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Products of Markovian Semi-Groups of Operators 
LOREN PITT * 

Summary. Let A and B denote the generators of two contraction semi-groups of operators (pt) and 
(Qt) acting on some Banach space. If the operator A + B has a closure generating a third semi-group 
(R~), then it is known (Trotter) that R ~ = lira (ph Qh)tt/h~. The existence and identification of this limit is 

h ~ 0  

of interest even when the closure of A + B  is not  a generator. A probabilistic version of this problem 
is given here in the case of Markovian  transition semi-groups when the corresponding processes have 
identical hitting distributions. Sufficient conditions for the existence of (R t) are given, and in special 
cases its generator is identified. 

Introduction 

If (pt) and (Qt) are two continuous contraction semi-groups of operators on 
a Banach space V, the product (Po Q)t may be defined as 

(0.1) ( p o Q )t _ lim ( ph Qh)[t/h] 
--h~O 

if this limit exists in some appropriate topology, (It/h] is the greatest integer in t/h). 
Trotter considered the existence of such products in [6], and obtained the fol- 
lowing theorem. 

Theorem (Trotter). Suppose that A and B are the strong generators of (U) and 
(Qt) and that the intersection NA c~ Nn of their domains is dense in V. Then A+ B 
has a closure which generates a continuous semi-group 

g t =  strong ~im (ph Qh)lt/hl 

if and only if, the range of 2 I -  (A + B) is dense in V for some 2 > 0. 
In the study of Markov processes products that are similar to those considered 

by Trotter arise. The simplest example of this is L6vy's decomposition for the 
characteristic functions of processes with independent increments, which may be 
interpreted as a theorem about sums of Markovian generators. 

The motivation for this work arises from the fact that in many problems of 
this type, the conditions of Trotter's Theorem are not satisfied, and yet, one can 
check explicitly that the limit in (0.1) exists. The example of uniform translations 
in opposite directions, which is given in Section 4, shows that NA c~ ~B may 
contain only one element while the limit in (0.1) exists and equals the identity 
operator I. 

* This paper is part of a Ph.D. thesis written at Princeton University. The research was done with 
the partial support  of the Office of Army Research. The author  also wishes to thank his thesis super- 
visor Professor W. Feller for his advice and interest in this work. 
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In this paper we give a probabilistic analysis of the convergence of (ph Qh)[t/h] 
for a class of Markovian semi-groups. In contrast to Trotter's results involving 
analytic assumptions about the generators, we will impose probabilistic conditions 
on the corresponding Markov processes. In particular, we assume that (U) 
and (Q~) are Hunt semi-groups on the same space E, and that the (Qt) process (Yt) 
is obtainable from the (pt) process (X,) by means of a random time change. 

With this assumption we will find stopping times {Th(t)} for the process (X,) 
such that the kernels (ph Qh)[~/h] are represented explicitly as 

(ph Qh)[t/hl f (x)= E x f (X~,)). 

Conditions are found which guarantee the convergence of 7h (t) as h ~ 0, and this 
gives corresponding theorems about the kernels (ph Qh)[t/hl. 

When restricted to non-singular diffusions on IR 1 the results assume the 
following simplified form (Section 3). 

Let (X~) and (Yt) be two diffusions on IR 1 with transition semi-groups (U) 
and (Q~) and with generators given by two of Feller's generalized differential 
operators; namely 

A--DmDx and B=D,D~.  

If the measures m and n are not orthogonal, then 

(p o Q)t f (x)= ~im (ph Qh)[t/hl f (x) 

exists for each bounded continuous function f. The semi-group (P o Q)~ corresponds 
to a process whose generator is formally given by 

C = A + B = D  u D x 

dm dn 
where d#=  dv d-~-dv and dv=dm+dn. 

Ifm and n are smooth, in which case Trotter's theorem applies, the operators A 
and B are of the form 

A f(x)=a(x) f"(x), B f(x)=b(x) f"(x) 

and C is simply given by 

C f(x) = (a (x) + b (x)) f "  (x). 

