
Z. Wahrscheinlichkeitstheorie verw. Geb. 12, 231 - 2 4 0  (1969) 

Ergodic Theorems for Operator Sequences 
A. BRUNEL and M. KEANE 

Summary. Let T be a measure preserving transformation on a finite measure space. Then for 
certain increasing sequences kl, k2, ... of positive integers, called uniform sequences, the average 

1 ~ Tk, f 
t~ i=l 

converges in the mean and almost everywhere. For strongly mixing transformations and any sequence 
of powers, an individual ergodic theorem with weights is valid. 

1. Introduction 

Our goal is to prove individual ergodic theorems for sequences of powers of a 
measure preserving transformation on a finite measure space. Let (~, ~ ,  m) be a 
probability space and T a measure preserving transformation on (~2, ~ ,  m). Suppose 
that kt, k 2 . . . .  is an increasing sequence of positive integers, and let f be an in- 
tegrable function on ~2. Investigating the almost everywhere existence of the 
limit - 1 n 

f(co)=lim~ ~= f(Tk'co), 

we present the following results. We define a certain class of sequences, called 
uniform sequences, such that if k 1, k 2 . . . .  is a sequence of this type, then f exists 
almost everywhere for each integrable f. With a condition on T a bit stronger 
than ergodicity (and depending on the uniform sequence involved), we can show 

that f = ~ f dm 

almost everywhere. In particular, f=Sfdrn for each uniform sequence if T is 
weakly mixing. 

A by-product of these results is the mean ergodic theorem for uniform se- 
quences. We also prove the mean ergodic theorem for strongly mixing trans- 
formations and any increasing sequence of positive integers, which is due to 
Blum and Hanson [1] ; this result is included for completeness. 

Finally we prove an individual ergodic theorem for strongly mixing trans- 
formations and increasing sequences. This theorem states that the following 
condition is necessary and sufficient for T to  be strongly mixing: for any integrable 
f and any increasing sequence k~, k 2 . . . .  of positive integers, there exists a de- 

creasing sequence q, cz, ... of positive reals such that ~ ci diverges and 
i= l  

n 

cl Tk' f 
lira i=1 Sfdrn 

n ~ C  i 
i=1 
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almost everywhere. The almost everywhere convergence of 

n i = 1  

in the strongly mixing case for any increasing sequence remains an open question. 

2. Definitions 

Let (f2, N, m) be a probability space and T a measure preserving transformation 
on ([2, N, m). We shall also denote by T the operators induced by T in the (real) 
Banach spaces L p =LP(O, N, m) (1 < p <  oo). T is called 

1. ergodic, if the constants are the only almost T-invariant functions in L 1 ; 
2. weakly mixing, if 

n- -1  

lira 1 ~ im(T_kEnF)_m(E)m(F) I = 0  
n n k = O  

for each pair E, F e N;  

3. strongly mixing, if 

lira m( r -k  E c~ F) = m(E) m(F) 
k 

for all E, F e N ,  or, equivalently, if Tkf converges weakly to the constant ~fdm 
for each f e  L 2. 

The reader is referred to [3, 4] for equivalent formulations and discussions of 
these properties. 

Now suppose that X is a compact metric space, ~ the collection of Borel 
subsets of X, and 4O a homeomorphism of X such that 4on, n integral, is an equi- 
continuous set of mappings (i.e. for any e > 0  there exists a ~$>0 such that x, y s X ,  
Ix, y[<~$ implies 14o"x, 4O"NI <e  for any integer n, where I', "l denotes the metric 
in X). The system (X, 4o) is then called uniformly L-stable (stable in the sense of 
Liapounov, see [2, 6]). We assume henceforth that X possesses a dense orbit, 
that is, there exists an x e X  such that {4onxln integral} is dense in X. It follows 
(see Oxtoby [6]) that the system (X, 4o) is strictly ergodic; i.e. there exists a unique 
4o-invariant (and thus ergodic) probability measure on (X, f )  which we denote 
by #, and for any x e X  and any continuous function f on X, 

n - - i  

~ / d # = l i m  1 2 f(4o'x). 
n H t = O  

In particular, each open set of X has positive #-measure. Such a system (X, ~, #, 4o) 
will be called strictly L-stable. 

