Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © Springer-Verlag 1985

An Iterated Logarithm Law for Families of Brownian Paths

Raoul LePage and Bertram M. Schreiber*

Department of Statistics and Probability, Michigan State University, Wells Hall, East Lansing, MI 48824-1027, USA

Summary. If n is large, a plot of log n independent Brownian paths over [0, n] is nearly certain to give the appearance of a shaded region having square root boundaries.

Introduction

Consider a sequence b_i , i=1, 2, ... of mutually independent Brownian motions in one dimension ([3], Sect. 1.2). Write $Lx = \log_e x$ and $a(t) = (2tLLt)^{1/2}$ for x>0, $t \ge e$. For an arbitrary c>0, define plots \mathcal{P}_n , the region \mathcal{R} , and the "distance" $|\mathcal{P}_n - \mathcal{R}|$ by

$$\mathcal{P}_n = \{(t, \gamma_i(n, t)): 0 \leq t \leq 1, 1 \leq i \leq c Ln\}, \quad n = 3, 4, \dots$$
$$\mathcal{R} = \{(t, y): 0 \leq t \leq 1, |y| \leq \sqrt{t}\}$$
$$|\mathcal{P}_n - \mathcal{R}| = U_n + V_n, \tag{1}$$

where

$$\begin{aligned} \gamma_i(n, t) &= b_i(nt)/a(n) \\ U_n &= \max_{(t, y) \in \mathcal{R}} \min_{1 \le i \le cL_n} |\gamma_i(n, t) - y| \\ V_n &= \max_{1 \le i \le cL_n} \max_{0 \le t \le 1} \min_{|y| \le \sqrt{t}} |\gamma_i(n, t) - y| \end{aligned}$$

We prove that $|\mathcal{P}_n - \mathcal{R}|$ converges to zero in probability as $n \to \infty$.

To visualize this result, suppose cLn paths are simultaneously plotted over [0, n], for a large *n*. Along with this plot we wish to show the iterated logarithm boundaries $\pm a(t)$, $e \le t \le n$. In order to properly view the latter, it is necessary to select scales for vertical vs horizontal plotting which are nearly in the proportion a(n): *n*. In these scales, the iterated logarithm boundaries appear

^{*} Research of this author was partially supported by the National Science Foundation under grant MCS 82-00786

to the viewer like square root boundaries, since $a(nt)/a(n) = \sqrt{t + o(1)}$, $e/n \le t \le 1$. Remarkably, it is nearly certain that the normalized paths $\{(t, \gamma_i(n, t)): 0 \le t \le 1\}$, $1 \le i \le cLn$ will appear (at finite resolution) to have completely filled the interior region between the boundaries, without crossing outside them.

As might be expected, finer resolution requires a larger n. At coarse resolution, the phenomenon is visible in plots for moderate n, as the following simulations show.

It is tempting to think of this result as providing a model for the plume of particles left by a rocket in air.

Outer law. We have need of the following result, which is Proposition 1 of [2] stated in self-contained form (see also Lemma 2.2 of [1]).

Proposition. Let μ be any symmetric Gaussian measure on the Borel sigmaalgebra of a real separable Banach space B, and denote by K_{ε} the ε -neighborhood in B of the unit ball K of the reproducing kernel Hilbert space in B determined by μ . Then for every $\varepsilon > 0$ there exist r_0 , $n_0 > 1$ such that for all $r < r_0$ and $n > n_0$, $\mu(\sqrt{2LLn} K_{\varepsilon}) \ge 1 - (Ln)^{-r^2}$. \Box

In the present context B = C[0, 1], μ is Wiener measure,

$$K = \left\{ h \in B \colon \exists g \in L^2[0, 1], \int_0^1 g^2(s) \, ds \leq 1, \, h(t) = \int_0^t g(s) \, ds, \, 0 \leq t \leq 1 \right\},\$$

and $f \in K_{\varepsilon}$ implies

$$|f(t)| < \sqrt{t} + \varepsilon, \quad \forall t \in [0, 1].$$

Fig. 1. Four independent plots, each of ten independent paths for n = 500

Now $b(nt)/\sqrt{n}$, $0 \le t \le 1$ is a Brownian path over [0, 1]. It follows from the proposition above that for every $\varepsilon > 0$ there exist $r_0, n_0 > 1$ such that for $1 < r < r_0$ and $n > n_0$,

$$P(\exists i, t \text{ with } 1 \leq i \leq cLn, 0 \leq t \leq 1, |\gamma_i(n, t)| > \varepsilon + \sqrt{t})$$
$$\leq c(Ln)(Ln)^{-r^2} \to 0, \quad \text{as} \quad n \to \infty.$$

This implies the outer law: For every $\varepsilon > 0$, $P(V_n > \varepsilon) \rightarrow 0$ as $n \rightarrow \infty$.

