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Summary. If D_cN d, d>  3, is bounded and has Lipschitz boundary then the 
expected lifetime of any Brownian h-path process in D is finite. 

Let (P~, Xt) be Brownian motion killed on exiting D. If p(t, x, y) is the transition 
density of Brownian motion killed on exiting D and h >0  is harmonic in D, set 

ph(t, X, y) = h(x ) -  1 p(t, x, y) h(y) 

and let p h denote the measure on continuous paths induced by ph. These are 
the h-paths of Doob [5]. 

In this paper we show that Brownian h-paths, h>0,  harmonic in D_Nd,  
d > 3, have finite expected lifetime provided the bounded region D has a Lip- 
schitz boundary. We use the boundary Harnack principle and an estimate of 
Dahlberg on harmonic measure. 

Define for B ~  d, z~= in f{ t>0 :  X(t)~B}.  

Theorem 1. Let  D be a bounded domain in N d, d> 3, and suppose ~?D is Lipschitz. 
Then there is a constant c(D) such that if h is positive and harmonic in D, 

E~ zD <=c(D), x sD .  

This result is companion to Cranston-McConnell [3] where the following theo- 
rem was proved. 

Theorem 2. I f  D is a domain in IR 2, h >0  is harmonic in D, then 

Eh~ z D < cm(D) 

where c is an absolute constant and m is Lebesgue measure. 

Note there is no assumption on the smoothness of the boundary in Theo- 
rem 2. 

In addition, an example was given in [31 of a bounded domain D in N 3 
together with an h where the lifetime of the h-path process was infinite almost 
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surely. One of the properties of Lipschitz domains is (2) below, that the num- 
ber of balls in a chain connecting two points in D can be bounded in terms of 
the distance of those points from the boundary of D. This property is violated 
in the above mentioned example. 

Any constants that appear will depend only on D and d. Their value may 
change from line to line. 

We collect results of Jerison-Kenig [7] and Dahlberg [4] and add a few 
that will be useful. The domain D will be assumed Lipschitz and bounded. 
First, Hunt  and Wheeden [6] showed the minimal Martin boundary, A1, is 
equal to the Euclidean boundary for domains D with Lipschitz boundary and 
there are no nonminimal Martin boundary points. Thus if xo~D is fixed and 
wX(" ) = PX (X (zD)~') is harmonic measure and A (Q, r) = B(Q, r) c~ D, B(Q, r) = { y: l Y 
-QI  <r} then in [7] it is shown that all minimal harmonic functions arise as 

wX(~(Q,r)) 
K(x, Q)-- lim Q~OD. 

r~o w~~ ' 

We state two properties of Lipschitz domains needed in the proofs of the 
lemmas. 

There exist positive numbers M and r o such that 

(1) If r<r o and Q~OD, there exists A=A,(Q)eD with 

M - l r  <IA-QI<r .  

M -  1 r < dist(A, 0D). 

(2) If xl ,x2~D and dist(xj,~D)>e, j = 1 , 2 ,  and IXl--X2[<2ke then there is a 
chain of M k  balls B 1 . . . . .  B~k connecting xl  and x 2 where x~ is the center of 
B1, x 2 is the center of BMk , Bjc~Bj+I~-ff) for j = l , . . . , M k - 1 ,  B:cD,  M -~ 
diam Bj < dist (B j, ~D) < M diam B ~. 

The proof of (1) and (2) ~ can be found in [7]. We will assume 
dist (x0,0D) > M r o. 

The chain of balls in (2) is called a Harnack chain. Note that each ball in 
the chain may have its radius increased by a constant factor, namely (1 + M-1),  
and each dilated ball will also be in D. Thus Harnack's inequality implies that 
if h is positive and harmonic in D, 

h(x)<=clh(y), x, yEB-, j = l  . . . . .  Mk, 

where c~ > 1 depends only on M. Therefore with x~ and x 2 as in (2), 

(3) c? Mk h(x2) <=h(Xl) <=c~ffk h(x2). 

