrow$ (3.6.1): Let $\psi=\left\{e^{i x^{\prime}} \mid x^{\prime} \in B^{\prime}\right\}$, then $\psi$ is a selfadjoint semigroup of bounded, continuous and complex-valued functions on $B$ (see e.g. Definition 1.10 in [5]). By Lemma $3.5 f \in L_{w}^{2}(B, \mu)$ so $x^{\prime}(f)$ satisfies the real central limit theorem i.e.

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{S}^{\mathbb{N}}} e^{i x^{\prime}\left(U_{n}(f)\right)} d \mu^{\mathbb{N}} \quad \text { exists } \forall x^{\prime} \in B^{\prime}
$$

Now let $b_{1}, b_{2} \in B$ so that $b_{1} \neq b_{2}$, then by Hahn-Banach theorem (see e.g. [3] Sect. II.3) we can find $x^{\prime} \in B^{\prime}$ such that $x^{\prime}\left(b_{1}\right) \neq x^{\prime}\left(b_{2}\right)$. Furthermore it is possible to find $t$ so that $e^{i t x^{\prime}\left(b_{1}\right)} \neq e^{i t x^{\prime}\left(b_{2}\right)}$ (take $t=1$ or $\sqrt{2}$ ). Since $t x^{\prime} \in B^{\prime}$ we find that $\psi$ separates points in $B$, so by Theorem 7.11 (case 3, Remark (1)) in [5] $f \in C L T(B, \mu)$.

We will use the equivalence shown in Theorem 3.6 to find necessary and/or sufficient conditions for $C L T(B, \mu)$.

Proposition 3.7. If $f \in C L T(B, \mu)$ then

$$
\begin{array}{ccc}
\forall \xi>0 \quad \exists T \in \mathbb{R}:\left(\mu^{\mathbb{N}}\right) *\left(\left\|U_{n}(f)\right\|>T\right)<\xi & \forall n \geqq 1 \\
\gamma_{f} \text { is a centered gaussian measure } & \\
\int_{S} x^{\prime}(f) d \mu=0, \quad \int_{S} x^{\prime}(f) y^{\prime}(f) d \mu=\int_{B} x^{\prime} y^{\prime} d \gamma_{f}<\infty \quad \forall x^{\prime}, y^{\prime} \in B^{\prime} \tag{3.7.3}
\end{array}
$$

$$
\begin{gather*}
\exists k \in \mathbb{R}:\left(\mu^{\mathbb{N}}\right)^{*}\left(\left\|U_{n}(f)\right\|>t\right) \leqq k / t^{2} \quad \forall t \geqq 0 \quad \forall n \geqq 1  \tag{3.7.4}\\
\int_{S}^{*}\|f\|^{p} d \mu<\infty, \quad \sup _{n} \int_{S^{\mathbb{N}}}^{*}\left\|U_{n}(f)\right\|^{p} d \mu^{\mathbb{N}}<\infty \quad \forall p<2  \tag{3.7.5}\\
\left(\mu^{\mathbb{N}}\right)_{*}\left(n^{-\frac{1}{2}}\left\|U_{n}(f)\right\| \xrightarrow[n \rightarrow \infty]{ } 0\right)=1 . \tag{3.7.6}
\end{gather*}
$$

Proof. From Lemma 3.5 and Theorem 3.6 follow (3.7.1)-(3.7.3) and (3.7.6) is a consequence of a theorem by M. Talagrand in [7]. Furthermore, (3.7.5) follows from (3.7.4). Now choose $T$ in (3.7.1) with $\varepsilon=1 / 9$ and let

$$
C_{n}(t)^{-1}=\inf _{j \leqq n} \mu^{\mathbb{N}}\left(\left\|U_{j}(f)\right\|^{*} \leqq t / \sqrt{j}\right),
$$

then by (2.2.1) and (2.3.2)

$$
\begin{aligned}
\mu\left(\|f\|^{*} \leqq t\right)^{n} & =1-\mu^{\mathbb{N}}\left(\max _{k \leqq n}\left\|f\left(s_{k}\right)\right\|^{*}>t\right) \\
& \geqq 1-2 \mu^{\mathbb{N}}\left(\max _{k \leqq n}\left\|\sum_{j=1}^{k} f\left(s_{j}\right)\right\|^{*}>t / 2\right) \\
& \geqq 1-2 \mu^{\mathbb{N}}\left(\left\|U_{n}(f)\right\|^{*}>t / 6 \sqrt{n}\right)\left(1+C_{n}(t / 6)\right) \\
& \geqq 1-2 \cdot 1 / 9 \cdot(1+8 / 9) \\
& \geqq \frac{1}{2} \quad \forall t \in[6 T \sqrt{n}, 6 T \sqrt{n+1}) \quad \forall n \geqq 1
\end{aligned}
$$