Inner law. We prove that the plot \mathscr{P}_n is, with high probability, close to all points of \mathscr{R} . For an arbitrary $0 < \varepsilon < 1$, consider m_n random vertical closed line segments of length $\varepsilon/2$ whose centers lie in \mathscr{R} . The centers of these segments are taken to be i.i.d. samples from the uniform distribution on $\mathscr{R} - \{(t, y): 0 \le t < \varepsilon/2\}$, and independent of the Brownian paths. Clearly, if $m_n \to \infty$ then

$$P(\max_{(t, y)\in\mathscr{R}} \min_{1\leq i\leq m_n} ||(t, y) - \pi_i|| > \varepsilon) \to 0, \quad \text{as} \quad n \to \infty$$
(2)

where π_i , i = 1, 2, ... denote the segment centers.

Lemma. For each $\varepsilon > 0$ there is a choice of $m_n \to \infty$ for which $P(A_n) \to 1$ where $A_n = A_n(\varepsilon)$ is defined to be the event that every one of the m_n segments is intersected by at least one of the paths $\{(t, \gamma_i(n, t)), 0 \le t \le n\}, 1 \le i \le c Ln$. \Box

Proof of the Lemma. Let \mathscr{F} be the σ -algebra generated by the cLn paths, and A be the event that the first random segment is intersected by at least one of the cLn paths. The center π_1 of the first segment will be written (T, Y). Since the paths are conditionally i.i.d. given (T, Y),

$$P(A^{c}) = EP(\text{all } cLn \text{ paths miss the first segment} | T, Y)$$

= $E(1 - P(b(nT) \in a(n)[Y - \varepsilon/4, Y + \varepsilon/4] | T, Y))^{cLn}$
= $E(1 - P(b(1) \in \sqrt{2LLn/T} [Y - \varepsilon/4, Y + \varepsilon/4] | T, Y))^{cLn}$.

By the symmetry of the standard normal density and its monotonicity over $[0, \infty)$, and since $(\sqrt{2LLn/T})(\sqrt{T-\varepsilon/4}) > 0$ a.s., the last line above is

$$\leq E(1 - P(b(1) \in \sqrt{2LLn/T} \left[\sqrt{T} - \varepsilon/4, \sqrt{T} + \varepsilon/4\right] | T, Y))^{cLn}$$

= $E(1 - P(b(1) \in \sqrt{2LLn} \left[1 - \varepsilon/4\sqrt{T}, 1 + \varepsilon/4\sqrt{T}\right] | T, Y))^{cLn}.$

Since $P(b(1) \in [u - \alpha v, u + \alpha v])$ is increasing in α if $\alpha > 0$ and $\alpha v < u$, the above is

$$\leq (1 - P(b(1) \in \sqrt{2LLn} [1 - \varepsilon/4, 1 + \varepsilon/4]))^{cLn}.$$

Provided $\sqrt{2LLn(1-\epsilon/4)} > 1$, the line above is

$$\leq (1 - (\varepsilon/2)\sqrt{2LLn}(1/\sqrt{2\pi})(Ln)^{-1})^{cLn}$$

$$\leq \exp(-(c\varepsilon\sqrt{LLn}/2\sqrt{\pi}) \to 0, \text{ as } n \to \infty.$$

Using the fact that the m_n segments are conditionally i.i.d. given \mathcal{F} , and writing p_n for the bound obtained on the last line above,

$$P(A_n) = EP(A_n | \mathscr{F})$$

= $E(P(A | \mathscr{F}))^{m_n}$
 $\geq (P(A))^{m_n}$
 $\leq (1 - p_n)^{m_n} \to 1,$

provided $m_n \rightarrow \infty$ slowly enough. \Box

From (2) and the lemma, follow the inner law: For every $\varepsilon > 0$, $P(U_n > \varepsilon) \to 0$ as $n \to \infty$.

Main Result. Combining the inner and outer laws gives the following result.

Theorem. For every $\varepsilon > 0$, $P(|\mathscr{P}_n - \mathscr{R}| > \varepsilon) \to 0$ as $n \to \infty$.

This work was undertaken while B. Schreiber, of Wayne State University, was a Visiting Professor of Mathematics at Michigan State University, whose hospitality he wishes to acknowledge with gratitude.

References

- 1. deAcosta, A.: A new proof of the Hartman-Winter law of the iterated logarithm. Ann. Probab. 11, 270-276 (1983)
- LePage, R.: Log log law for Gaussian processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 25, 103-108 (1973)
- 3. McKean, H.P.: Stochastic integrals. New York-London: Academic Press 1969

Received May 20, 1983

344