Intuitively, this may be interpreted by saying that the product process is obtained 
by adding the "speeds" of (Xt) and (Y0. 

In general, our conditions are independent of Trotter's but when both are 
applicable they yield analogous results. Unfortunately, the results are tied to a 
special class of semi-groups and the methods do not seem to be easily generalized. 
The general semi-group practitioner will perhaps find our conditions of interest as 
a guide to, and an upper bound on, what is true in general. 
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Section 1 is a collection of standard definitions and notations. The main results 
are stated in Section 2 and proved in Section 5. These are applied to non-singular 
diffusions on IR z in Section 3. Examples of atypical behavior which occurs with 
translation semi-groups are given in Section 4. 

w 1. Definitions and Notations 1 

Let E denote a lo_cally compact separable metric space. We adjoin an ideal 
point A to E so that E = E w {A ) is the one point compactification of E when E 
is not compact and A is isolated in E if E is compact. The Borel a-algebra of E 
(resp. E) is denoted as ~ (resp. ~). 

The notation (U) is used to denote a Borel measurable sub-Markovian semi- 
group of transition kernels on E defined for t => 0 with po equal the identity kernel I. 
We also write (pt) for the extension of (pt) to E determined by 

pt(A, {A})= 1, U(x ,{A})=I-p t (x ,E)  for x~E. 

For convenience we take our basic sample space to be the space s of right 
continuous functions co: [0, oo)--.b2 which satisfy: if co(s)=A then co(t)=A for 
all t>s. To denote the process defined on ~2 we write Xt(co)=X(t, co)--co(t). The 
terminal time of (Xt) is defined as ~=inf{t:  Xt=A} if such t exist and + oQ other- 
wise. The basic a-algebras ~/~ and (J/{t)t>=0 on ~2 are those generated by the sets 
{XsEB } for B ~  and s>0,  (resp. t>_s>O). The shift operator 0 t is given on ~2 
by Xs(O t co)= Xs+t(co ). This induces an operator acting on functions defined on 
~2 by composition, f o 0 t. 

We say (U) admits (Xt) as a realization if for each initial distribution # on E, 
there exists a probability measure P, on (f2, ~ )  satisfying the following three 
properties. 

(1.1) Pu{XosA}=#(A) for each A s ~ .  

(1.2) (Markov property): For each ~-measurable f > 0  and each pair s, t with 
O<_s<_t, 

Eu[f(Xt)l~/gs]=P t ~f(Xs) a.s. 

Here Eu[ . [ J~]  is the conditional expectation given ~ s .  

(1.3) Px(A) is a B-measurable function o fx  for each A in J/{, and satisfies 

P~ (A)= S Px(A) #(dx), 

where Px is the measure corresponding to the initial point distribution at x. 

If (pt) admits the realization (Xt) we may complete the a-algebra /E with 
respect to the measure P~. Taking the intersection over all #, we obtain a new 
a-algebra J V _  Jg. Also, we write A~ to denote the intersection over # of the 
a-algebras ~/g~; where J/ft ~ consists of the elements of Jff which differ from an 
element of ~r only by a pu null set. The process (X,) also has the Markov prop- 
erty (1.2) with respect to the a-algebras (dfft). 

1. A standard reference for this material is R.M. Blumenthal and R. K. Getoor, Markov processes 
and potential theory. New York 1968. 
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A stopping time of (X,) is a X-measurable function T: t 2 ~  [0, ~ ]  such that 
{ T< t} ~ for each t_>_ 0. The shift operator O T is also defined for stopping times 
T by the relation Xt(OTe~)=X(t+ T(o~), e~). With each stopping time T we as- 
sociate the a-algebra 

sffr={A~Jg:  Ac~{T<t}eJ/[~ for all s > t > 0 } .  