i.e. by (2.2.1)

$$
\begin{equation*}
\mu\left(\|f\|^{*}>t\right) \leqq 1-2^{-1 / n} \quad 6 \sqrt{n} T \leqq t<6 \sqrt{n+1} T \quad \forall n \geqq 0 \tag{3.7.7}
\end{equation*}
$$

so we can copy the proof of Lemma 4.9 in [4] (p.94) where we use (3.7.7) instead of symmetrization.
Theorem 3.8. If $f \in C L T(B, \mu)$, $\psi$ is a $\mathbb{R}_{+}$-valued function on $\mathbb{R}_{+}$and $\varphi$ is a $\mathbb{R}$ valued function on $B$ such that

$$
\begin{align*}
& \psi \text { is increasing, continuously differentiable }  \tag{3.8.1}\\
& \qquad \psi(0)=0, \quad \int_{0}^{\infty} \psi^{\prime}(t) / t^{2} d t<\infty  \tag{3.8.2}\\
& \varphi \text { is continuous } \gamma_{f} \text {-a.s. }  \tag{3.8.3}\\
& \exists k \in \mathbb{R} \quad \forall x \in B:|\varphi(x)| \leqq k+\psi(\|x\|) \tag{3.8.4}
\end{align*}
$$

then

$$
\begin{align*}
\lim _{n} \int_{S^{\mathbb{N}}}^{*} \varphi\left(U_{n}(f)\right) d \mu^{\mathbb{N}} & =\lim _{n} \int_{* S^{\mathbb{N}}} \varphi\left(U_{n}(f)\right) d \mu^{\mathbb{N}} \\
& =\int_{B} \varphi d \gamma_{f}<\infty . \tag{3.8.5}
\end{align*}
$$

Proof. By (3.8.1) there exists a $\mathbb{R}_{+}$-valued, continuous and increasing function $\tilde{\psi}$ on $\mathbb{R}_{+}$so that

$$
\tilde{\psi}(0)=1, \quad \tilde{\psi}(t) \xrightarrow[t \rightarrow \infty]{ } \infty, \quad \int_{0}^{\infty} \psi^{\prime}(t) \tilde{\psi}(t) / t^{2} d t<\infty
$$

Let $\psi_{0}$ be defined by $\psi_{0}^{\prime}(t)=\psi^{\prime}(t) \tilde{\psi}(t)+\sqrt{t}$ for all $t \in \mathbb{R}_{+}$, with the condition $\psi_{0}(0)=1$, then

$$
\psi_{0}(t) \xrightarrow[t \rightarrow \infty]{ } \infty, \quad \lim _{t \rightarrow \infty} \frac{\psi(t)}{\psi_{0}(t)}=\lim \frac{\psi^{\prime}(t)}{\psi_{0}^{\prime}(t)}=0
$$

i.e.

$$
\forall \xi>0 \quad \exists t_{0}: \psi(t) \leqq \psi\left(t_{0}\right)+\xi \psi_{0}(t) \quad \forall t \in \mathbb{R}_{+}
$$

i.e.

$$
\begin{equation*}
\psi_{0} \text { satisfies (3.8.1) and (3.8.2) } \tag{3.8.6}
\end{equation*}
$$

$$
\begin{equation*}
\forall \xi>0 \quad \exists K_{1} \quad \forall x \in B:|\varphi(x)| \leqq K_{1}+\xi \psi_{0}(\|x\|) . \tag{3.8.7}
\end{equation*}
$$

By Example II.1.5 and Theorem II.1.2 both in [1] we have that $\psi_{0}\left(\left\|U_{n}(f)\right\|\right)^{*}$ $=\psi_{0}\left(\left\|U_{n}(f)\right\|^{*}\right) \mu^{\mathbb{N}}$-a.s. so if we use (2.2.2), (2.2.1) and (3.7.4) we get

$$
\begin{align*}
\exists \tilde{k} \in \mathbb{R}: \int_{s^{\mathbb{N}}}^{*} \psi_{0}\left(\left\|U_{n}(f)\right\|\right) d \mu^{\mathbb{N}} & =\int_{0}^{\infty} \psi_{0}^{\prime}(t) \mu^{\mathbb{N}}\left(\left\|U_{n}(f)\right\|^{*}>t\right) d t \\
& \leqq \tilde{k} \quad \forall n \in \mathbb{N} . \tag{3.8.8}
\end{align*}
$$

