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Summary. A general class of statistics based on sequential ranks is intro- 
duced. Under suitable regularity conditions, an almost sure representation 
and invariance principle are established for this class. In particular, it is 
shown that these statistics can obey invariance principles that are radically 
different from those obeyed by the usual full rank statistics. 

1. Introduction 

Let (X i, Y~), i>  1, denote a sequence of independent bivariate random vectors, 
where each X~ is assumed to have a continuous distribution function. Let R~ 
denote the rank of Xi among X 1 . . . . .  X~, i.e. 

i 
Ri= ~ I(Xj<X~) for i>1,  (1) 

j = l  

where 1(-) is the indicator function. A general linear sequential rank statistic is 
defined for n > 2 by 

M ,  = ~ c i Y J ( R ] ( i  + 1)) (2) 
i=2 

where {ci} is a sequence of constants and J is a function defined on the in- 
terval (0, 1). 

The asymptotic distribution of various special cases of (2) has been the sub- 
ject of investigation by a number of authors. Parent (1963) and Reynolds 
(1975) investigated a signed sequential rank statistic, which is obtained from (2) 
by setting ci= 1, J(u)=u,  Yi =sign (Zi) and X i = [Zi[, Z1, Z 2 . . . . .  being a sequence 
of i.i.d, random variables. Their work is concerned with sequential tests, based 
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on this version of M,, of the hypothesis that the common distribution of the 
Zi's is symmetric about 0. In particular, Reynolds obtains an invariance prin- 
ciple for the case when the Zi's are assumed to be i.i.d, with a distribution not 
necessarily symmetric about 0. Sen (1978) derives an invariance principle for a 
class of statistics, which he calls rank discounted partial sums. These statistics 
are obtained from (2) by setting c i -  1 and Y/=g(Xi), where g is a continuous 
function satisfying a boundedness condition. He also assumes that the X[s are 
i.i.d. 

Now let Rn, i denote the rank of X, among X 1 . . . . .  X,, i.e. 

R, , i= ~ I ( X j < X ~ )  for l<_i<_n, n>l. 
j = l  

Note that Ri=R u for i>  1. A general linear full rank statistic is defined by 

T,= ~ e~Y~J(R,,](n+ 1)) (3) 
i=1 

where {el} is a sequence of constants. Mason (1981) considers the version of M, 
obtained by setting Y~= 1 and assuming that Xa, X 2 . . . . .  are i.i.d. It is known 
that in this situation M, consists of independent summands. Mason exploits a 
close connection between M, and T, to obtain, among other results, an in- 
variance principle and a law of the iterated logarithm for T, from the corre- 
sponding (easily established) results for M,. Lombard (1981, 1983) uses the 
H~jek projection technique to establish another close relationship between M, 
and T, which implies, in particular, that hypothesis tests based on these statis- 
tics will have the same distribution, hence Pitman efficiency, under sequences 
of local alternatives. On the other hand, in Mason (1984) it is shown that hy- 
pothesis tests based on T, and M, will, in general, have differing Bahadur ef- 
ficiencies under fixed alternatives. His conclusion is that tests based on T, are 
more efficient in this sense than those based on M,. 

Theorems 1 and 2 in Sect. 2 below imply that the asymptotic distributions 
of M, and T,, though the same under sequences of local alternatives, may be 
quite different under fixed alternatives. This is in line with the Bahadur ef- 
ficiency study of Mason (1984). Theorem 1 below gives an almost sure repre- 
sentation of M, as a sum of independent non-identically distributed random 
variables plus a remainder term which converges almost surely to zero at a 
certain rate. Sen (1981, p. 135) has given an almost sure representation for the 
signed-rank version of T, (obtained by setting e i ~ l ,  Yi=sign(Zi), Xi=lZil in 
(3), whith Z1, Z 2 . . . .  i.i.d.) as a sum of i.i.d, random variables plus a remainder 
term. Utilizing this representation, he has shown that an appropriately con- 
structed continuous time stochastic process based on {T,} converges weakly to 
a Brownian motion. It is a consequence of Theorem 2 below that the corre- 
sponding process based on the signed rank version of M, converges weakly to 
a nonstationary mean zero continuous Gaussian process (Z(t),O<t<l) with 
covariance function given for 0 < s, t __< 1 by 