The process (Xt) is called a Hunt process and (P') a Hunt semi-group provided 
that (X,) is a strong Markov process and is quasi-left continuous. That is, 

(1.4) For each :~-measurablef>0 and stopping time T, we have 

Ex [f(X~) �9 l{r <=s}ld/lT] = ExT [ f (Xs-  r)]" l(r~} 

a.s. for each fixed s; 

and 

(1.5) for each increasing sequence T .TTof  stopping times we have X r . ~ X T  
a.s. on {T< oo}, as n--. oo. 

�9 A continuous additive functional, abbreviated caf, A of the Hunt process (Xt) 
is a a.s. continuous non-decreasing real valued process {At; t>O} defined on ~2 
and satisfying the following relations. 

(i) Ao=0 and At=limA ~ on {t>~} a.s. 

(ii) A t is J/t-measurable. 

(iii) At+s=At+A~oOt a.s. for t,s>O. 

The sum of two continuous additive functionals is a cal. Also, if f is a non- 
negative measurable function on E and A is a caf one may operate on A with f 

t 

to obtain the caf f .  A given by (f .  A)t--~ f(X~)dA~. The functional A satisfies 
the relation o 

( 1 . 6 )  A(T(co)+R(oo),~)=A(T(co),co)+A(R(a~), 6)T(09)) a.s. 

for each stopping time T and random variable R____ 0. 

Associated with A is its functional inverse ~t:&(t) defined by, a(t, 6o)= 
inf{s: A~(cg)> t} if such s exists or + ~ otherwise. For each t, a(t) is a stopping 
time and as a function of t it is right continuous. Eq. (1.6) easily implies 

( 1 . 7 )  o~(t+s)=o~(t)+~(s)o6)~(,) a.s. 

We use the "time change" ~ (t) to define a new process Yt = X,(0. Because of (1.7), 
(Yt) is seen to be a strong Markov process. 

w 2. The Main Theorems 
In this section we will discuss the limit behavior of the (ph Qh)[t/hl, where (H) 

and (Qt) are Markovian semi-groups on a locally compact separable space E. It 
is also necessary for us to make the assumptions: 

(2.1) (P') and (Qt) admit representations (Xt) and (Y0 that are Hunt processes. 

(2.2) There exists a caf A of (Xt) with inverse a t such that Yt = X~(,). 
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Thus by (2.2) for each ~-measurable f > O  we have 

(2.3) P'f(x)  = Ex f (Xt)  
Qt f (x) = E~ f (X,(t)), 

and for h > 0 
ph Qh f (x) = E~ [Qh f (Xh) ] 

= E~ EEx. / (x , (~ ) ) ] .  
Setting 

~ ; h , l = h + g ( h ) ~  

the last identity takes on the form 

ph Qhf(x) = Ex f(Xyh, 1)" 

Introduce stopping times {•h, k} by 

(2.4) Yh, k + l = ])h, k"~- ~)h, 1 o D~h,k. 

A repeated application of the strong Markov property yields 

(2.5) (ph Qh)k f (x) = Ex f (X~,, ~). 

Eq. (2.5) enables us to make arguments involving the stopping times {?h,k} 
rather than the kernels (U) and (Qt). For technical reasons however we will work 
with a related family Ch (t) of non-additive functionals of (Xt). These are given by 

=(2k)h+(I t - I~ ,~)  if ~h,k <t<Th, k+h 
(2.6) Ch(t) 

=(2k+l)h+(At-A~h,~+h)  if 7h, k+h<t<Th,  k+l, 

where I is defined as It = t A 4. 

The functionals Ch are related to the {Th, g} by the obvious identity 

(2.7) 7h, k = inf{s: Ch (S) > 2 k h}. 

Since for almost all a) the functions It(a) ) and At(a)) are continuous and in- 
creasing we may define the Hellinger integral 

(2.8) tt/hl [ikh_i(k_l)h] [Akh_A(k_l)h] 
<I, A > t= ~im ~ k~= , [ ikh _ t(k_ ~ )h ] + [ Akh -- A(k-1)h] 

This limit is easily seen to exist (see [3]) and defines a caf of (Xt). 

The following theorem is basic. 