Since $\gamma_{f}$ is gaussian there exists $c \in \mathbb{R}$, so that $\gamma_{f}\{x \in B \mid\|x\|>t\} \leqq c / t^{2}$ for all $t \in \mathbb{R}_{+}$, so using (3.8.7), (3.8.6) and (3.8.3) we get

$$
\begin{equation*}
\int_{B} \psi_{0}(\|x\|) \gamma_{f} d x<\infty, \quad \int_{B} \varphi d \gamma_{f}<\infty \tag{3.8.9}
\end{equation*}
$$

i.e. (3.8.7)-(3.8.9) prove (3.8.5) by (7.8.12) in [5].

Remark. Theorem 3.8 tells us that the convergence (2.1.1) can be extended to some unbounded functions. Remark that $\varphi$ given by $\varphi(x)=\psi(\|x\|)$ for $x \in B$ satisfies (3.8.3) and (3.8.4) and that $\psi(t)=t^{p}$ satisfies (3.8.1) and (3.8.2) for $p<2$, i.e. (3.8.5) holds for $\left\|U_{n}(f)\right\|^{p}$ for $p<2$.

Proposition 3.9. $C L T(B, \mu)$ is a linear space.
Proof. Let $f_{1}, f_{2} \in C L T(B, \mu), a \in \mathbb{R}$ and $\xi>0$, then by Theorem 3.6 and (2.1.2)

$$
\begin{array}{ll}
\forall i=1,2 & \exists K_{i} \in \mathscr{K}(B): \lim _{n} \sup \left(\mu^{\mathrm{N}}\right) *\left(U_{n}\left(f_{i}\right) \notin G\right)<\xi \\
\forall G \supseteq K_{i}, & \text { open. } \tag{3.9.1}
\end{array}
$$

Since $K_{1} / a$ is compact and $G \supseteq K_{1}$ iff $G / a \supseteq K_{1} / a$, we have that $\left\{U_{n}\left(a f_{1}\right)\right\}$ is eventually tight, i.e. by Theorem 3.6, that $a f_{1} \in C L T(B, \mu)$.

Let $G \supseteq K_{1}+K_{2}$, then using that $K_{1}, K_{2}$ and $K_{1}+K_{2}$ are compact we have for all $a \in K_{1}$ and all $b \in K_{2}$

$$
\exists r(a, b)>0: x+y \in G \quad \forall x \in B(a, r(a, b)), \quad \forall y \in B(b, r(a, b))
$$

where $B(x, r)=\{y \in B \mid\|x-y\|<r\}, r \in \mathbb{R}_{+}$. Using the compactness we get

$$
\forall b \in K_{2} \quad \exists n_{1}(b) \in \mathbb{N} \quad \exists\left\{a_{j}(b)\right\}_{j=1}^{n_{1}(b)} \subseteq K_{1}: K_{1} \subseteq \bigcup_{j=1}^{n_{1}(b)} B\left(a_{j}(b), r\left(a_{j}(b), b\right)\right) .
$$

Put $r(b)=\inf \left\{r\left(a_{j}(b), b\right) \mid 1 \leqq j \leqq n_{1}(b)\right\}$, then $r(b)>0$ and by compactness

$$
\exists n_{2} \in \mathbb{N}, \quad\left\{b_{i} i_{i=1}^{n_{2}} \subseteq K_{2}: K_{2} \subseteq \bigcup_{i=1}^{n_{2}} B\left(b_{i}, r\left(b_{i}\right)\right)\right.
$$