If Y ~  and yeX, then we define the i th entry time ki(y, Y) of y into Yre- 
cursively as: 

k~ (y, Y) = rain {i > 114oi Y e Y} 

ki(y, Y)=min{j>ki_l(y, Y)I4o@eY} (i> 1), 

allowing infinity as a value. 
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Definition. A sequence kl, k2 . . . .  of natural numbers will be called uniform if 
there exist 

1) a strictly L-stable system (X, s p, ~o), 
2) a Yes  r such tha t /~ (Y)>0=#(~Y)  (where ~Y denotes the boundary of Y), 

and 
3) a point y e X  such that ki=ki(y, Y) for each i~  1. 

It is easily seen that if kl, k 2 ,  . . .  is a uniform sequence generated by y and Y 
as above, then 

lira ~ = # ( Y ) .  

However, the proof of Theorem 1 will deliver this statement also. 

Examples of strictly L-stable systems are provided by ergodic rotations of 
compact abelian groups; in fact, every strictly L-stable system is homeomorphic 
to such a rotation. If we take X to be the circle group, q~ the rotation through an 
angle incommensurable with 2 ~, p the Haar measure on X, Y an interval on X, 
and y any point of X, then the sequence of entry times of y into Y under q~ is a 
uniform sequence. 

3. The Individual Ergodic Theorem for Uniform Sequences 

Let (f2, ~ ,  m) be a probability space and T a measure-preserving transforma- 
tion on f2. In this paragraph we shall make repeated use of the individual ergodic 
theorem of Birkhoff (see [3, 4]): 

For each f e  L 1, 

f(e)) = lim 1 ~ f (Tk 09) 
n n k = l  

exists almost everywhere. Furthermore, f belongs to L 1, is T-invariant, and 

S fdm=I fdm .  

If T is ergodic, then f is obviously almost everywhere equal to the constant 
Sfdm. 

Theorem 1. I f  f e L  1 and if kl, k2, ... is a uniform sequence, then 

f (co)=l im 1 ~, f(Tk, e)) 
n n i = 1  

exists almost everywhere and f e  L 1. 

Proof Let (X, Y',/~, (0) and y, Y be the apparatus connected with the uniform 
sequence kl, k 2 . . . .  and choose any e > 0. Then there exist open subsets Y', Y", 
and W o f X  such that: 

1) y'c_y~_y", 
2) # ( Y " -  Y')<e,  
3) yeW, 



234 A. Brunel and M. Keane: 

4) for any x e W and any n > 1, 

1y,(cpnx)= < 1g(tpny)= < 1y,,(q~"x). 

For instance, we can take 

for suitable 6 and 6', 

Now set 

Y'={x~Y[lx, aYl>6} 

Y"={xeX[lx, Y[<6} 

W= {x~Xllx, yl< 6'} 

( i f ,  ~' ,  m') = (~, ~, m) • (X, X, #) 

and define the transformation T'. O'--~ ~2' by 

r'(oo, x):=(roo, qox) (ooeO, xeX). 

Choose f e  L 1 with f > 0. We consider the functions 

g(co, x ) = f ( o ) l r  (x), 

g'(c0, x ) = f ( o )  1 r, (x), 

g"(o, x) =f(c0) lr,, (x) 

which all belong to L ~ (t'/', ~ ' ,  m'). Now 4) implies 

g'(o, q~"x) < g  (o, q~"y) < g"(co, q~"x) (1) 

for all x e W, co ~ t?, and n > 1. Since T' preserves the measure m', Birkhoffs theorem 
says that _1 n 

~'(o, x )= l im  ~ g'(Tk c0, q)kx) 
n n k = l  

and 

~"(co, x )= l im 1 ~ g,(Tko, ekx) 
n l'l k = l  

exist almost everywhere (with respect to m'). We set 

S (o )=  S(c0, y)= l imsup ~_1 ~ g(Tkco, q~ky), 
Y/ k = l  

_S (o) = _S (a), y )= l imin f  I ~. g(Tko ' ~oky). 
k = l  

In view of the inequalities (1) (note that # (W)= m' (t? x W)> 0) we have 

~,' (,o, x)< s(,o)__< ~(a,)__< ~/'(,o, x) 
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for almost all (co, x)ef2 x W (with respect to m'). We now calculate 

g'dm'= ~ l im~-  ~f(Tkco) lr,(CpkX) m'(d(coxx)) 
( 2 x W  f 2 x W  '~ k = l  

=lim ~1 ~ ~5 f(Tkco)l,z,(cpkx)m(dco)l~(dx) 
n n k = l  ~ x W  

n 

1 k~=ly,((pkx)p(dx) =~fdm .lim w~ ~- 

=~f dm. ~ p(Y')dp=p(W)#(Y') ~ f dm, 
W 

making use of the uniform integrability of the corresponding C6saro sums and of 
the ergodicity of (X, 3f, #, ~0) in particular, which allows us to get rid of the last 
limit. 