Theorem 1. There exists a set f2' ~ Y2 with P~ (Q') = 1 for each x ~ E and such that 
On (2' 

lim Ch(t)=2 (I, A>t for each t>O. 
h~O 
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This theorem is proven in Section 5. In the remainder of this section we discuss 
the implications when applied to {(ph Qh)[t/h]}. 

We first note that under mild conditions Theorem 1 implies that the stopping 
times 7h, It~hi will converge a.s. 

Corollary 1. Let 7 be the functional inverse o f ( I ,  A >. Then for each x ~ E and t > O, 

~im o 7h, [3/ht = 7 (t) a.s. (P~) 

on the set of co for which 7 is continuous at t. 

Proof The theorem implies that Ch(73 )-~ 2 <I, A>~(t)=2t, while the relation 
(2.7) gives Ch(]lh, [r/h])= 2 t. It then follows directly that 7h, ~t/hl ~ 7 (t) if ~ is contin- 
uous at t. 

Using the fact that (Xt) is a Hunt process we obtain 

Proposition 1. I f  7 is a.s. (P~) continuous at t, then 

X~.t~/~1~X~(,) a.s. (P~) on {7( t )<~}.  

Proof It follows easily from the definition that the Hunt process (Xt) has left 
hand limits a.s. on {4< oo}. From this and the fact that (Xt) is right continuous 
it suffices to show that X~;-.X~(t) a.s., where the sequence 7', is given by 7',= 
71/,, [3.,1/x 73. This, in turn, follows at once from the definition of a Hunt process. 

The time change 7(t) is said to have no f ixed discontinuities if for each fixed 
t > 0  and x e E ,  ? is continuous at t, a.s. (P~). (In example (a) of Section 4 7 has a 
fixed discontinuity.) If 7 has no fixed discontinuities then X~,,,~t/hj--, X~(3) a.s. on 
{7(t)< ~}.  We summarize with two propositions which are immediate conse- 
quences of this remark and Proposition 1. 

Proposition 2. Suppose ~ has no f ixed discontinuities and that ( I, A )oo = Go a.s. 
on {4= oe}. Then ?(t)< oo a.s. on {4 = oo} and 

~!m X~,tt/h~= X,(t) a.s. for each t >O. 

Moreover, 
(ph Qh)[t/hl f (x) _+ Ex f (X~(t)) as h - ,  0 

for each x ~ E, t>0 ,  and bounded continuous f on E. 

If the process (X 0 is transient, ( X 3 ~ A  a.s. as t~oo),  then X~,~t/~-~A on 
{3; (t) = oo }. In this case we have the following modification of Proposition 2. 

Proposition 3. I f  (X3) is transient and 7 has no f ixed discontinuities then 

lim (ph Qh)[t/hl f (x) __. E~ f (X~(t)) 
h ~ O  

for each x6E,  t>O, and continuous f vanishing at A. 

The process (X~(t)) may be formally interpreted as being obtained from (Xt) 
by adding the "speeds" of (Xt) and (Yt). To see this we set B t = 13 + A 3 and note that 
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for each sample path c0, the Radon-Nikodym theorem guarantees the existence 
of non-negative functions i(s) and a(s) with 1 - i(s) + a(s) and such that 

t t 

I x = ~ i(s) dBs, At = S a (s) dB s. 
0 0 

The functional (I,  A) is then seen to satisfy 

t 

(2.9) (I,  A) ,=  S i(s) a(s) dB s. 
0 

d~ 
Now the representation Yt=X~(t) gives the formal interpretation of d~-=  i/a 

as the" speed" of (Yt) relative to (X 0. The" speed" of (Xt) should then be identically 
1 and 1/a is the "speed" of Xv(t). This however equals the sum 1 +i /a  of the 
"speeds" of (Xt) and (Yt). 

