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Summary. For the problem of estimating the mean of independent, identi- 
cally distributed random variables, with loss equal to a linear combination 
of squared error and sample size, certain sequential procedures have been 
shown to be asymptotically optimal when compared with the best fixed 
sample size rule. In this paper it is shown that these procedures are asymp- 
totically suboptimal when compared with a closely related optimal stop- 
ping rule. 

1. Introduction 

Let X 1 , X  2 . . . .  be independent and identically distributed (i.i.d.) with finite 
mean p and variance 0"2~(0, cx3). Suppose one wishes to estimate # by the sam- 

rl 

ple mean X. = n-1 ~ Xi ' based on a sample of size n, with the following loss 
1 

structure. If one stops with n observations and estimates # by X., the loss 
incurred is 

L . = A ( X . - # ) 2 + n ,  A>0.  (1.1) 

The object is to minimize the risk in estimation by choosing an appropriate 
sample size. 

If o- is known, and a fixed sample size n is used, the risk 

R . = E ( L . ) = A a  2 n -  1 + n  (1.2) 

is minimized by the optimal fixed sample size 

n o "~ A 1/2 r (1.3) 

(that is, [A1/ea] < n  o < [A1/2a~ + 1), with corresponding minimum risk 

R.o -~ 2A 1/2 0". (1.4) 

* A preliminary version of this paper was presented at the International Meeting on Sample 
Survey Analysis and on Sequential Analysis, Jerusalem, Israel, June 1982 
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However, if ~ is unknown the optimal fixed sample size n o cannot be used, and 
there is no fixed sample size procedure that will achieve the risk Rno. 

For  the case of unknown or, Robbins (1959) proposed the following type of 
sequential procedure: 
let 

2"]1/2 ) 
TA=inf n>nA:n>A1/2[ n-li=l ~ (XI--Xn) ] 

where n A is a positive integer that may depend on A, and estimate # by J~rA' A 
considerable amount of work has been done on proving the asymptotic risk 
efficiency of such procedures (i.e., RrA/R,o ~ 1 as A --, oe), establishing bounded 
regret (Rr-2A1/2a=O(1) as A ~ ) ,  and obtaining second order approxi- 
mations to the risk R T .  For  references, see Martinsek (1983). In particular, 
Woodroofe (1977) showed that for normal X~, if n A is a fixed integer greater 
than or equal to 4, 

RTA--2A1/2cr=�89 as A---~cz3. (1.6) 

Woodroofe's result has been generalized recently in Martinsek (1983), where it 
is shown that if EIXl[SP<oo for some p > l ,  the X~ are non-lattice, and 
3A1/4<nA=O(A 1/2) as A ~ o e  for some b>0 ,  then 

RTA -- 2A a/a a = 2-- (3/4) Var (Z 2) + 2E 2 (Z 3) + o (1) (1.7) 

as A--,oe, where ZI=(XI-#)/a (related results are also given for the lattice 
case). 

One interesting feature of the expansion (1.7) is that for some distributions 
the non-vanishing term on the right hand side is negative; in fact, it is shown 
in Martinsek (1983) that this non-vanishing term can take arbitrarily large neg- 
ative values as the distribution of the X~ varies. It follows that in some cases 
the "regret" due to using the sequential procedure with stopping rule T A in 
ignorance of a (rather than the best fixed sample size n o when cr is known) is 
actually negative. In particular, n o is not the optimal stopping rule which 
minimizes 

AE(X,- #)2 + E'c (1.8) 

over all stopping rules for the sequence Xa, X 2 . . . .  (that such an optimal rule 
"c o exists for each A > 0  follows from Theorem 4.5 of Chow et al., 1971). 

This note considers the question of the performance of stopping rules such 
as TA, when compared with the optimal stopping rule z 0 that minimizes (1.8). 
It will be shown in Sect. 2 that 

lira sup {inf [AE (X,- #)2 + E zJ }/RN~ 
A ~  z 

= lim sup {AE()(~o - # ) 2  _~ E%}/RN ~ 
A~m 

< 1, (1.9) 
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i.e., the sequential procedure with stopping rule N A is asymptotically subop- 
timal as A ~ o% for every N A which is asymptotically risk efficient with respect 
to the best fixed sample size n o. In particular, this holds for T a defined by (1.5). 