Let $G_{1}=\bigcap_{i=1}^{n_{2}} \bigcup_{j=1}^{n_{1}\left(b_{j}\right)} B\left(a_{j}\left(b_{i}\right), r\left(a_{j}\left(b_{i}\right), b_{i}\right)\right)$ and $G_{2}=\bigcup_{i=1}^{n_{2}} B\left(b_{i}, r\left(b_{i}\right)\right)$ then $G_{1} \supseteq K_{1}$ and $G_{2} \supseteq K_{2}$, and if $x \in G_{1}, y \in G_{2}$ then

$$
\exists b \in\left\{b_{i}\right\}_{i=1}^{n_{2}}, \quad \exists a \in\left\{a_{j}(b)\right\}_{j=1}^{n_{1}(b)}: y \in B(b, r(b)), x \in B(a, r(a, b)),
$$

and since $r(b) \leqq r(a, b)$ we have that $x+y \in G$. Thus $G_{1} \cup G_{2} \subseteq G$ so by 3.9.1 and subadditivity of the outer measure we get

$$
\begin{aligned}
\lim _{n} \sup ^{\left(\mu^{\mathbb{N}}\right)^{*}\left(U_{n}(f+g) \notin G\right)} & \leqq \limsup _{n}\left(\mu^{\mathbb{N}}\right)^{*}\left(U_{n}(f) \notin G_{1} \text { or } U_{n}(f) \notin G_{2}\right) \\
& \leqq 2 \xi
\end{aligned}
$$

i.e. $\left\{U_{n}(f+g)\right\}$ is eventually tight so by Theorem 3.6 the proof is completed.

The next two lemmas and two theorems show that $f$ belongs to $C L T(B, \mu)$ if and only if $U_{n}(f)$ can, in limit, be approximated by finite dimensional, measurable functions, which can be taken as continuous projections.
Lemma 3.10. If $f \in C L T(B, \mu)$ and $h$ is a $B$-valued, linear, continuous function on $B$ so that $\operatorname{dim} h(B)<\infty$, then

$$
\begin{gather*}
h \circ f \in C L T(B, \mu), \quad g=(f-h \circ f) \in C L T(B, \mu)  \tag{3.10.1}\\
\gamma_{g}=\mathscr{L}(q) \tag{3.10.2}
\end{gather*}
$$

where $q: B \rightarrow B$ is given by $q(x)=x-h(x)$ for $x \in B$ and $\mathscr{L}(q)$ is the distribution of $q$ under $\gamma_{f}$.
Proof. For all $x^{\prime} \in B^{\prime}$ we have that $x^{\prime} \circ h \in B^{\prime}$ and $\operatorname{since} \operatorname{dim}(h \circ f(S))<\infty$ we have that $h \circ f \in C L T(B, \mu)$ and then by Proposition $3.9 g \in C L T(B, \mu)$. Furthermore $x^{\prime} \circ q \in B^{\prime}$ so $q$ is a gaussian $B$-valued random variable and by (3.7.3) we have that

$$
\begin{aligned}
\sigma_{q}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) & =\int_{B}\left(x_{1}^{\prime} \circ q\right)\left(x_{2}^{\prime} \circ q\right) d \gamma_{f}=\int_{S}\left(x_{1}^{\prime} \circ q(f)\right)\left(x_{2}^{\prime} \circ q(f)\right) d \mu \\
& =\int_{S}\left(x_{1}^{\prime}(f-h \circ f)\right)\left(x_{2}^{\prime}(f-h \circ f)\right) d \mu \\
& =\int_{B} x_{1}^{\prime} x_{2}^{\prime} d \gamma_{g}, \quad \forall x_{1}^{\prime}, x_{2}^{\prime} \in B^{\prime}
\end{aligned}
$$

i.e. $\mathscr{L}(q)$ and $\gamma_{g}$ have the same covariance function and therefore equal.

Lemma 3.11. Let $\gamma$ be a gaussian Radon measure on a Banach space ( $B,\|\cdot\|$ ) with mean zero and covariance-function $\sigma$, then there exists a sequence $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ of finite dimensional continuous projections on $B$ such that

$$
\begin{gather*}
h_{n}: B \rightarrow B \quad \text { and } \quad h_{n+1} \circ h_{n}=h_{n} \quad \forall n \in \mathbb{N}  \tag{3.11.1}\\
h_{n}(x) \xrightarrow[n \rightarrow \infty]{ } x \quad \gamma \text {-a.a. } \quad x \in B . \tag{3.11.2}
\end{gather*}
$$