It is worthwhile noting that the natural state space of the limit process (X~(t)) 
is not in general E but rather a proper subset of E. We give a brief description, 
due to Getoor [2], of this situation. For a set A ~ E ,  TA=--inf{t>O: XtEA } o r  

+ ~ if this set is empty, is called the hitting time of A. If A is analytic it is known 
that T A is a stopping time and that P~ {TA=0 } is either zero or 1. If A is analytic 
and Px{TA=0} = 1, then x is said to be regular for A. For a general set A we say 
x is regular for A if A contains an analytic set B with x regular for B. The set A 
is said to be finely closed if A contains all points that are regular for A. A is called 
nearly Borel (relative to Xt), if for each initial distribution #, there are Borel sets 
B 1 and B 2 with B I ~ A ~ B  2 and such that P~{XtEB2-B 1 for some t_>0}=0. 

The fine support F of the caf (I,  A) is given by 

V={x: 1}, 
here St is again the inverse of (I,  A). Then Getoor [2], establishes the following 
results. 

(i) F is a finely closed nearly Borel set. 

(ii) Each x in F is regular for F. 

(iii) If ( i ,  A ) t + ~ - ( I ,  A ) t > 0  for each e>0,  then Xt~F a.s. 

(iv) If XtsF ,  then (I ,  A) t+~- ( I ,  A)t_~>0 for each e > 0  a.s. 

From this it follows that X.r almost surely for each t>0,  and that F is 
the natural state space of XT( 0. In Section 3 we show that for 1-dimensional 
diffusions F may be an arbitrary closed set. This simple description of F is how- 
ever an exception, and no general description of F is available. McKean and 
Tanaka [5] give relevant information when (Xt) has Brownian hitting distributions 
in dimensions _> 2. 

The technical assumption, made in Proposition 2, that y has no fixed dis- 
continuities is also related to the structure of F. The only example I know where 
7 has a fixed discontinuity is given in Section 4. It is highly degenerate and the 
discontinuity there only causes trivial problems. The following simple condition 
is satisfactory for applications to 1-dimensional diffusions. 

Lemma 1. I f  the fine support F of (I, A)  is closed, 7 has no fixed discontinuities. 
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Proof. Since 7 is right continuous we must only show for each fixed t>0 ,  
that if 7 ( t - )  is finite then 7 ( t - ) = 7 ( t )  a.s. Now (I,  A) is increasing from the left 
at y ( t - )  so that y ( t - ) = 7 ( t ) <  oo iff (I, A)7(t_)+~-(I, A).e(,_)>0 for each e>0.  

Let t, Tt be a strictly increasing sequence. Then on the set { y ( t - ) <  oo} we 
have that X~(t,)eF a.s. and that X.~(t,)~X.e(t_ ) a.s. since (Xt) is a Hunt  process. 
Thus X~(t_)EF a . s .  because F is assumed closed. Getoor's description of F now 
implies that X~(t_) is almost surely a regular point for F and this in turn implies 
that for e>0,  (I, A).~(t_)+ ~- (I, A)~(t_)>0. The result follows. 

If (Xt) is a non-singular 1-dimensional diffusion, a set is finely closed iff it is 
a closed set in the usual topology. Since F is always finely closed, in this case it 
is also closed and by the lemma 7 has no fixed discontinuities. 

w 3. Products of 1-Dimensional Diffusions 
When restricted to the case of non-singular diffusions o n  E = I R  1 the results 

in Section 2 simplify and become more explicit. We treat this example here. 
Let m and n be two Borel measures on the real line IR 1 which attribute positive 

masses to open sets. If (bt) is the standard Brownian motion on IR 1 with the local 
time at x denoted by t(t, x) we may define a pair f( t )  and g(t) of continuous additive 
functionals of (bt) as 

(3.1) f ( t ) =  f t(t,x)dm(x), g(t)= ~ t(t,x)dn(x); 

(see [4], Chapter 5). Corresponding diffusions may then be introduced as 

(3.2) Xt ---" b~l(t), Yt = b~2(t), 

where r and z2 are the inverses of f and g respectively. The generators of (Xt) 
and (Yt) are then given by two of Feller's generalized differential operators; namely 

A=DmDx and B = D ,  Dx. 

