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Summary. We present two examples of Markov maps which satisfy the 
expanding condition, R6nyi's condition and do not admit any absolutely 
continuous invariant measures. These examples are counterexamples to the 
theorem formulated in [1, p. 1]. 

1. Introduction 

We start with the definition of Markov map. 

Definition 1.I. A many-to-one transformation ~o from an interval I (bounded or 
not) into itself is called a Markov map with respect to a finite or countable 
family {Ik: k e K }  of disjoint, open intervals I k iff it satisfies the following 
conditions: 

(1. M1) (p is defined on ~= U Ik and cl (~)=I;  
k e K  

(1.M2) for each k e K ,  the function (pk=CPlIk is strictly monotonic, differenti- 
able, and its derivative (p~ is a locally Lipschitzean function which can be 
extended to cl(Ik); 

(1. M3) for eachj ,  k e K ,  if 

(1. M4) for each (j, k) ~ K 2, 

(p (I j) c~ I k 4= O, then I k c= (p (I j); 

there exists an integer n > 0 such that I k ~= (pn(lj). 

The following conditions: 

(1. H1) inf{l(cp')'(x)]: x e ~ } > l  for some n, 

(1.H2) sup {](p" (z)l/(cp' (y))2 : y, z E ~} < oo are called expanding condition, and 
Rdnyi's condition, respectively. 

in this note we present two examples of Markov maps which satisfy the 
conditions (1. H1), (1. H2) and do not admit any absolutely continuous in- 
variant measures. These examples are counterexamples to the theorem for- 
mulated in [1, p. 1]. 
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It seems worth mentioning that the theorem in question holds true under 
the following two additional conditions: 

(1.H3) inf{ko(Ik)[ :keK}>O; 

(1.H4) if q0 is defined on unbounded interval 1, then l i m R ( y ) = 0  where R(y) 

=sup(l lk[- t  j ~k(X)dX), Ilkl denotes the length of Ik, %=l(rp~-*)' I and Ay 
keK Ay 

= {x e I: Ixl > Y}. The proof of this fact can be obtained by a suitable modifica- 
tion of the proofs of Theorems 1 [3] and 3.1 [2]. 

2. Counterexamples 

We disprove here the theorem on the existence of absolutely continuous 
invariant measures for Markov maps in [1, p. 1] by providing two counterex- 
amples. 

Counterexample L First, let us consider the stochastic matrix 

which consists of the 

m r o o  R - [  ,s]i,j=l (i.e., r~j>O, ~ r l j = l  ) 
J 

following elements" 

1 
c2 -(2i-j+l)  if j = 1 , 2  . . . . .  2~; 

c2 -2~ if j = 2 ~ +  1; (2.1) 
r q =  ( 1 - 2 c )  if j = 2 ~ + 2 ;  

C2-ff -2~-2) if j = 2 i + 3 ,  2 i+4  . . . .  ; 

for i = l, 2 . . . .  ; where 0 < c < 1/2. 
We associate with the matrix R a piecewise linear transformation ~: I-+I (I 

= [0, oo)) in the following way. For  i=  1, 2, ..., we put lij= [ao, aij+l ) where 

j - 1  

aij=(i-1)+ ~, rik if j = 2 ,  3 . . . .  , and ai l=i-1 .  
k=l  

Then we determine, for each pair (i,j), a linear mapping 0o  (increasing or 
decreasing) from I o onto whole interval [ j -  l, j). Finally, we define the desired 
transformation by 0(x) = Oij(x) iff x e I~j. 

It is evident that 0 is a Markov map (in the sense of the Def. 1.1) which 
satisfies both the conditions (1. HI)  and (1.H2). It is also evident that ~ does 
not satisfy (1.H4). We shall see later (cf. Th. 2.1) that ~ is without any 
absolutely continuous invariant measure. 

Counterexample 2. We obtain the second counterexample by a simple modifica- 
tion of the previous one. 

To this end, we first define an auxiliary piecewise linear transformation ). 
from I = [0, oo) onto whole unit interval i =  [0, 1] by the following formula: 

)~(x)=).~(x) iff x e [ i - 1 ,  i) 
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where 2i: [ i - 1 ,  i)+I~ is a linear mapping (e.g., increasing) from [ i - 1 ,  i) onto 
the whole interval / i = [ 1 - 2 - u - ~ ) , 1 - 2 - ~ ) ,  i = 1 , 2 , . . . .  Note that 2~(I~j)=[zj 
= [aij, aij+ 1) where 

j - 1  

aO=(1--2-(i-1))+2-1 ~ rik if j > 2 ,  and a i ~ = l - 2 - u - 1 )  
k = l  

Then we define ~ = 2 o 0 o 2-1. 
The transformation ~ is a Markov map which satisfies the conditions 

(1. H1) and (1.H2). Also it is evident that ~ does not satisfy (1.H3), 
Now we prove that both ~ and ~ do not admit any absolutely continuous 

invariant measures. 