A few remarks are in order about the statistical meaning of this result. 
First, the optimal stopping rule %, and the infimum in (1.9), are for the class of 
all stopping rules for the sequence X1, X 2 . . . .  , including those for which the 
distribution of the X i is known. Indeed, (1.9) will be proved by comparing N A 
with a stopping rule that depends on #. Such a stopping rule is of course not 
available in the original estimation problem (after all, if # is known there is no 
problem), but the question of minimizing (1.8) is a different matter. In fact, one 
can think of n o as minimizing (1.8) over all non-random stopping times, even if 
everything about the distribution of the X~ is known. The value R,o is then a 
standard against which the performance of a sequential estimation procedure 
can be measured. From this point of view, (1.9) says that any sequential pro- 
cedure that is asymptotically optimal when compared with the standard Rno , is 
asymptotically suboptimal when compared with the standard that results from 
allowing random sample sizes in the minimization of (1.8). Moreover, for many 
distributions (e.g., exponential, Poisson, chi-square) knowledge of a, which is 
required to determine no, is equivalent to knowledge of #. Thus, even R,o is 
not necessarily an achievable risk in the estimation problem, but merely a "yard- 
stick" for measuring the performance of various estimation procedures. 

2. Asymptotic Suboptimality of Certain Sequential Estimation Procedures 

Theorem. Let X1, X 2 . . . .  be i.i.d, with finite mean # and variance 0"2~(0, 00). I f  a 
sequential estimation procedure with stopping rule N A satisfies 

where 

then 

lim (RNA/R.o) = 1,  
A ~ o o  

RN A = AE(XN A _ #)2 + ENA, 

lim sup {inf [ A E ( X ~ -  #)2 + Ez]}/RNA < 1, 
A ~ o o  "c 

where the infimum is over all stopping rules for the sequence of Xi's. That is, the 
sequential procedure with stopping rule N A is asymptotically suboptimal. 

Proof. Because lim (RNA/R,o) = 1, it suffices to show 
A ~ o o  

lira sup {inf [ A E ( X ~ -  #)2 + E z]} /(2A1/2 ~7) < 1. 
A ~ o v  z 

For A > 0 and S,, = ~ X i, define 
i = l  

z* = inf {n > 1 : IS, - n#l < A-  1/2 n3/2}. (2.1) 
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F r o m  results of Chow and Lai  (1975), since 

r* < s u p  {n>  1' I S , - n#1  > A -  1/2 n3/2} + 1, 

E27"<oo for all A > 0 .  

By the definit ion of-c*, 

lim sup {inf [ A E ( X  ~ - #)2 + E 27]} /(2A 1/2 a) 

< l im sup [AE(X~, - #)2 + E z*]/(2A 1/2 0-) 

< lim sup [2E~*]/(2A 1/2 a). (2.2) 
A~oo 

Because Ez* is n o n d e c r e a s i n g i n  A, if E27"++oo as A ~ o o  the theorem follows 
immediate ly .  We m a y  therefore assume that  E z * ~ o o  as A ~ o e .  Then,  ab-  
breviat ing 27* as z*, 

A - i E [(27* - -  1) 3 ]  ~ g [ - (Sv,_  1 - -  ("C* - -  1) #)2] 

= E [ ( S ~ , - ~ * # - X , , + # )  2] 

= E [ ( S ~ , - z * g ) 2 ] - 2 E [ ( X ~ , - g ) ( S ~ , - ' c * # ) ] + E [ ( X ~ , - # ) 2 ] .  (2.3) 

By a result of  G u n d y  and Siegmund (1967) (see Chow and Teicher,  1978, 
p. 148, L e m m a  2), 

E [(X~, - #)2] = o(Ez*). (2.4) 

By the Wald  equa t ion  for the second m o m e n t  and (2.4), 

EEI(X~, -  #) (S~, -  z* #)I] =< ~-/2tv~ , ~ , -  #)z . E1/2(S~,_ v ,  #)2 

= o(E 1/2 "c*). (0 -2 E-c*) 1/2 

=o(E27"), 
and hence f rom (2.3), 

A -  1 E [(27* - 1) 3] < a 2 E'c* + o(Ez*) = 0-2 E(27" - 1) + 0(E27"). 