Write (P~) and (Qt) for the corresponding transition semi-groups. If we formally 
attempt to apply Trotter's theorem and try writing the operator A + B in the 
form Du D~, it is seen that # must be given by 

(3.3) d # = ( d m  dn)  
d v  dv  dv, 

where dv=dm+dn. We might then predict that the product semi-group cor- 
responds to the process (Zt) given by 

(3.4) Zt=b~(t), where % is the inverse of h(t)= ~ t(t,x)d#(x). 
]R 1 

This is in fact correct and in this case Proposition 2 of Section 2 becomes: 

Proposition 2'. Suppose (pt) and (Qt) have generators D m D~ and D n D~, and that m 
and n are not orthogonal measures. Then for each bounded continuous f 

~im ~ (ph Qh)tt/hl f (x) = E~ f (Zt), 

where (Zt) is given by (3.4). 
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This is easily obtained from Proposition 2. We first write Yt = X,(0 where ~ is 
the inverse of A~=g(zl(t)). In the notation of Section 2 we then have 

I t = t =  ~ t(zl(t), x) dm(x), 

At= ~ [( 'cl(t), x) dn(x), 

Bt= ~ t(zl(t), x) dv(x) 
RI 

and 
(I,  A>,= ~ t (z l ( t ) ,  X) d/t(x), 

R1 

= h ( Z l ( t ) ) .  

If 7 is the inverse of (I ,  A} then 

X.~(t) = Xf(,3(t)) = b,3(t ) . 

In order to apply Proposition 2 we need only observe that t (t, x) ~ ~ a.s. as 
t ~ ~ ,  and that by Lemma 1 of Section 2, 7 has no fixed discontinuities. The proof 
is complete. 

Note that if m and n are orthogonal then p -  0 and •h, [r/h] ~ + 00 as h -* Go. 

As mentioned earlier the natural state space F of the limit process (X~(t)) may 
be any closed set F and in our case coincides with the support of the measure p. 

Example. Let m and n both attribute to a unit mass to the points 0 and 1, and 
assume they are orthogonal on the set IR x -  {0, 1}. The function h(t) in Eq.(3.4) 
reduces to 

h(t)--�89 0)+ t (t, 1)]. 

F is then equal to {0, 1} and XT( 0 is a Markov chain on the state space F. 

It is easily seen that the processes (Z0 which arise as products of such diffusions 
are characterized by the right continuity of (Z0 for t > 0, and the fact that their 
sample paths have the intermediate value property. 

Such processes form a natural extension of diffusion processes and may be 
analysed by the same techniques. Dynkin's discussion of the generators is appli- 
cable and the processes are obtainable from Brownian motion via time changes 
based on speed measure integrals. The possibility of such a treatment is suggested 
by Feller's discussion [1] of birth and death processes. 

We also note that (po Q)' maps C0R 1) (continuous functions on ~1) into C(F) 
which is the natural Banach space for (PoQ)' to act on. This is a special and 
transparent case of a sequence of semi-groups acting on one space while the"  limit" 
acts on a distinct space. 

w 4. Translation Semi-Groups 

This section contains two examples of products of translation semi-groups. 
Both cases exhibit types of behavior that is quite different from that encountered 
in the previous sections. 
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Example (a). Fixed discontinuities of 7 : Processes corresponding to uniform 
translation with respect to singular scales can be used to construct fixed dis- 
continuities in 7. For  example, let X t = X o + t, and assume that s (x) is a strictly 
increasing function. Define a caf A of (Xt) by At=s(XO-s (Xo) .  Then Y~=X~(t), 
where c~ is the inverse of A, corresponds to uniform translation with respect to 
the coordinate s. 

Now choose s so that s (x) = x for x < 0 and x > 1, but with s singular with respect 
to Lebesgue measure on the interval [0, 1]. If  X o = - 1, then ( I ,  A)t = t/2 for t < 1 
and is constant on the interval (1, 2). Thus 7 has a fixed discontinuity at to=�89 
Here 7h, [to~hi converges to 7 ( t o - )  rather than 7 (to). 