Theorem 2.1. Let P, P be the Frobenius-Perron operators corresponding to the 
Markov maps tp, ~, respectively. Then the equations P g = g  and P g = g  have no 
non-negative, integrable, non-trivial solutions. 

Proof. We first give the proof in the case when the Frobenius-Perron operator 
is associated with 0. For an arbitrary (but fixed) i>  1, let us put Oz(x)=Oii(x) 
iff x ~ I z j  ( ~  is a one-to-one piecewise linear mapping from [ i - l , i )  onto 
to, ~)). 

From the definitions of the Frobenius-Perron operator (see Def. 2.2 in [2]), 
and Oz it follows that (g>0 and ]lgl] = 1) 

lll[./-z,~)P"gll = ~ lll,oP"-iglI+ Z lll,,,P"-*gll 
i = l  i>s 

where 

I~j = O7 ~ ([j - 1, j)) = O~ x ([j - 1, j)). 

(Here and in what follows we denote by flgll 
integrable function g.) 

Using this equality successively, we find that 

the integral over I of an 

where 

. . .  c , , . . . , n , , ( g )  
j n = l  j l = l  

jn>S j . - l =  1 j l = l  

j n = l  j n - - l > s j n - - 2 = l  j l = l  

Jn~  1 j2 = 1 Jl  > S 

C jl...j,,j(g) = II l t j>..j,,jgll , 

I~...j,,j = ~pfa . . . . .  0j~ l ( [ j _  1, j)). 

(2.2) 

(2.3) 
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F r o m  (2.3) it follows that  

C jl,..j~,j(g l)=r l j,,r j, j,_ l ...r j2jlr j~ j, 

for g l =  ~ rljl[j_l,j). 
.i=1 

F r o m  this last equation,  (2.1) and (2.2) it follows that  

= q-qs )Qs)-l-rs+lj, illt~_l,j)p, glbl<~(q~+(l+qs+.. .  , - z  (2.4) 

provided that  s > 5 where a = max {(I - 2 c), c/2}, 

qs= ~ r , j=(1-c2-(~-4)) ,  Q~= ~ rs+lj=~<~9-(2 . . . . .  ) 
j = l  j = l  

Now, if for each s >= 5 we take n~ such that  qT~ < 1/s, then, by the inequali ty 
(2.4), we obtain 

0 <  II lu-1 , j )P" 'g l [ I  < c(1/s + 2-(2 . . . .  2s+4)) +r~+ lj. 

Hence,  for an arbi t rary  interval [ j -  1, j) we have 

lim inf II ltj_ 1,j)Pngl II =0. (2.5) 
n ~ o o  

We now want to show that  (2.5) holds true for an arbi t rary non-negative, 
integrable function f To  this end, we remark  that  the inequali ty f<sga  + ( f  
- s & )  + implies 

0<= 111~3_l,j)P"fl I ~s  Illtj_a,j)P"g 1 II + l l ( f - s  ga) + II 

because P" is a contract ion.  F r o m  this inequality and (2.5) we get the desired 
result because I I ( f - s g l )  + I] ~,0, as s ~ o o .  

If P f  = f for some non-negative,  integrable f ,  then 

0 ~_ II l~j_ 1, j~ f kl = lim inf I} 1 u_ 1, j )P" f  II = 0 
n ~ o o  

for each j = l ,  2 . . . . .  So, we get f = 0  (a.e.). This finishes the proof  concerning 
P. 

Regarding/5,  since ~ = 2 o ~ o 2-1,  the following equality is valid: 

IIl~j/5"fll = [lltj_l,j)P"(Pz-lf)]l for any non-negative,  

integrable function f defined on [0, 1], and for each j = 1, 2 . . . . .  
We already know (from the previous case) that  

lira inf II l u -  1,j~P"(Pa - ~f)ll =0 ,  for any non-negative,  
I 1 ~ o o  

integrable function f defined on [0, 1], and j = 1, 2 . . . . .  Thus, for any such a 
function f we have 

lira inf II l~j/5~f l[ =0 .  
n ~ o o  
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From this it follows that if Pf=f for some f > 0 ,  then f = 0  (a.e.). This 
finishes the proof in the second case, and completes the proof of the theorem. 
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