p(s,t)=(sAt){a+bsign(s--t)log(t)}, (4) 
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where a and b are positive constants. Thus, here the limiting process is not a 
Brownian motion, though it has the same distribution as a Brownian motion 
for each fixed t. Our Theorem 2 also corrects Theorem 3.1 of Reynolds (1975) 
as well as Theorem 1 of Sen (1978). 

In the two-sample case, where X~ either has c.d.f H a or c.d.f. H 2, the appro- 
priate version of T, is obtained by substituting Yi---1 and 

10 if X i has c.d.f. H I 

ei = if X i has c.d.f. H 2 (5) 

in (3). Lai (1975) has given an almost sure representation of T, in terms of two 
sums of i.i.d, random variables, and has shown that a suitably constructed con- 
tinuous time version of {T,} converges weakly to a Brownian motion. 

The analogue of Tn in the sequential rank case is obtained from (2) by 
setting Y~-- 1 and 

i--1 

c i = e i - ( i - 1 )  -1 ~ ej for i > 2  (6) 
j = l  

with the e]s defined as in (5) above. (See Mason (1981, Sect. 2) and Lombard  
(1981, Sect. 4) for the motivaiion of the choice of the c[s given in (6).) Al- 
though it is possible to obtain an invariance principle for the two-sample ver- 
sion of M n, based on the almost sure representation given in Theorem 1 below, 
the technical details are quite lengthy and the resulting covariance function of 
the limiting process depends on functions of s and t which are not expressible 
in closed form. This problem will be considered elsewhere. 

In Sect. 2, we state and discuss the theorems. The proofs are detailed in 
Sect. 3. 

2. Statements of Main Results 

First, we must introduce some necessary notion and assumptions. 
Let (X  i, Yi) with bivariate distribution function Gi, i__> 1, be a sequence of 

independent bivariate random vectors and let F i denote the marginal distribu- 
tion function of Xi. The empirical distribution function of X 1 . . . .  , X~ is 

i 
~(x)  = i -1 ~ I (Xj  <= x), 

j = l  
- - o 0 < X < O 0  

and this has expectation 

i 

= i - 1  E 
j = l  

- - o 0 < X <  o0.  

Since it does not cause any additional complications in the proof  of Theo- 
rem 1 below, we will consider the following general k(=> 1)-sample situation: 

(A) There is a finite set {V 1 . . . . .  Vk} of c.d.f.'s, a set of numbers 
p l , . . . ,pks(0 ,1)  which sum to 1, and a function j: {1,2,...}--.{1,2 . . . . .  k} such 
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tha t  Gi=Vj(1) for all i>__l and such tha t  as m - - , ~ ,  

pr, m= m I(j(i)=r)-+pr for r = l , 2  . . . .  ,k. 
i = 1  

Fur the rmore ,  we assume that  
(B) F o r  every i >  1, Fi is cont inuous  and Y~ has a finite absolute  m o m e n t  of  

order  1/c~ for some 0<c~<1/2 ,  i.e. 

m a x  ~Slyll/~dVl(x,y)< oo. 
l <_l<_k 

We are interested in l inear sequential  rank  statistics of the form given in (2) 
above,  where  c 2, c a . . . . .  is a sequence of constants  satisfying the condi t ion 

(C) max  c i/C, = 0 
2<_i<_n 

with 

C 2 = ~ c  2 for n > 2  (7) 
i = 2  

and J(u), ue(O, 1) is a score funct ion satisfying the Chernoff -Savage (1958)-type 
condition.  

