An Iterated Logarithm Law for Families of Brownian Paths

Raoul LePage and Bertram M. Schreiber*
Department of Statistics and Probability, Michigan State University, Wells Hall, East Lansing, MI 48824-1027, USA

Summary. If n is large, a plot of $\log n$ independent Brownian paths over $[0, n]$ is nearly certain to give the appearance of a shaded region having square root boundaries.

Introduction

Consider a sequence $b_{i}, i=1,2, \ldots$ of mutually independent Brownian motions in one dimension ([3], Sect. 1.2). Write $L x=\log _{e} x$ and $a(t)=(2 t L L t)^{1 / 2}$ for $x>0, t \geqq e$. For an arbitrary $c>0$, define plots \mathscr{P}_{n}, the region \mathscr{R}, and the "distance" $\left|\mathscr{P}_{n}-\mathscr{R}\right|$ by

$$
\begin{align*}
\mathscr{P}_{n} & =\left\{\left(t, \gamma_{i}(n, t)\right): 0 \leqq t \leqq 1,1 \leqq i \leqq c \operatorname{Ln}\right\}, \quad n=3,4, \ldots \\
\mathscr{R} & =\{(t, y): 0 \leqq t \leqq 1,|y| \leqq \sqrt{t}\} \tag{1}\\
\left|\mathscr{P}_{n}-\mathscr{R}\right| & =U_{n}+V_{n},
\end{align*}
$$

where

$$
\begin{aligned}
\gamma_{i}(n, t) & =b_{i}(n t) / a(n) \\
U_{n} & =\max _{(t, y) \in \mathscr{R}} \min _{1 \leqq i \leqq c L n}\left|\gamma_{i}(n, t)-y\right| \\
V_{n} & =\max _{1 \leqq i \leqq c L_{n}} \max _{0 \leqq t \leqq 1} \min _{|y| \leqq v_{t}}\left|\gamma_{i}(n, t)-y\right| .
\end{aligned}
$$

We prove that $\left|\mathscr{P}_{n}-\mathscr{R}\right|$ converges to zero in probability as $n \rightarrow \infty$.
To visualize this result, suppose $c \operatorname{Ln}$ paths are simultaneously plotted over $[0, n]$, for a large n. Along with this plot we wish to show the iterated logarithm boundaries $\pm a(t), e \leqq t \leqq n$. In order to properly view the latter, it is necessary to select scales for vertical v s horizontal plotting which are nearly in the proportion $a(n): n$. In these scales, the iterated logarithm boundaries appear

[^0]to the viewer like square root boundaries, since $a(n t) / a(n)=\sqrt{t}+o(1)$, $e / n \leqq t \leqq 1$. Remarkably, it is nearly certain that the normalized paths $\left\{\left(t, \gamma_{i}(n, t)\right): 0 \leqq t \leqq 1\right\}, 1 \leqq i \leqq c L n$ will appear (at finite resolution) to have completely filled the interior region between the boundaries, without crossing outside them.

As might be expected, finer resolution requires a larger n. At coarse resolution, the phenomenon is visible in plots for moderate n, as the following simulations show.

It is tempting to think of this result as providing a model for the plume of particles left by a rocket in air.

Outer law. We have need of the following result, which is Proposition 1 of [2] stated in self-contained form (see also Lemma 2.2 of [1]).

Proposition. Let μ be any symmetric Gaussian measure on the Borel sigmaalgebra of a real separable Banach space B, and denote by K_{ε} the ε-neighborhood in B of the unit ball K of the reproducing kernel Hilbert space in B determined by μ. Then for every $\varepsilon>0$ there exist $r_{0}, n_{0}>1$ such that for all $r<r_{0}$ and $n>n_{0}$, $\mu\left(\sqrt{2 L L n} K_{\varepsilon}\right) \geqq 1-(L n)^{-r^{2}}$.

In the present context $B=C[0,1], \mu$ is Wiener measure,

$$
K=\left\{h \in B: \exists g \in L^{2}[0,1], \int_{0}^{1} g^{2}(s) d s \leqq 1, h(t)=\int_{0}^{t} g(s) d s, 0 \leqq t \leqq 1\right\},
$$

and $f \in K_{\varepsilon}$ implies

$$
|f(t)|<\sqrt{t}+\varepsilon, \quad \forall t \in[0,1] .
$$

Fig. 1. Four independent plots, each of ten independent paths for $n=500$

Now $b(n t) / \sqrt{n}, 0 \leqq t \leqq 1$ is a Brownian path over [0,1]. It follows from the proposition above that for every $\varepsilon>0$ there exist $r_{0}, n_{0}>1$ such that for $1<r<r_{0}$ and $n>n_{0}$,

$$
\begin{aligned}
& P\left(\exists i, t \text { with } 1 \leqq i \leqq c L n, 0 \leqq t \leqq 1,\left|\gamma_{i}(n, t)\right|>\varepsilon+\sqrt{t}\right) \\
& \leqq c(L n)(L n)^{-r^{2} \rightarrow 0,} \text { as } n \rightarrow \infty .
\end{aligned}
$$