Proof. Since $\gamma$ is Radon we have that $L^{2}(\gamma)$ is a separable Hilbert space and $B^{\prime}$ is a linear subspace of $L^{2}(\gamma)$. Let $\mathscr{H}^{\prime}=c l_{L_{1, \ldots}^{2},}\left(B^{\prime}\right)$, then $\mathscr{H}^{\prime}$ is separable and therefore there exist, an orthonormal base $\left\{l_{n}^{\prime}\right\}$ for $\mathscr{H}^{\prime}$ so that $\left\{l_{n}^{\prime}\right\} \subseteq B^{\prime}$. Let $l_{n}=\int_{B} l_{n}^{\prime}(x) x d \gamma$ for all $n \in \mathbb{N}$ then since $l_{n}^{\prime}(x) x$ is Bochner-integrable we have $\left\{l_{n}\right\}$, and

$$
l_{j}^{\prime}\left(l_{i}\right)=\int_{B} l_{i}^{\prime}(x) l_{j}^{\prime}(x) d \gamma= \begin{cases}0 & i \neq j  \tag{3.11.3}\\ 1 & i=j\end{cases}
$$

Now for all $n \in \mathbb{N}$ define $h_{n}$ by

$$
h_{n}(x)=\sum_{j=1}^{n} l_{j}^{\prime}(x) l_{j} \quad \forall x \in B
$$

then $h_{n}$ is a linear, continuous function, $\operatorname{dim} h_{n}(B)<\infty$ and

$$
\begin{align*}
h_{n}\left(h_{n}(x)\right) & =\sum_{j=1}^{n} l_{j}^{\prime}\left(\sum_{i=1}^{n} l_{i}^{\prime}(x) l_{i}\right) l_{j} \\
& =\sum_{j=1}^{n} l_{j}^{\prime}(x) l_{j} \\
& =h_{n}(x)  \tag{3.11.4}\\
h_{n+1}\left(h_{n}(x)\right) & =\sum_{j=1}^{n+1} l_{j}^{\prime}\left(\sum_{i=1}^{n} l_{i}^{\prime}(x) l_{i}\right) l_{j} \\
& =\sum_{j=1}^{n} l_{j}^{\prime}(x) l_{j} \\
& =h_{n}(x) \tag{3.11.5}
\end{align*}
$$

i.e. (3.11.4) shows that $h_{n}$ is a projection and (3.11.5) shows (3.11.1). Now if $x^{\prime}$ $=\sum_{j \in \mathbb{N}} a_{j} l_{j}^{\prime} \in B^{\prime}$ then
i.e.

$$
x^{\prime} \circ h_{n}=\sum_{j \in \mathbb{N}} a_{j} l_{j}^{\prime}\left(\sum_{i=1}^{n} l_{i}^{\prime}(x) l_{i}\right)=\sum_{j=1}^{n} a_{j} l_{j}^{\prime} \quad \forall n \in \mathbb{N}
$$

$$
\begin{equation*}
x^{\prime} \circ h_{n} \rightarrow x^{\prime} \text { in } L^{2}(\gamma) \quad \forall x^{\prime} \in B^{\prime} \tag{3.11.6}
\end{equation*}
$$

which by Theorem 5.3 in [4] (p. 99) (3.11.6) implies that

$$
\begin{equation*}
x^{\prime} \circ h_{n} \xrightarrow[n \rightarrow \infty]{ } x^{\prime} \quad \gamma \text {-a.s. } \quad \forall x^{\prime} \in B^{\prime} . \tag{3.11.7}
\end{equation*}
$$

Using that $\left\{l_{n}^{\prime}\right\}$ are independent $N(0,1)$ random variables we have that $x^{\prime}$ and $h_{n}$ are gaussian so by (3.11.7) and Theorem 5.3 case (1) in [4] (p. 99)

$$
\begin{equation*}
\exists h: B \rightarrow B: h_{n} \xrightarrow[n \rightarrow \infty]{ } h \quad \gamma \text {-a.s. } \tag{3.11.8}
\end{equation*}
$$

Now there exists a separable, linear subspace $B_{0}$ of $B$ so that $h \in B_{0} \gamma$-a.s. and $\gamma\left(B_{0}\right)=1$. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be dense in $B_{0}$, then by Corollary 2.III. 14 in [3], there
exists $\left\{x_{n}^{\prime}\right\}_{n \in \mathbb{N}} \subseteq B_{0}^{\prime}$ so that for all $n \in \mathbb{N}$ we have $x_{n}^{\prime}\left(x_{n}\right)=\left\|x_{n}\right\|$ and $\left\|x_{n}^{\prime}\right\|=1$, i.e.