_ d~s J(u) (D) J(~ <m(u(1-u))-l/2-~+~; i = 0 , 1 , 2  

with 0 < e < 6 <�89 for the ~ in (B) above,  and M a finite posit ive constant.  
Let  

p. = ~ ci ~. YJ(ff,(x))dGi(x, Y), 
i = 2  

Bt,, = ~ c~ Yfl(~(X~)) - # , ,  (8) 
i = 2  

Bz,.= Z ~y{I(X,  Nx) F x g(1) - - i( )} (Fk(x))dGk(X,Y) 
i----i k = i - t -  1 

and write 
M , - p , = B l , ,  + B2,n + ~n-=Bn + ~ , .  (9) 

Not ice  that  B,  is a sum of independent  r a n d o m  variables. The  following 
theorem gives the a forement ioned  a lmos t  sure representat ion.  

Theorem 1. / f  conditions (A) through (D) above hold, 

C~- a ~n_..0 a.s. 

The  p roo f  is pos tponed  until Sect. 3. 
Suppose  it can be shown tha t  the sequence of processes 

(C~lBtnt],O<t< 1) (10) 
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(Bo=BI=-0 and [x] = integer part of x) converges weakly in the topology in- 
duced by the metric d o defined on D[0, 1] (see Chapt. 2 of Billingsley (1968) for 
details) to a process 

~- - (Z ( t ) ,ONt<l ) .  

Theorem 1 then implies that the sequence of processes 

~.-(C21(M[n,l-I.Z[.tl),O<=t<= 1) (11) 

( M o = M  1 = # o = # 1 - 0 )  will also converge weakly to the process Y'. 
Even though B. is a sum of independent random variables, weak conver- 

gence of C~-1B[. 0 is in general extremely difficult to establish without further 
assumptions regarding the distributions G i or the form of the constants c i. This 
becomes fairly obvious upon close inspection of (8). 

With the following simplifications, we are able to give a weak convergence 
theorem for a version of the sequence of processes given in (11): 

Suppose that c l - 1  and that (X~, Y~) for i__> 1 are identically distributed. Put 
F i--=F and G i -  G. We then find that 

#. = (n - 1) ~ yJ(F(x)) dG(x, y) = (n - 1) #, 

BI , .=  ~ {YIJ(F(Xi))-#}- ~ tl(Yi,Xi) and 
i = 2  i = 2  

. -1  (12) 

B2, . = ~ (d. -d~)55y{I(X, <= x) -F(x)}d(1)(F(x))dG(x, y) 
i = 1  

n - 1  

- ~ (d.-dl)~(Xi), 
i = 1  

with 

Let 

J 1 
dj=  ~ �9 j = 0 ,  1, (13) 

k=O k + l  . . . . .  

a~=E~2(Xi), a~=Erl2(yi, xl), and a.r }. (14) 

Theorem 2. Suppose that (Xi, Yi) for i> 1 are i.i.d, and that assumptions (B) and 
(D) hold. Let c i - 1  in (2). Then the processes (Z,(t),O<t<_l) defined as in (11) 
above converge weakly in the Skorokhod D[0, 1J-topology to a path-continuous 
nonstationary mean zero Gaussian process (Z(t), 0 < t <= 1) with covariance function 
given in (4) above, with 

2 2 a=a,  +2a~ + 2 a ~  
and b = a~ + o-,r (15) 

The proof is postponed until Sect. 3. 
The limiting process Z in Theorem 2 may be represented as 

t 

z ( t ) -  ~ 
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where W 1 and W 2 are independent standard Brownian motions and the inte- 
grals are interpreted in Ito's sense. It is easy to verify, using for example Theo- 
rem (5.1.1) of Arnold (1973), that the process defined by (16) is path-continuous 
with covariance function given by (4) and (15). 

