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Summary. If n is large, a plot of log n independent Brownian paths over 
[0, n] is nearly certain to give the appearance of a shaded region having 
square root boundaries. 

Introduction 

Consider a sequence bi, i =  1, 2, ... of mutually independent Brownian motions 
in one dimension ([3], Sect. 1.2). Write L x = l o g e x  and a ( t ) = ( 2 t L L t )  ~/2 for 
x > 0 ,  t>e .  For  an arbitrary c>0 ,  define plots N,, the region N, and the 
"distance" 1 ~ , - ~ 1  by 

~ , = { ( t ,  Ti(n,t)): 0_<t_< 1, l < _ i < c L n } ,  n=3 ,4 , . . .  

~ = {(t, y): 0_<t_< 1, ly[ <1/~} (1) 
I~. -~1  = u. + v., 

where 
7i(n, t) = bi(n t)/a(n) 

U,= max rain [7i(n, t )-yl  
(t, y ) ~  l < i < c L n  

V,= max max rain 171(n,t)-yl. 
l <_i<_cLn 0 = < t < l  [yl<=l/t 

We prove that ] ~ , - ~ ]  converges to zero in probability as n ~ oo. 

To visualize this result, suppose c L n  paths are simultaneously plotted over 
[0, n], for a large n. Along with this plot we wish to show the iterated 
logarithm boundaries +a(t), e<_t<n. In order to properly view the latter, it is 
necessary to select scales for vertical vs horizontal plotting which are nearly in 
the proport ion a(n): n. In these scales, the iterated logarithm boundaries appear  

* Research of this author was partially supported by the National Science Foundation under 
grant MCS 82-00786 



342 R. LePage and B.M. Schreiber 

to the viewer like square root boundaries, since a(nt)/a(n)=l//t+o(1), 
e/n<-t<_l. Remarkably,  it is nearly certain that the normalized paths 
{(t, 7i(n, t)): 0 <- t <_ 1}, 1 < i_< c L n will appear (at finite resolution) to have com- 
pletely filled the interior region between the boundaries, without crossing 
outside them. 

As might be expected, finer resolution requires a larger n. At coarse 
resolution, the phenomenon is visible in plots for moderate n, as the following 
simulations show. 

It is tempting to think of this result as providing a model for the plume of 
particles left by a rocket in air. 

Outer law. We have need of the following result, which is Proposition 1 of [2] 
stated in self-contained form (see also Lemma 2.2 of [1]). 

Proposition. Let ~ be any symmetric Gaussian measure on the Borel sigma- 
algebra of a real separable Banach space B, and denote by K~ the e-neighborhood 
in B of the unit ball K of the reproducing kernel Hilbert space in B determined 
by #. Then for every e>0  there exist %, % > 1  such that for all r < r  o and n>no, 
# ( ~ K ~ ) >  I - ( L n )  -~=. [] 

In the present context B = C[O, 1],/~ is Wiener measure, 

K =  heB: 3geL2[0, 1],~ g2(s)ds<l,  h(t)= i g ( s ) d s , 0 < t < l  , 
o o 

and f eK~ implies 
vt [o, 1]. 

Fig. 1. Four independent plots, each of ten independent paths for n = 500 
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Now b(nt)/l~n, 0 < t < l  is a Brownian path over [0, 1]. It follows from the 
proposition above that for every e>0  there exist ro, n o > l  such that for 
1 < r < r  0 and n>no, 

P(Y i, t with 1 <_i<_cLn, 0 < t < l ,  lT/(n, t)l > ~ + 1 ~ )  

<=c(Ln)(Ln)-r2-+O, as n~oo .  

This implies the outer law: For every e>0, P ( V , > e ) ~ 0  as n--+ o0. 

Inner law. We prove that the plot ~n is, with high probability, close to all 
points of ~.  For an arbitrary 0 < ~ < 1, consider m, random vertical closed line 
segments of length e/2 whose centers lie in N. The centers of these segments 
are taken to be i.i.d, samples from the uniform distribution on 

- {(t, y): 0__< t < e/2}, and independent of the Brownian paths. Clearly, if m, ~ oo 
then 

P (max  min [](t,y)-~tiH>e)--+O, as n--,oo (2) 
(t, y)e~' 1 <i<mr~ 

where ~ ,  i=  1, 2 . . . .  denote the segment centers. 

Lemma. For each e>0  there is a choice of m,-+oo for which P(A,)-+I where 
A,=A~(e) is defined to be the event that every one of the m~ segments is 
intersected by at least one of the paths {(t, Ti(n,t)), O<t<n}, l <_i<cLn. [] 

Proof of the Lemma. Let ~ be the a-algebra generated by the cLn paths, and 
,4 be the event that the first random segment is intersected by at least one of 
the cLn paths. The center ~1 of the first segment will be written (7, Y). Since 
the paths are conditionally i.i.d, given (7, Y), 

P(AC)=EP(all cLn paths miss the first segment ] 7, Y) 

=E(1 -P(b(nT)ea(n)[Y-~/4, Y+e/43 [ 7, y))cL, 

=E(1 - P(b(1)~ ]/2LLnn/T [Y-el4,  Y + e/4]17, y))cL,. 

By the symmetry of the standard normal density and its monotonicity over 

[0, oo), and since ( ~ ) ( l / - T - e / 4 )  >0  a.s., the last line above is 

<E(1 - P ( b ( 1 ) e ~ [ V / T - - e / 4 ,  ]//T-+e/4] [ 7, y))cL. 

= E(1 -P(b(1)e]/2LLnn I1 - e / 4 ~ ,  1 + e/4l /T ] 17, y))cL.. 

Since P(b(1)e[u-av, u+o~v]) is increasing in c~ if c~>0 and ev<u, the 
above is 

=<(1 -P (b ( l ) e  2]/2LLn [1 -e/4, 1 +e/4])) ~L". 

Provided 2]/2LLn(1-e/4) > 1, the line above is 

< (1 -(~/2) ~ ( 1 / 1 / Y s  ~)~" 

<exp-(cel/LLs as n ~ o e .  
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Using the fact that  the m n segments are condi t ional ly  i i .d.  given ~ ,  and  writ ing 
p, for the b o u n d  ob ta ined  on  the last line above, 

P(A,) =EP(A,  I ~J) 

= E (P (A I ~))m. 

>(P(A)) m" 

<=(1 -p,)m'--* l, 

provided m,--* oc slowly enough.  [ ]  

From (2) and the lemma, follow the inner law: For every e > 0 ,  P(U,>e)--+O as 
n--> oo. 

Main  Result. C o m b i n i n g  the inner  and  outer  laws gives the following result. 

Theorem. For every e > 0 ,  P(I~,-~I>~)~0 as n - - , ~ .  [ ]  

This work was undertaken while B. Schreiber, of Wayne State University, was a Visiting Professor 
of Mathematics at Michigan State University, whose hospitality he wishes to acknowledge with 
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