Example (b). Uniform translations in opposite directions: A very different type 
of behavior occurs when considering translations in opposite directions. For the 
processes that are related by time changes, which we have been considering, the 
product semi-group (P o Q)t was seen to exist provided that the time change was 
not too singular. In the case of uniform translations in opposite directions with 
respect to singular scales a different behavior occurs. The product semi-group 
always exists and is equal to the identity operator I. 

We again assume that s is a continuous strictly increasing function. Let 
Xt= X o + t be as before and let Yt be the process of uniform translation to the 
left with respect to s. Then (ph Qh)k (X, dy) is a unit point mass at the point Zh, k (X) 
given by the recursion 

Zh, l (x)=y where s ( x + h ) - s ( y ) = h ,  

= z , , , , ( z , , , , , ( x ) ) .  

Now assume that s' =ds/dx  exists and is different from 1 at x 0. If s '(xo)< 1 
and h is sufficiently small we have Zh, k(Xo)<Xo, while Zh, g(Xo)>x o if s'(xo)> 1. 
If s is also assumed to be singular then both of the sets 

{x:s ' (x)=O} and { x : s ( x ) = + o c }  

are dense and it follows that lira Zh,[t/h ] (X)= X for all x. 

If one considers the transition semi-groups as operating on the space of 
continuous functions which vanish at infinity then the intersection of the domains 
of the generators contains only the zero function, but the strong lira (ph Qh)[t/hl = I. 
The two semi-groups are highly singular with respect to each other, but in the 
product  semi-group these singularities somehow cancel. Similar behavior does 
not occur when the processes have identical hitting distributions. 

w 5. Proof of Theorem 1 

We recall the set up of Section 2. A non-zero caf A of the Hunt  process (Xt) 
was given. We set It = t A ~ and B = I + A. Then 

t 

I t=S i ( s )dB  ~ and At=ia(s )dB~,  
0 0 
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where a and i are two non-negative measurable functions with i+a = - 1. Writing 
(t) for the inverse of A we introduced the stopping times 

7h,1=hq-c~(h)oOh and ~2h, k+l=~)h, kq-Th, lO(~/h,k, 

and the sequence of functionals 

=2kh+(I t - I~,~)  if ~;h, k K=t<Th, kq-h Ch(t) 
=(2k+l)h+(At-A~.k+h) if ~h,k+h<=t<Th, k+l. 

Theorem 1 then stated that 

(5.1) l imCh(t)=2(I,A)t a.s., 
h~O 

t 

where ( I ,A) t= ~ i(s) a(s) dB S. 
0 

The idea of the proof is to approximate A by piecewise linear functions for 
which the result is easy. The details follow. 

We will prove that the convergence of (5.1) occurs for each co such that At(co ) 
is continuous and non-decreasing. The result then becomes a theorem about 
continuous monotonic functions and we will drop the co in our notations. Also 
note that without loss of generality we may assume that It-= t. 

The functions A, B, etc., are monotonic and as such they induce measures on 
[0, oo) which we will denote with the same symbols. We write l for Lebesgue 
measure. 

Proof. Let e > 0  be fixed. We set H = { s < t :  i(s)=0}, and for each positive 
integer N we define the sets 

FN, k--~{s<=t: ( k - 1 ) N - a < i ( s ) < k N - 1 } ,  for l<_k<_N-1, 

FN, N={s<t: 1 - N - l < i ( s ) < l } .  

Then FN, I+H as N ~ o o  and we choose an N so large that B(FN, 1 - H ) < 8 .  Having 
fixed such an N we drop the subscript N in our notations. The proof now proceeds 
by noting 

N 

[Ch(t)--2(I,A)tI<= ~ {Ch(Fk)--2(I,A)(Fk)] 
k = l  

and then estimating each term in the sum. 

Part 1 : lim sup Ch (t) < 2 (I, A)t. 
h~O 

We first consider F~ and write G =  F~ - H .  Then B(G)< e, and H is of Lebesque 
measure zero. We cover H with a sequence {Ii} of open intervals with ~ l ( I j ) <  e 
and B ( ( ( . ) I i ) - H)<e ,  and then choose an M so large that B(~){Ij: j > M } ) < e .  