The results of Reynolds (1975) and Sen (1978) imply, for their versions of 
the statistic given in (2), that the sequence of processes ~n converges weakly to 
a Brownian motion. Our Theorem 2 is in obvious conflict with their results. A 
close inspection of their proofs reveals, however, that they incorrectly evaluated 
the limiting finite-dimensional distributions. (Note that in Sen (1978), the 
smoothness assumptions that we given on J in (D) are transferred to the distri- 
bution of Y~, but this does not affect the validity of our discussion.) Using a 
different method, Mtiller-Funk (1983) has studied the special case ~=sign(Xi) 
under conditions comparable to ours. Our Theorem 2, specialized to this case, 
agrees with his result. 

One implication of Theorem 2 from a statistical viewpoint is that analytical 
approximations to the asymptotic power, under fixed alternatives, of sequential 
tests based on these statistics would not be readily available. Explicit ex- 
pressions for boundary crossing probabilities of Gaussian processes with co- 
variance function given by (4) are, to the best of our knowledge, not readily 
available. 

3. Proofs of  the Theorems 

Proof of Theorem 1. Since for every i > 1, 

Ri=iPi(Xi) 
we obtain by Taylor expansion that 

M,,--#n= i ci Yia(~(X,))-bt~ 
i=2 

n f -- "~2r(2) § i~=2 elY* ,.i~iFi(Xi)-Fi(Xi)~ a (Oii~T p'(Xi)§ ) 

--B~,.+A.+ ~ ci.~i, , 
i=2 

with 0 < 0 i < 1  for i = l  . . . .  ,n. Next 

= ~=~__ ( ~ )  cl Y,{Pz-, (X~) -~_~ (Xi)}J(')(~(X,)) A. 

i : i--l~ X -~(Xi) + ~ ciYi ~TFi(Xi)-i~ i-i(i) 
i=2  
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which, after a little manipulation, is seen to equal 

i=~2 i--1 (i~l ) citS Y{fi-l(X)- ~_ l(x)} J(1)(~(x))da(x~,yd(X, y) 

~, 1 -F~(X,)-F~(X,)IJ (~(X,)) + c ~  ~ { 1  - (1) 
i = 2  

-D.+ ~ ciNi, 2, 
i = 2  

where, for every pair of real vectors (a~, a2) and (bl, b2) we define 

6( .....  ) (b>b2)= l  if bl>alb2>a2;=O otherwise. 

Below, we shall also write 

(~al(b 1 )=(~ . . . . .  (bl '  GO)" 
Finally 

D'=,~=2 ( ~ )  q~Y{P~-l(x)-~ l(x)}J(1)(~(x))dG~(x,y) 

+,~=2= ~+T ci~Iy{F~- l(x) - ~ -  l(x)}j(1)(pi(x))d(b(x" r~ y)" G~(x, y)) 

1 (i--1 } 
i = 2  ~ x  k k = l  i = 2  

= ~, ~I~Y{~Sxk(x)--Fk(x)}J(~)(Fi(x))dG~(x,Y)+ c~Ni, a 
k = l  i = k + l  i = 2  

= 2 Y{ax,(X)- x)} J(1) x))dGk(x,Y)+ ci~*,3 
i = 1  k = i + l  i = 2  

=B2,,,+ ~ ci~i, 3. 
i = 2  

Thus, we obtain the representation given in (9), viz., 

M.-,u.= BI,n + B2,. + ~n 
with 

~n= ~ ci(~i, 1-~-~i, 2-~-~i, 3)~- Zl,n"+'S2,n-~- Z3,n . 
i = 2  

The proof consists of showing that 

C2IZ~,,--+O a.s. for each 1_<i_<3. 

In order to establish (17), we require the following auxilliary lemmas" 

(17) 
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Lemma l" Let {Sn= ~ X~'~:  n>=l} be an Lp martingale f~ s~ pe[l'2]" 

for some sequence of positive constants b,'r oo 

then 

b2VEIX, f < oo, 
n>_l 

b2iS,~O a.s. 

(See problem 1, p. 244, of Chow and Teicher (1978).) 

Lemma 2. (Marcinkiewicz-Zygmund law of large numbers.) Let X l, X 2 ..... be 
an L; sequence of i.i.d.r.v, for some pe(O, 1). Then 

n-~/v ~ Xi__+ 0 a . s .  

i = l  

(See p. 122 of Chow and Teicher (1978).) 