This implies the outer law: For every $\varepsilon>0, P\left(V_{n}>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$.
Inner law. We prove that the plot \mathscr{P}_{n} is, with high probability, close to all points of \mathscr{R}. For an arbitrary $0<\varepsilon<1$, consider m_{n} random vertical closed line segments of length $\varepsilon / 2$ whose centers lie in \mathscr{R}. The centers of these segments are taken to be i.i.d. samples from the uniform distribution on \mathscr{R} $-\{(t, y): 0 \leqq t<\varepsilon / 2\}$, and independent of the Brownian paths. Clearly, if $m_{n} \rightarrow \infty$ then

$$
\begin{equation*}
P\left(\max _{(t, y) \in \mathscr{R}} \min _{1 \leqq i \leqq m_{n}}\left\|(t, y)-\pi_{i}\right\|>\varepsilon\right) \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty \tag{2}
\end{equation*}
$$

where $\pi_{i}, i=1,2, \ldots$ denote the segment centers.
Lemma. For each $\varepsilon>0$ there is a choice of $m_{n} \rightarrow \infty$ for which $P\left(A_{n}\right) \rightarrow 1$ where $A_{n}=A_{n}(\varepsilon)$ is defined to be the event that every one of the m_{n} segments is intersected by at least one of the paths $\left\{\left(t, \gamma_{i}(n, t)\right), 0 \leqq t \leqq n\right\}, 1 \leqq i \leqq c L n$.
Proof of the Lemma. Let \mathscr{F} be the σ-algebra generated by the $c L n$ paths, and A be the event that the first random segment is intersected by at least one of the $c L n$ paths. The center π_{1} of the first segment will be written (T, Y). Since the paths are conditionally i.i.d. given (T, Y),

$$
\begin{aligned}
P\left(A^{c}\right) & =E P(\text { all } c L n \text { paths miss the first segment } \mid T, Y) \\
& =E(1-P(b(n T) \in a(n)[Y-\varepsilon / 4, Y+\varepsilon / 4] \mid T, Y))^{c L n} \\
& =E(1-P(b(1) \in \sqrt{2 L L n / T}[Y-\varepsilon / 4, Y+\varepsilon / 4] \mid T, Y))^{c L n} .
\end{aligned}
$$

By the symmetry of the standard normal density and its monotonicity over $[0, \infty)$, and since $(\sqrt{2 L L n / T})(\sqrt{T}-\varepsilon / 4)>0$ a.s., the last line above is

$$
\left.\left.\left.\begin{array}{l}
\leqq E(1-P(b(1) \in \sqrt{2 L L n} / T
\end{array} \sqrt{T}-\varepsilon / 4, \sqrt{T}+\varepsilon / 4\right] \mid T, Y\right)\right)^{c L n} .
$$

Since $P(b(1) \in[u-\alpha v, u+\alpha v])$ is increasing in α if $\alpha>0$ and $\alpha v<u$, the above is

$$
\leqq(1-P(b(1) \in \sqrt{2 L L n}[1-\varepsilon / 4,1+\varepsilon / 4]))^{c L n} .
$$

Provided $\sqrt{2 L L n}(1-\varepsilon / 4)>1$, the line above is

$$
\begin{aligned}
& \leqq\left(1-(\varepsilon / 2) \sqrt{2 L L n}(1 / \sqrt{2 \pi})(L n)^{-1}\right)^{c L n} \\
& \leqq \exp -(c \varepsilon \sqrt{L L n} / 2 \sqrt{\pi}) \rightarrow 0, \text { as } n \rightarrow \infty
\end{aligned}
$$

Using the fact that the m_{n} segments are conditionally i.i.d. given \mathscr{F}, and writing p_{n} for the bound obtained on the last line above,

$$
\begin{aligned}
P\left(A_{n}\right) & =E P\left(A_{n} \mid \mathscr{F}\right) \\
& =E(P(A \mid \mathscr{F F}))^{m_{n}} \\
& \geqq(P(A))^{m_{n}} \\
& \leqq\left(1-p_{n}\right)^{m_{n}} \rightarrow 1
\end{aligned}
$$

provided $m_{n} \rightarrow \infty$ slowly enough.
From (2) and the lemma, follow the inner law: For every $\varepsilon>0, P\left(U_{n}>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$.

Main Result. Combining the inner and outer laws gives the following result.
Theorem. For every $\varepsilon>0, P\left(\left|\mathscr{P}_{n}-\mathscr{R}\right|>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$.

This work was undertaken while B. Schreiber, of Wayne State University, was a Visiting Professor of Mathematics at Michigan State University, whose hospitality he wishes to acknowledge with gratitude.

References

1. deAcosta, A.: A new proof of the Hartman-Winter law of the iterated logarithm. Ann. Probab. 11, 270-276 (1983)
2. LePage, R.: Log log law for Gaussian processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 25, 103-108 (1973)
3. McKean, H.P.: Stochastic integrals. New York-London: Academic Press 1969

[^0]: * Research of this author was partially supported by the National Science Foundation under grant MCS 82-00786