M 

For j  = 1 . . . .  , M we write Ij = (aj, bj) and ej = b j -  aj. By assumption we have ~ ej < e. 
j = l  
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Now consider the Ch (1j). From the definition of Ch it follows that Ch (J)< 2 h 
for any interval a" of length h. Thus for h we have the estimate Ch (Ij)< 3 ej. Com- 
bining this with the above remarks we have 

Also, 

so that 

(5.2) 

M 

Ch(FO<=B(G)+ ~ Ch(Ij)+B( ~ Ij) 
j = l  j > M  

<5e .  

O< (I ,  A)  (Fx) = (I, A)(G)< B(G)<e 

[Ch(FO-2(I,A)(FOI<5e for small h. 

To estimate the {Ch(Fk) } for k+  1, we cover Fk with a sequence {Ij} of disjoint 
open intervals with B((UIj)--Fk)<e/N, and then choose an M such that 
B(U {Ij: j> M})<e/N. We have 

M 

Ch (Fk) < ~ Ch (Ij) + e/N. 
j=l 

M 

For j - -  1, . . . ,  M we set ej=B(11-Fk). Then ~ ej<e/N. 
j=l 

To estimate Ch(Ij) we first observe that dBs=ds/i(s) on the set {s: i(s)~=0}. 

Introducing the sets 

Gh= {se[0, t]: Se[Th, k, 7h, k +h) for some k}, 

Hh = [0, t] -- Gh, 

we observe that both Gh and H h are finite unions of disjoint intervals and that 
Ch(lj) can be estimated simply by counting the number of disjoint intervals in 
Gh ~ Ij. In fact, if 

Oh = the number of disjoint intervals in Gh n lj, 
then 

Ch (Ii) = 2 Oh" h + 0 (h). 

But we also have the two immediate relations 

(5.3) 

Moreover, 

C h (Ij ~ Gh) = Ch (Ij ~ Hh) + 0 (h) 

Ch(Ij n Gh)= l(Ij C~ Gh)= Oh" h + O(h). 

a(s) 
Ch(IjnHh) <= I i(s--~-ds+eJ 

l j c~HhnFk 

<=(N + l - k  ) 
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since a(s) < 
i(s) = 

N + l - k  
k - 1  

on Fk. The right side may be estimated as 

N + l - k )  
k -  1 [bj-aj -O h �9 h+O(h)]+ej, 

and combining this with (5.3) we get 

Oh" h<=(_N/+ l - k ) \  [bj_aj_Oh. h + O(h)] + ej. 
k - 1  \ / 

o r  

(5.4) 

In turn, this gives 

o~. h < = ( b ~ - a j ) ( - -  N+I-kN )+O(h)+ej 

+NI-  )+ 
One now checks easily that 

(5.5) ( I, A ) (Ij) ~ (bj - aj) ( ~  ) - ~j . 

After summing over j, (5.4) and (5.5) give the inequality 

(5.6) lim sup Ch (Fk) <= 2 (I, A) (Fk) + N -  1 [7 e + 2 l(Fk)], 
h ~ 0  

which is valid for k > 1. The proof of part 1 is completed by summing this over 
2 < k < N and using (5.2) to obtain 

lim sup Ch(t)<=2(I, A ) t + 2 t .  N -1 + 12e. 
h ~ 0  

Part 2: lim inf Ch (t) > 2 (I ,  A) t. 
h ~ 0  

This inequality is proved in the same manner. One uses the inequality 
a(s) > N - k  
i(s) = k 

This gives 

Similarly one has 

- -  for s in F k to obtain the estimate 

N - k  
c~ (Ij ~ H~) > 

N 
[bj-a~-O h �9 h+O(h)-ej]. 

N - k  
Ohh>_ (bj-aj)+O(h)-ej. 

- N 

(I 'A)(IJ)<(-N + I - k  ) 

and the result follows as before. 
18 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 12 
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