For  every 7 >0,  let 

(a~(u)=(u(1 -u) )  -~, u~(0, 1). 

Lemma 3. f f  U i, U2,...,  is an i.i.d, sequence of Uniform [0, 1] r.v., then for every 
~>fl>l n 

n - ~  F,  C / U , ) - - , 0  a.s. 
i = 1  

Proof. The result follows from Lemma 2 upon noting that 

E(~fl(U1))l/a=E(~ol~/c~(Ul))< 00. [] 

Lemma 4. Let UI=FI(X i) for all i> 1. For every 7 > 0  there exists a constant 
K(7) such that 

4a ,(P,(x,)) < K (~) ~b,(U,). 

Proof. For  r = 1,. . . ,  k, let 

n ,=min{i :  GI=V~} and K =  rain inf p~,=. 
1 <-r<-k m>=nr 

Clearly, K is positive and finite. Choose any i_>_ 1 and assume, without loss of 
generality, that G~= 1/1. Denote the first marginal of V~ by W~ for i=  1 . . . . .  k. 
Then 

k 

Vi (X i )~ -P l , iWl (X i )  -}- ~ P r , i W r ( X i ) ~ P l , i W l ( X i ) = P l , i U i  
r = 2  

and 
k k 

1 - F , ( x o  = 1 - p ~,, w ~ ( x , )  - Z p~,, w , ( x , )  >= 1 - p ~,, W l ( X , )  - S p , , ,  
r = 2  r = 2  

= [ 1 , i -  [1,i Ui = D 1 , , ( 1  - -  U~). 
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Thus ffi(Xi)(1-Fi(Xi))> K 2 Ui (1 -  Ui), and since the function z-+z -~ is nonin- 
creasing, it follows that 

G(~(x,))<=K-2'G(G). [] 
Next, let 

A~I)= sup (nl /2[G(s)-F,(s) l / f~(s)(1  -F,(s))}l/2}, 
n - l < F ~ ( s ) < l _ n  1 

A~2)= sup {n IP.(s) -~(s)l}, 
Fn(S),I__Fn(S)< . 1 

r(l~ sup {~(s)/F,(s)}, and 
8>~Xl,n 

r(2) sup {(1-t~(s))/(1--/r 
s K Xn,n 

where XI , ,<  ... <X, ,  n are the order statistics of X, . . . . .  X,. 

Lemma 5. (a) For every ~ __> 0 there exists a 0 < K < oo and n o >= 1 such that for every 
n ~ n  o 

P(A~)>Klogn)<n-(X+~);  i=1,2.  

(b) For every )L > 1, 

P(r~~ > 2)__< 1522 exp(-2) ;  i=1,2.  

(See Theorem 3.3 of Ruymgaart and van Zuijlen (1978) and Theorem 2.7 of van 
Zuijlen (1980).) 
Write 

r~ = sup {F~(s)(1 -~(s))/{F,(s)(1 - F,(s))} }. 
X l n < S < X n n  

Lemma 6. There exists a constant 0 < K < oe such that, with probability one, 

(i) (2) i/2 < max{A, ,A, ,r~ } = K l o g n  

for all n sufficiently large. 

Proof  The proof follows easily from the inequalities given in Lemma 5 togeth- 
er with the Borel-Cantelli lemma. [] 

L e m m a  7. 

r * -  sup I ~ ( s ) ~ - F , ( s ) )  [<4r .  for all n>2.  

Fo(s) 1 - ~  P.(s) 

Proof. Elementary. 

Lemma 8. Let {b~} be a sequence of  constants and {a~,~: v = l  . . . . .  n, n__>l} a 
triangular array of  constants such that for some finite constant b, 

b ~--, b, 
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and for each f ixed  n o >__ 1 

I f  for some finite constant a, 

then 

max la~,,l/n~O. (18) 
1 <V<no 

n -1 ~, a~, ,~a,  (19) 
v= l  

n -1 ~, a,,,b<-*ab. 
v= l  

Proof. Elementary. 