We will use (3) to obtain upper and lower bounds for K(x, Q). Neil Falkner has 
pointed out that one can apply (3) directly to general harmonic h instead of 
K(-, Q) with x 2 = x  o, x I = x  and obtain Lemma 5 with the inclusion (9) replaced 
by An~_{x:dist(x,~D)<__M2 -n~} for some 7>0.  Our method gives additional 
information about the kernel function K(. ,  Q). 

The next lemma is a version of the boundary Harnack principle. 
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Lemma 1 (Jerison-Kenig [7]). There exists a positive constant c such that if 
Ar(Q) is as in (1), for all x e D \ B ( Q ,  Mr),Qe~?D, 

(4) c -1K(A,(Q),Q)wX(A(Q,r))<K(x,Q)<cK(A~(Q),Q)wX(A(Q,r)) .  

Another result we need is the following due to Dahlberg [4] though we will 
only use the upper bound. 

Lemma 2. There exist positive constants c~>�89 c and fl such that 

(5) C -1 r~(d-1) < wX~ <=cr~(d-1). 

Finally, the following lemma is an easy consequence, using the Harnack 
chain condition, of a lemma in [7]. 

Lemma3.  There is a positive constant c such that if r <r  o and Q ~ D  then 

(6) wAr(e)(A(Q, r)) >= c. 

In view of Lemma 1, upper and lower bounds for K(x,Q) will involve con- 
trolling the growth of K(A~(Q),Q). 

Lemma 4. There exist positive constants c, a, b such that for r <r  o, QE3D, 

(7) c-  1 r-a <= K(A~(Q), Q) < c r-b. 

Proof For the upper bound observe that there is a Harnack chain connecting 
Ar(Q) to x o of length M k  where 

k---l~176176 " k  M - l r  ] 

Thus by (3) 

K(Ar(Q), Q) c f  k K(Xo, Q) 
C M k  

= c r  - b  

with b = M l o g e c  1 >0, since c 1>1. 
To get the lower bound observe that by (4) 

c K(Ar(Q), Q) wX~ (Q, r))>= K(x  o, Q) 

and since K(xo, (2)= 1, (5) implies 

K(Ar(Q), Q) > c r -a 

with a=c~(d-1). [] 

In the proof of Theorem 1 we need to control the Lebesgue measure, m, of 
the sets 

A, = {x: 2" < K(x, O)} 
and 

B, = {x: K(x, Q) < 2 -"} 
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for n large. For  A n we need an upper bound for K(x, Q) and for B n we need a 
lower bound for K(x,Q). From Lemmas 1 and 4 

(8) c -1 r -~wX(A(Q,r ) )<K(x ,Q)<cr  -b, x~D'-.B(Q, Mr). 

Notice the term wX(A(Q,r)) has disappeared from the right hand side of (8) as it 
is bounded by one. 

Lemma5.  I f  n>=N and QeOD, then 

(9) A,~_B(Q, Mr,), with r ,=c2 -"/b, 

and 

(10) B,~_{x:dist(x,~D)<s,},  with s , = c 2  -"~ 

for some 7>0.  Here N is taken to satisfy r s<r  o and sN<r o. 

Proof The inclusion (9) is immediate from the upper bound in (8). 

To establish (10) we need a lower bound for wX(A(Q,r)) for dist(x, aD)>r. 
For  such x there is a Harnack chain connecting x and At(Q) of length at most 

Mk,  k_'~log2 (M di-armD ). Thus by (3) and (6), for dist(x, OD)>r, 

(11) w ~ (A (Q, r)) >= c 7 Mk W A,(e~ (A (Q, r)) 

> c r  b, for r<ro, 

where b = M l o g 2 c l > O .  Combining (8) and (11) leads to 

K(x, Q) > c r b- ~ for dist(x, aD) > r. 