Appl ica t ion  of Jensen 's  inequali ty yields 

E 3 [27* - 1] < E [(z* - 1) 3] < A  0-2 E(** - 1)+  o(AE(~* - 1)) 

and  therefore 

for A sufficiently large. 
I t  follows that  

E 2 [27* - 1] _<Aa 2 +o(A)  

l im sup E [z* - 1]/(A 1/2 (7) ~ 1. (2.5) 
A~co  

Also, by Jensen's  inequali ty and (2.5), 

l im sup E [(27* - 1)2]/(A 0-2) < l im sup E 2/3 [(27* - 1)33/(A a 2) 
A~oo A ~ o s  

< lim sup {E(27" - 1)/(A 1/2 if)q-0 [E(27" - 1)/A1/23} 2/3 
A~oo 

< 1. (2.6) 
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Suppose 
lim sup E(r* - 1)/(A 1/2 ~r) = 1 ; 

A~oo  

then there is a subsequence {Ak} along which (writing z* for z'k) 

E(~:*-I)/(A~/2a)~I as k ~ o o .  

But then by (2.6), as k ~ oo 

Var [(z* - 1)/(A~/2 a)] ~ O. 

Combining (2.7) and (2.8), 

(~*- 1)/(A2/~ a) ~, 1 

and Anscombe's theorem (Anscombe, 1952) yields 

[St, 1- ( z* - l ) , u ] /Ecr ( ' c* - l ) l / 2 ]~N(O,  1) as k ~ o o .  

Therefore 

P [(z* - 1)/(A2/2 ~)<�89 

=> P [I [S~,_ 1 - ( z *  - 1)/~]/[a(~* - 1)1/211 <�89 --, P [iN(0, 1)1<�89 >0,  

contradicting (2.9). It follows that 

lim sup E(z* - 1)/(A I/2 a) < 1, 
A~oo  

415 

(2.7) 

(2.8) 

(2.9) 

over all stopping times for a sequence of random variables I11, !/2 . . . . .  when 
n ~ I1, converges almost surely to a positive random variable for some/~ > 0. The 
loss function (1.1) is of the right form, however in this (non-Bayesian) case i1, 
= ( X , - # )  2 and nu converges in distribution (to cr 2)~2). Hence n~Y, does not 
converge a.s. to a positive random variable for any /~>0, and the results of 
Bickel and Yahav do not apply. 

In addition to showing that the stopping rule T A defined by (1.5) is asymp- 
totically suboptimal with respect to the optimal stopping rule %, the Theo- 
rem shows that the same is true for any stopping rule which is asymptotically 

AE(Y~)+ Ev= A[E(Y~)+ A -1 E'r], 

which together with (2.2) finishes the proof. 

Remark on the Proof The stopping time ~* used in the proof above is moti- 
vated by the idea of "balancing" the two components of the loss function. Just 
as the optimal fixed sample size n o does this in expectation (AE(X , o -# )2_  no), 
the rule r ]  does it pointwise (by the definition of-c*, if the undershoot is small, 
A ( J ( ~ - # )  2 is close to z*). The same idea is used in Bickel and Yahav (1967, 
1968) to derive asymptotically pointwise optimal (A.P.O.) and asymptotically 
optimal rules, and it would be interesting to know whether ~* is asymptotically 
optimal in the present case. The work of Bickel and Yahav applies to the 
problem of minimizing 
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risk efficient with respect to n o . The result therefore applies to the stopping 
rules of  Starr and Woodroofe  (1972) and Vardi (1979) for the gamma and Pois- 
son cases (respectively), among others. 

Finally, it should be mentioned again that the stopping rule ~* depends on 
/~ and so is unavailable in the original estimation problem. Asymptotic  sub- 
optimality of the sequential estimation procedures is therefore not such a se- 
rious failing. 
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