L e m m a  9. Let  X I , X  2 . . . .  , be a sequence of  random variables such that for some 
r > 0  

n - r S , = n  -r ~ X~-+O a.s. (20) 
V=I 

Then for every ~ > 0 and fi > 0 such that ct + fl = r 

n -~ ~ v-tsX~--*O a.s. (21) 
v--1 

Proof. Set bv=v-rS~ for v = 1 , 2  . . . .  , and for each n=>2, let 

a~, =n  I ~ ( v - ~ - ( v + l )  ~)v r 

for v = l  . . . . .  n - 1  and a, , ,=n.  
Observe that 

n 1 ~ a ~ , , b v = n - ~ v - ~ X v .  
v= l  v= l  

By (20), b , ~ 0  a.s. Notice that for l < _ v < n - 1 ,  

so that we see that condition (18) of Lemma 8 is satisfied. Finally, a standard 
integral approximation shows that 

n 1 ~ av,n___~r~ 1. 

Hence condition (19) of L e m m a 8  also holds. Thus (21) follows from 
Lemma 8. [] 

Now we are ready to complete the proof  of Theorem 1. Throughout  the 
proof  below, the symbol K is a generic finite positive constant. 

Claim 1. 
C~I Z, 3,n--~O a.s. 
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Proof. For every v > 0, it follows from the c;inequality, HSlder's inequality and 
the independence, for all i>2,  of F/_l(x) and X i that 

EI~i,3I 1+~ 

i - 1  \ 
y)]l +v 

i - - I  
q- ( ~  l ) 2v E [ f ~ y {~_ l (X) - ffi_ l (x) } J(1)(ffi(x))dGi(x, y)l l +v 

< 2~E ~ lY{~-  1 (X) --if/_ i(X)} S(1)(~(X))[ 1 +v a(x, ' r,)(x, y) 

+ 2~E ~ ]y{~_ ~ (x) - ~_~ (x)} J(a)(/~(x))ll + ~dG~(x, y) 

= 2~+ l ~ ]yla +~lJ(X)(~(x))]a +~ E l ~ _  ~ ( x ) -  ~ _  x(x)[l + ~ dGi(x, y). 

Since 
i 

g(f / /_l  (x) -- I~/_1 (x))2 ~ (i -- 1)-2 E Fj(x) (1 - Fj(x)), 
j= l  

which, by concavity of the function u - + u ( 1 - u )  for ue(0, 1), is 

5- i(i - 1)- 2~(xt0 - ~(x)) __< 4i -1 ~(x)(1 - ~(xl), 

we obtain from H61der's inequality for any 0 < v_-< 1, that 

ElFii_l(x)- Fi_ l(x)lx +~ <= {ElFi_ l ( x ) - ~ _  i(x)12}(i +~)/2 <= 4i-(l  +v)/2 ~9~(~(x)) 

where ~ = - (1  + v)/2. Hence, by (A), (D) and Lemma 4, 

g[~i, 3[x+v~=Ki-(x+v)/2E{[ Y/[l+ v~7(Ui) } 

with 

7=(l+v)(~._~ ) ( l+v) - =u+~)(1-& 

Using HSlder's inequality again, this is 

<__ Ki - (1  + ~)/2 {E [ y/tl/~}~(1 + ~){Eeflv,(Ui)}l - ~(1 + ~), 

where 7,=7/(1 -e (1  +v)). Note that for 0 < v <  1, both c~(1 +v )<  1 and 7,=7/(1 
- c~( l+v) )< l  if and only if ( l + v ) ( l + ~ - a ) < l ,  which will be the case for all 
sufficiently small v >0. Thus, for v > 0 small enough, using (B) we have 

l+~ ~)/2 (22) gl~i,3[ < K i - ~  + 

For n>2,  let ~,~ denote the ~-field generated by X 1 . . . . .  X,. The indepen- 
dence, for all i>2,  of F~_l(x) and X i implies that E(~,3[~,~_1)=0 for all i>2,  
so that 
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is a martingale.  F r o m  (22), we see that it is, in fact, an Lx+~-martingale for 
some w(0 ,  1). Since by assumption (C) and (22), 

Y~ Ci-"+'EIc,~,,311+~<K Y~ i-l-v<oo, 
i > 2  i>--2 

an applicat ion of L e m m a  1 completes the proof. [ ]  

Claim 2. 