$$
\forall x \in B_{0} \backslash\{0\} \quad \exists n \in \mathbb{N}:\left\|x-x_{n}\right\|<\frac{1}{4}\|x\|
$$

and

$$
\begin{aligned}
\forall x \in B_{0} \backslash\{0\} \quad \exists n \in \mathbb{N}: x_{n}^{\prime}(x) & =x_{n}^{\prime}\left(x_{n}\right)+x_{n}^{\prime}\left(x-x_{n}\right) \\
& \geqq\left\|x_{n}\right\|-\left\|x-x_{n}\right\| \\
& \geqq \frac{1}{2}\|x\|
\end{aligned}
$$

i.e. we have

$$
\begin{equation*}
\exists\left\{x_{n}^{\prime}\right\} \subseteq B^{\prime} \quad \forall x \in B_{0} \backslash\{0\} \quad \exists n \in \mathbb{N}: x_{n}^{\prime}(x)>0 \tag{3.11.9}
\end{equation*}
$$

and by (3.11.7) and (3.11.8)

$$
\begin{equation*}
x_{n}^{\prime}(h(x)-x)=0 \quad \forall n \in \mathbb{N} \quad \mu \text {-a.a. } \quad x \in B \tag{3.11.10}
\end{equation*}
$$

Now using the properties of $B_{0}$, (3.11.9) and (3.11.10) we find that $h(x)=x$ for $\mu$-almost all $x \in B$.
Theorem 3.12. If $f \in C L T(B, \mu)$ then there exists a sequence $\left\{h_{k}\right\}$ of finite dimensional, continuous projections on $B$ so that

$$
\begin{align*}
& h_{k}(x) \rightarrow x \quad \gamma_{f^{-}} \text {-a.s., } \quad h_{k+1}\left(h_{k}\right)=h_{k} \quad \forall k \in \mathbb{N}  \tag{3.12.1}\\
& \limsup _{n} \int_{S^{\mathbb{N}}}^{*} \varphi\left(\left\|U_{n}\left(f-h_{k} \circ f\right)\right\|\right) d \mu^{\mathbb{N}} \xrightarrow[k \rightarrow \infty]{\longrightarrow} 0 \tag{3.12.2}
\end{align*}
$$

whenever $\varphi$ is a $\mathbb{R}_{+}$-valued, increasing, continuously differentiable function on $\mathbb{R}_{+}$satisfying

$$
\begin{equation*}
\varphi(0)=0, \quad \int_{0}^{\infty} \varphi^{\prime}(t) / t^{2} d t<\infty \tag{3.12.3}
\end{equation*}
$$

Proof. Using Lemma 3.11 on $\gamma_{f}$, there exists a sequence $\left\{h_{k}\right\}_{k \in \mathbb{N}}$ of finite dimensional, continuous projections on $B$ so that (3.12.1) is satisfied, and since $\varphi$ is continuous and $\varphi(0)=0$ we have by (3.11.2)

$$
\begin{equation*}
\varphi\left(\left\|x-h_{k}(x)\right\|\right) \rightarrow 0 \quad \gamma_{f} \text {-a.a. } \quad x \in B \tag{3.12.4}
\end{equation*}
$$

From Theorem 3.8 and Lemma 3.10 we get

$$
\begin{equation*}
\forall k \in \mathbb{N}: \lim _{n} \int_{s^{\mathbb{N}}}^{*} \varphi\left(\left\|U_{n}\left(f-h_{k} \circ f\right)\right\|\right) d \mu^{\mathbb{N}}=\int_{B} \varphi\left(\left\|x-h_{k}(x)\right\|\right) d \gamma_{f} \tag{3.12.5}
\end{equation*}
$$

Now let $q(x)=\sup \left\|x-h_{k}(x)\right\|$, then $q$ is a seminorm and by (3.11.2) and Theorem 3.4 in ([4], p. 79) we have that $\int_{B} q^{2} d \gamma_{f}$ is finite. Since $\varphi$ is increasing and satisfies (3.12.3) we get that there exist $K \in \mathbb{R}$
i.e.

$$
\varphi(t) \leqq \varphi(1)+t^{2} \int_{0}^{\infty} \frac{\varphi^{\prime}(s)}{s^{2}} d s \leqq K\left(1+t^{2}\right) \quad \forall t \in \mathbb{R}_{+}
$$

$$
\varphi\left(\left\|x-h_{k}(x)\right\|\right) \leqq K\left(1+\left\|x-h_{k}(x)\right\|^{2}\right) \leqq K\left(1+q^{2}(x)\right)
$$

so (3.12.2) follows from (3.12.4), (3.12.5) and the Lebesgue dominated convergence Theorem.