Similarly, 

Now S(')__>S(') and 

~,"dm'=p(W)#(Y")~fdm. 
~ x W  

~(co)- S(co)__< g"(co, x)-  g'(co, x) (coe~, xeW), 
and therefore 

1 
[S(co)-_S(co)] dm= #(W) ~ [S(co)-_S(co)] dm' 

~ x W  

1 
<- ~ (f,"-~,')dm' 
- ~ ( W )  a •  w 

= (/~ (Y")-  #(Y'))~fdm<e 5fdm. 

Since e was arbitrary, this implies 

and thus 
IS (co)-_S (co)] m (dco) = 0 

1 " 
s(co)=li,m 7 Z__ g(r%~, ~oky) 

exists for almost every coe(2 (with respect to m). But 

S(co)=lim 1 ~ f(Tkco)ly(~p~y ) 
n n k = l  

=lim ~1 Z f(Tk'co) �9 
n H {ilki<_n} 
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Setting f -  1, we see that 

lim [{ilki<=n}[ 
n n 

exists and is greater than zero, since in this case ~'(co, x) -#(Y ' )  because of the 
ergodicity of (X, Y', #, q~). 

Therefore for almost every e)sf2 

n 

ft~o)=lim 1 E f(Tk,  o~)=li m n 1 E f(Tk't~ 
n i=t I{ilk~<n}l n {ilk~=~,} 

exists, and since f(o~) =< ~" (e), x) for almost every x e W, it follows that f e  L 1. 

Corollary. I f  T is ergodic and if T and q) have no eigenvalues (other than 1) in 
common, then 

f = S f dm (2) 

almost everywhere. In particular if T is weakly mixing, then (2) is valid almost 
everywhere. 

Proof. The given condition implies that T' is ergodic (see [4]), therefore in the 
proof to Theorem 1 

~,' (o9, x) = # (Y') S f.dm 
and 

~" (o~, x)= #(Y") ~ f.dm 

almost everywhere (with respect to m'), and the conclusion follows. 

4. Mean Ergodic Theorems 

Theorem 2. I f  k l ,  k 2 ,  . . .  is a uniform sequence, 1 <= p < o% and f e L p, then 

n n i = 1  

in the LP-norm. 

Proof. Since L p ~ L 1 and since the sequence of functions in question is uniformly 
integrable, the theorem follows from Theorem 1. 

Theorem 3 (Blum-Hanson [1]). I f  T is strongly mixing and k 1, k2,.., is any 
strictly increasing sequence of positive integers, then 

lim 1 ~ Tk~f=i fd  m (3) 
n n i = 1  

in the LP-norm for every f e L  p (1 < p <  oe). Conversely, if (3) is valid in the L2-norm 
for all indicator functions f and every strictly increasing sequence of positive 
integers, then T is strongly mixing. 
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Proof Let T be strongly mixing, 0 < k l < k  2 .... and f e L  z with Sfdm=O. 
Then, denoting the scalar product in L 2 by ( -," >, we have 

i= t = (4) 

n 2 <rk, f, Tk, f } 1 1 " . . . . .  Z<z 
i,j=l n i=1 Y,H j = l  

Since strong mixing implies 

<f, r" f> . >([. f dm) 2=0, 

each of the inner sums in the last member of (4) will be small if n is large enough, 
and thus also their mean. We conclude that 

lim T kif = 0. 
n i 2 

The rest follows by approximation. The converse is easy, since C6saro norm 
convergence implies C6saro weak convergence, and C6saro weak convergence 
along all strictly increasing sequences implies in turn usual weak convergence. 

5. An Individual Ergodic Theorem for Strictly Increasing Sequences 

Let fl ,  f2 , . . .  ~/2 and define 

F. = sup (n> 1), 
l <_m<n i 

Fo=0 

g, = F . - F . _  1 (n> 1). 
Then 

and 

We set 

Fn= ~ g i  
i=1 

~ { . . , . , _ , .  ..... t _ ,  
We shall need the following lemmas, which are special cases of Lemmas 6 and 7 
in Krengel [5]; we omit the easy proofs. 