C21Z2,n~O a.s. 

Proof. Since 7 - - ~ - 6 < ~ - e ,  it follows from L e m m a  3 that  

n -3/2+~ ~ 4 , (U i )~0  a.s. 
i = 2  

Fur thermore ,  assumption (B) implies that  ]g~l __<i ~ for all sufficiently large i, 
a.s. Hence,  by L e m m a  4 and L e m m a  9 

" i C21 i~=2 ci~i'2 <=Kn-1/2i=2i-l+~(~ a.s. [ ]  

Claim 3. 

C2121,,~0 a.s. 

Proof. By assumption (D), the convexity of q5 for all 7>0 ,  the fact that  
0 < 0 i < 1 and from L e m m a  6 and L e m m a  7 we have, almost  surely, that  

J(2) (Oi i ~  ~(Xi)+(1-Oi)~(Xi) ) 

( i ~(X~)+(1-Oi)~(X~)) <=M05/2-,~ O i ~  

__< M {45/2 - ~ ry2 - ~ q55/2 - ~(~(X~)) + ~b 5/2- ~(~ (X~))} 

=< K(log 05-  2 ~ ~bs/2 _ o(Fi(XI)), 

for all sufficiently large i. (Recall the definition of ri given just prior  to Lem- 
ma 6.) 
Next,  by L e m m a  6, we have, almost  surely, 

i ~ _ 2 

/ i F X i ~(Xi))+2 i 2 

<__ 2(Fi(Xl) - /~(X,))  2 + 2 i -  z 
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= 2(~(Xi) -fig(X,)) 2 I(i-1 <~ Fi(Xi) 5 1 - i -  1)  

+2(F(Xi)-Fi(Xi))2I(Fi(Xi)<i -1 or ~ (X, )>  1 - i - a ) + 2 i - z  

=< 2 i -  1 t~(Xi) (1 _ffi(Xi))(Ala))2 + 2i- 2(A12))2 + 2 i -  z 

<= K i - 1 (log i) 2 P(X,) (1 - if(X,)) +. K i-  2 (log i) 2 

for all sufficiently large i. 
Putting these together and using Lemma 4, we have, almost surely, 

[~i,~ [=< Ki~(log i)5 -26 ~bs/2- a(ff~(X,) ) {i- a(log i)2 ~(Xi) (1 - ~(Xi) ) + i-  2(log i)2} 

< Ki- 2+ ~(log i)7 - 2 6 ( / ) 3 / 2  _ 6 ( U / )  -t-  Ki-2+ ~(log i )7 -  2 f i ~ 5 / 2  _ 6 ( U / )  

<=Ki-l+~+r~_ 1 (U/) + K i -  2 +~+~ ~6~(U/) 

for all sufficiently large i, where fi = 5 / 2 -  6 and r is chosen so that  0 < r < 6 -  :~. 
For  such a choice of r we have 3 / 2 - r - ~ > f i - 1  and 5/2-r -~>f l .  Hence, by 
Lemma 3, both 

n - 3 / 2 + r + a  ~ ~)fl_l(U/)---)-0 a.s., 
i=2 

and 

n -5/2+r+~ Y, ~bp(G)~O a.s. 
i=2 

Since, by using assumption (C), we have 

C21 i~_2ci~i,1 

<=Kn -1/2 ~ i-'+'+~(~_l(Ui)+Kn-a/2 ~ i-2+~+~(~t3(Vi) 
i=2 i=2 

a.s. 