Theorem 3.13. If for all $\varepsilon>0$ there exists $g \in C L T(B, \mu)$ so that

$$
\limsup _{n}\left|\int_{S^{\mathbb{N}}}^{*} \varphi\left(U_{n}(f)\right) d \mu^{\mathbb{N}}-\int_{S^{\mathbb{N}}}^{*} \varphi\left(U_{n}(g)\right) d \mu^{\mathbb{N}}\right|<\varepsilon
$$

whenever $\varphi$ is a real valued function on $B$ satisfying

$$
|\varphi(b)| \leqq 1, \quad|\varphi(a)-\varphi(b)| \leqq\|a-b\| \quad \forall a, b \in B
$$

then $f \in C L T(B, \mu)$.
Proof. Follows from Corollary 8.11 in [5].
Example 3.14. Assume that $f$ satisfies the conditions in Theorem 1.1 in [2], i.e. for all $m \in \mathbb{N}$ exists a $B$-valued function $\Lambda_{m}$ on $B$ so that

$$
\begin{gather*}
\Lambda_{m} \circ f \quad \text { is measurable, } \quad \operatorname{dim} \Lambda_{m}(B)<\infty  \tag{3.14.1}\\
\int_{S} \Lambda_{m} \circ f d \mu=0, \quad \int_{S}\left\|\Lambda_{m} \circ f\right\|^{2} d \mu<\infty  \tag{3.14.2}\\
\exists n_{0}(m) \quad \forall n \geqq n_{0}:\left(\mu^{\mathbb{N}}\right)^{*}\left(\left\|U_{n}\left(f-\Lambda_{m} \circ f\right)\right\|>1 / m\right) \leqq 1 / m . \tag{3.14.3}
\end{gather*}
$$

Now (3.14.1) and (3.14.2) imply that $\Lambda_{m} \circ f \in C L T(B, \mu)$ and if $\varphi$ is a function satisfying the conditions in Theorem 3.13 then

$$
\begin{aligned}
\mid \int_{S^{\mathbb{N}}}^{*} \varphi & \varphi\left(U_{n}(f)\right) d \mu^{\mathbb{N}}-\int_{S^{\mathbb{N}}} \varphi\left(U_{n}\left(A_{m} \circ f\right)\right) d \mu^{\mathbb{N}} \mid \\
& \leqq\left|\int_{S^{\mathbb{N}}}^{*} \varphi\left(U_{n}\left(f-\Lambda_{m} \circ f\right)\right) d \mu^{\mathbb{N}}\right| \\
& \leqq \int_{S^{\mathbb{N}}}^{*} 1 \wedge\left\|U_{n}\left(f-\Lambda_{m} \circ f\right)\right\| d \mu^{\mathbb{N}} \\
& \leqq 1 / m+\left(\mu^{\mathbb{N}}\right)^{*}\left(\left\|U_{n}\left(f-\Lambda_{m} \circ f\right)\right\|>1 / m\right)
\end{aligned}
$$

i.e. $f \in C L T(B, \mu)$ by Theorem 3.13. Furthermore Theorem 3.12 tells us that $A_{m}$ can be taken as a continuous projection, i.e. Theorem 3.12 and Theorem 3.13 gives us necessary and sufficient conditions for $f \in C L T(B, \mu)$.

## References

1. Andersen, N.T.: The calculus of non-measurable functions and sets. Math. Inst., Aarhus Univ. various publication series no. 361985
2. Dudley, R.M., Philipp, W.: Invariance principles for sums of Banach space valued random elements and empirical processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 62, 509-552 (1983)
3. Dunford, N., Schwartz, J.T.: Linear Operators, Vol. 1. New York: Interscience 1958
4. Hoffmann-Jørgensen, J.: Probability in $B$-spaces. Ecole d'ete Probabilités de Saint Flour VI 1976. Lecture Notes in Statistics 598. Berlin, Heidelberg, New York: Springer 1977
5. Hoffmann-Jørgensen, J.: Stochastic processes on polish spaces. (To appear)
6. Lucács, E.: Characteristic functions. (2nd ed.) London: C. Griffin 1970
7. Talagrand, M.: The Glivenko-Cantelli problem. Preprint 1984, Ohio State Univ.