Then taking r = s , = 2  -"~, and dist(x,~D)>s,  we have K(x,Q)>csb, -a 
=c2-"~(b-"~>2-" ,  n > N ,  provided 7 > 0  is chosen sufficiently small. This gives 
the inclusion (10). []  

We need the following probabilistic lemmas which do not assume aD is 
Lipschitz. 

L e m m a 6 .  / f  D~_I( e and h(x)= ~ K(x,Q)~(dQ) for Iz a positive measure on A 1 
then ~ 1 

Eh ze = h(x) -1 5 K(x, Q) E~ ('' Q) z D #(dQ). 
al 

Proof See P.-A. Meyer [9] p. 96. []  

Lemma 7. Let D c N  a be open. There exists a constant ca, independent of D, such 
that 

Ex zo<=cam(D) z/a, x~D, 

where m is Lebesgue measure. 

Proof. See Chung [ i ]  or Cranston-McConnell [3] for the two dimensional re- 
sult which extends readily to higher dimensions. [] 
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Proof (of  Theorem 1). We will show 

(12) Eh "co < c (D) 

for min imal  h, The result for general  h follows using L e m m a  6 since if 

h(x) = ~ K(x, Q)I~(dQ), 
Aa 

then 

Eh "co=h(x) -1 ~ K(x, Q)E~("~ 
A1 

<=c(D)h(x) -1 ~ K(x,Q)#(dQ) by (2.14) 
A~ 

=c(D). 

N o w  for (12) take h(" )= K(., Q) and define 

C, = {x: K(x, Q) = 2"}, 

D. = {x: 2"-  1 <K(x, Q) < 2  n+ 1}. 

Then  set 

U, = 4+ {upcrossings of [ 2 - " -  1, 2 - " ]  by h(Xt)-  1} 

V, = 4~ {downcrossings of [2-" ,  2 -"+  1] by h(Xt)- i}. 

Suppose  x~Dk, as it mus t  be for some k. Then  

h - -  h h h . Ex "CD -- Ex "CD~ + Ex [Ex,:I:, k "c o; X~D k = 2 k -  1 ] + E~ [Ex,:D ~ "co, X.~o,, = 2k + ! ] 

h < Eh'CD~ + sup E~ z D + sup E z'c D. 
z ~ C k -  1 z ~ C k  + 1 

Using the s t rong M a r k o v  p roper ty  at the successive hitt ing t imes to the sets 
C., we have for ze C:, any j, 

Eh'cv < ~ Eh(U,+V,)supE)ZD. 
?t= -- co y ~ C n  

_<_3 super'co,. 
n =  -- oo y E C n  

1 Kai Lai Chung pointed out this simplification of the arguments in [2]; see [2], where the E ~ in 
(3) and (4) should be replaced by E~ 

If  they are finite, U. and V.+ 1 differ by at mos t  one. Since h(Xt) -1 is a p h 
supermart ingale ,  the upcrossing l e m m a l  gives 

2 - n - 1  
Eh~U.~2_.  2 _ . _ 1 - 1  

and thus 
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Now for y~ Ca, 
0 9  

Eyh zD ~__ ~ pf(zD > )Od ~ 
0 

oo 

_-<2 5 g(zD >)Od2 
o 

=2EyzD~ 

<cm(D,) ale, by LemmaT.  

h <--cm(Dk) z/a. If n>_N+l then Dn%A._I~_B(Q, Mrn_I) with rn Similarly, Ex'c o~ _ 
= c 2  -n/b by L e m m a 5 .  If n < - N - 1  then D,~_Blnl_l~{x: dist(x, OD)<=SL~l_l} 
with s , = c 2  -nT, 7 > 0 ,  again by L e m m a  5. Thus,  

E~ZD <=C{ ~ m(B(Q, Mr._l))2/d + ~ re(D,) 2/~ 
n>= N + l InI_<_N 

+ ~ m({x: dist(x, OD)<=Sl,l_l})2/d}+cm(Dk) 2/d 
n < - - N - - 1  

~c(D) 

by the choice of r, and  s,. [ ]  
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