for all sufficiently large i, an application of Lemma 8 completes the proof. []  

Thus, (17) follows and Theorem 1 is proven. [] 

Proof of Theorem 2. First, it is easy to show that  the array 

bi.=rl(Yi+l,Xi+l)+(d.-di)~(Xi),l <_i<_n-1 ; n>__2 

satisfies Lindeberg's condition. (Recall the definitions of ~/, ~ and the di's given 
in (12) and (13).) Next, let B o = B  1 = 0  and for n>__2 set 

n--1 

B.= ~ bi,.=Bl,.+B2, .. 
i=1 

(Recall the definition of Ba,. and Bz. . given in Sect. 2.) We find for all 
0 < s < t < 1 and sufficiently large n, 

[ns] 
- - 1  2 - -  n E(Bf,,slBt.t~)=a~n l[ns]+an~n-1 ~ (dL.~]-dj) 

j = l  

Ins] Ins] 

+ a,7~n -1 ~ (dr,,tl -dj) + a~ n-1 ~ (dv,~l-dj)(dt,,o -dj), 
j = l  j = l  
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which by an easy limiting argument converges to 

o o 

After some straightforward manipulations, this last expression can be shown to 
equal 

t, 
where a and b are defined as in the statement of Theorem 2. 

Thus, by applying the Cram6r-Wold device, the finite dimensional distri- 
butions of the process 

(n- 1/2 B[nt], 0 ~ t =< 1) (23) 

converge to those of a Gaussian process with covariance function given by (4) 
and (15). It remains to prove tightness. Towards this, let 

l . ( t )=d[.q-d. ,  O_<t_<l 
and write 

where 

and 

B[.q-Bl , . ( t )+ B2,.(t) 

[nt]-- 1 

B*,.(t)= Z 
i = 1  

bi, for [nt]=>2; = 0  otherwise 

(24) 

[nt]-  1 

B*,,(t)=l,(t) ~ ~(Xi) for [ n t ] > 2 ; = 0  otherwise. 
i = 1  

The validity of Lindeberg's condition in conjunction with Theorem 3 of Pro- 
horov (1956) shows that the sequence of processes 

(n- 1/ZB*,(t): 0 < t < 1) 

is tight. In view of (24), in order to complete the proof, it suffices to show that 
the sequence of processes 

(n- l/2 B*,,(t), O < t < 1) 
is tight. 

Let (W(t ) ,O<t<l)  be a standard Brownian motion and let 0 < e < l .  By 
Donsker's theorem and the uniform convergence of l,(t) to logt on [e, 1] we 
have that the sequence of processes 

(n- 1/2 B*,,(t), e <= t <= 1) 

converges weakly to the process 

(~rcW(t)logt, e<=t < 1). 
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Next ,  by  the  Hf i j ek -R6ny i  inequa l i ty ,  for every 6 > 0  a n d  all n suff icient ly large 

I n , l -  1 
P{ sup  [n-1/ZB*,(t)[>6}<=6-Za~n-a ~ ( d k - d , )  2, 

O--<t--<e k = l  

which  converges  to 

6 -  2 o-~ ~ (log u) 2 du ; (25) 
0 

a n d  by  a p p l y i n g  the  B i r n b a u m - M a r s h a l l  (1961) i n e q u a l i t y  

P { sup I cr~ W (t) log t l > 6} =< 6 -  2 ~r2~ S (log u) 2 du. 
O=<t- -<e 0 

Since  express ion  (25) converges  to zero as e$0, we have  by  a p p l y i n g  Theo -  
r em 4.2 of Bi l l ingsley (1968) in  the  obv ious  m a n n e r ,  tha t  the  sequence  of p ro-  
cesses 

(n-  1/2 B~,.(t), 0 <__ t __< 1) 

converges  weak ly  to the process  

(W(t)logt, O<t<l). 

Tigh tnes s  of the  s equence  of processes  g iven  in  (23) is n o w  immed ia t e .  [ ]  
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