Lemma 1. For any c ~ D we have 

~c l f ,  
i = l  lim sup 

n ~ Ci 
i=1 

Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 12 

= < lim sup - -  
n 

n 

Z Ci gi 
i=1 

~ C i  
i=1 
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Lemma 2. I f(a, , , )  . . . .  1, 2 .... is an infinite matrix such that 

1. for f ixed n, % ,  increases with m, and 

2. for f ixed m, % ,  decreases to 0 with increasing n, then there exists a csD 
such that 

oo 

~ ci ami 
i = 1  

converges for each m. 

Theorem 4. Let T be a measure preserving transformation on (f2, ~ ,  m). Then 
the following statements are equivalents: 

a) T is strongly mixing. 

b) For each increasing sequence of positive integers kl, k2, ... and each f ~L 1 
there exists a ceD such that 

~ c~ rkl f 

lim i=1, - ~ f d m  

n 2 Ci 
i = 1  

almost everywhere. 

Proof. 1. We show that a) implies b). Let kt, k2, ... be an increasing sequence 
and f e L  1. Whithout loss of generality we may assume that ~fdm=O.  Set 

f~m) = Tk, ( f  _ 2-")  

and construct the sequence g~m), g(zm), ... corresponding to the sequence f~"), f2("),... 
as above. Now T is strongly mixing by assumption and 

~ f(m) dm= - 2-m <O; 

thus it follows from Theorem 3 that 

Now we put 

l p  S era, din=0. 

% ,  = sup ~ g}") dm. 
j>=n 

Then for fixed n, a,,, increases with m, and for fixed m, am n decreases to zero. 
Applying Lemma 2, we obtain a c eD such that 

oo 

C i am i < -t- oo 
i = 1  

for each m. It follows that for each m, 

~ c, g(~m) < +oo 
n = l  
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almost everywhere. Therefore, using Lemma 1, 

l imsup g=l l imsup i=~ 4_2_m<lim i=1 

n ~C  i n ~ C  i n ~C i 
i = 1  i = 1  i = 1  

Replacing f by - f ,  we obtain a.e. 

~ c i Tk' f 
l iminf  ~=~ _>--2-m; 

n 

c~ 
i = 1  

since these inequalities hold for each m, we conclude that 

~ ci Tk' f 
lim i=1 0 

n ~C i 
i = i  

almost everywhere. 

t- 2-'n = 2 -m . a.e. 

2. To show that b) implies a), suppose that b) is valid but T is not strongly 
mixing. Then there exist E, F e ~  and an increasing sequence kl, k2, ... such that 

lira m(T-k" E ~ F) 
n 

exists but is not equal to m(E)m(F). For the function leeL 1 and the sequence 
ki, k2,. . ,  choose a c as in b). Then 

~ Ci 1T-k~E 
l i m  i = 1 - -  m (E) 

n ~ Ci 
i=l  

almost everywhere. Integrating over F and interchanging the limit with the integral 
(the sequence in question being uniformly integrable), we obtain 

~ cii l~:-k~E dm 
m(E)m(F)= ~m(E)dm=lim i=~ 

F n I1 
Ci 

i = 1  n 

ci m(T -k' E~F) 
=lira i=1 - l i rn  m(T-k"E~F), 

n 
n 

y_, ci 
i=l  o o  

since ~ c~ diverges. This contradicts our assumption, and T must be strongly 
i=l  

mixing. 
17" 



240 A. Brunel and M. Keane: Ergodic Theorems for Operator Sequences 

Literature 

1. Blum, J. R., and D. k. Hanson: On the mean ergodic theorem for subsequences. Bull. Amer. math. 
Soc. 66, 308 - 311 ~1960). 

2. Fomin, S.: On dynamical systems with pure point spectrum. Doklady Akad. Nauk SSSR 77, 
29-32(1951). 

3. Halmos, P.R,: Lectures on ergodic theory. Math. Soc. Japan (1953). 
4. Jacobs, K.: Neuere Methoden und Ergebnisse der Ergoden theorie. Springer Erg. d. Math. (1960). 
5. Krengel, U.: Classification of states for operators, Proc. V Berkeley Sympos math. Statist. Probab. 

II, 2 (1967). 
6. Oxtoby, J.C.: Ergodic sets. Bull. Amer. math. Soc. $8, 116-136 (1952). 

Dr. A. Brunel 
Facult6 des Sciences 
Universit6 de Rennes 
Avenue du G6n~ral Leclerc 
Rennes, France 

Dr. M, Keane 
Yale University 
Department of Mathematics 
Box 2155, Yale Station 
New Haven, Conn. 06520, USA 

(Received July 3, 1968) 


