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On the Possibility of an Unusual Extension 
of the Minimax Theorem* 

Ezio MARCHI 

Summary. A natural extension of the minimax theorem for cooperative games is considered. 

1. Introduction 

The famous minimax theorem of yon Neumann has motivated a large number 
of generalizations which are concerned with weaker conditions on the payoff 
function and the strategy sets. 

In this note, we consider an examination of the possibility of extending the 
minimax theorem for finite zero-sum two-person games. The treatment will be 
based on an examination of the difference between the product of the mixed 
strategy sets and the cooperative strategy set. Certain intuitive considerations 
are related with this analysis. We will demonstrate the possibility of obtaining 
the minimax theorem in situations involving correlation among the behavior 
of both players, that is with cooperation. This cooperation must not be understood 
as a joint act on which the positions of both players increase, since the game is 
zero-sum, 

The subject presented here possesses somewhat unusual characteristics in 
the actual theory of games. 

2. Basic Facts 

Consider a zero-sum finite two-person game F =  {El, X2; A} whose mixed 
extension is /~= {2 i, 22; E}. Then, the set of non-cooperative actions 2 i x 22 
belongs to a euclidean space R m' +m2 of m 1 + m 2 dimensions, where m i indicates 
the number of pure strategies of Xi, with i t  {1, 2}. Intuitively, this set should be 

a subset of the set Z 1 x X 2 of correlated or cooperative strategies, which is a region 
of m 1 x m 2 dimensions. Formally, such an embedding is obtained in a natural 
way by the continuous function nat which assigns to each pair of vectors x ~Z  i 

and y~22 the corresponding tensor product x | y belonging to Z 1 x X~--~ which is 
defined by x | y(al, a2) =x(al)" y(az) for all the pure strategies al ~Z1 and az~Z z. 

Immediately we derive the following result: 

Lemma 1. The set nat(2~ x ~ z ) = I  is contractible. 

Proof For  any arbitrary element ff | y of I, consider a function a on [0, 1] x I 
with values in I defined by 

(t,x | 
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This function is well defined, since the strategy sets I71 and 2 2 are both convex. 
It is continuous because it is a composition of continuous functions, namely: 
e = n a t  o flo (i x (nat)-1). Here, i indicates the identity function on the unit inter- 
val [0, 1] and fl assigns for each point (t, x, y) of [0, 1] x 21 x 22 the element 
(t ~ + (1 - t) x, t y + (1 - t) y) belonging to 21 x 2 2 . For t = 0, we have ct (0, x | y) = 
x | y and for t = 1, e(1, x | y )=~  | y and therefore the set I is contractible. 
(q.e.d.) 

It is remarkable that the set of joint statistical stategies Z1 x"~--Z2 is the convex 

hull of the set I. Indeed, the vertices of the polyhedron Z 1 x Z 2 are those points 
eij-- eil| e2eI  with ieI;  1 and j ~ Z  2 where ele21 and e~e22 are the probabilities 
distributions having the i-th and j-th components equal to one, respectively. 

Since we have imbedded the game in the cooperative set of strategies, it is 
now interesting to find the set of joint acts of both players having a same given 
marginal distribution of probability of one player. For any arbitrary mixed 
strategy of the first player xE21, we define such a set 

Z~= { z e Z a ~ :  X(al)= ~ z(al, a2) for all 0-1E221}, 

as the set of cooperative strategies generated by xeZ1, that is, all those correlated 
acts reachable by the first player's mixed strategy x~21. Similarly one can define 
with respect to the second player the set Xy. 

A property of these regions is considered below: 

Lemma 2. For any x ~ . l  and y e 2  2 the non empty sets ,r, x and ~,y are convex 
and therefore L(x, y) = Zx c~ 22y is non empty and convex. 

Proof. For a given mixed strategy xe21, let z 1 and z 2 be two joint strategies 
belonging to 27x. Thus for each pure strategy 0-1 e 221, 

Y', z1(0-1, z (0-1, 
O'2 ~ .~ 2 Cr2E~ 2 

and therefore for each real ;L in the unit interval, it follows: 

E ['~Z1(0-1' 0"2) + (1 - -  ~) 22(0-1' 0-2)] =X(0-1) 

for all the al e221, which implies the convexity of the non empty set Z x. Similarly, 
one could show the same for 22r Finally, because x | yeL(x ,  y), the intersection 
is non empty. (q. e. d.) 

We will now try to characterize analytically the sets of joint strategies s Zy 
and therefore also their intersection L(x, y). Because of the similarity between 
this problem and the determination of the set of double stochastic matrices as 
the convex hull of the set of permutation matrices, we will use as Mirsky has done 
in [4] for such a type of problems, the following basic result given in Bonnesen 
and Fenchel [1]: 

Lemma 3. I f  v, Ul, . . . ,  ur~R p, then v belongs to the convex hull K(u l , . . . ,  ur) of 
the vectors Ul . . . . .  u, if and only if for each a e R  p there is auk  (k= 1 . . . . .  r) such 
that the scalar product a. (u k -  v) >= 0. 



On the Possibility of an Unusual Extension of the Minimax Theorem 225 

For  an arbitrary mixed strategy of the first player x~21 and any function 
~: Xa -+ 2;2, let us define the joint statistical strategy w(x, c~)~Zx by 

w(x, ~)(0-1, 0-2)--x(a06(c~(0-O, 0-2) for all 0-1e21 and 0-2E2;2, 

where 6 is the Kronecker's delta function. Let W x be the set ~) {w (x, c0} where 2;~ 

indicates the set of functions c~: 2;~ ~ 2;2, which has m7 ~ elements. Analogously, 
for any function fl: 2 ; 2 ~ X  ~ and any strategy y~Z 2 one defines the strategy 
w(y, B)e2;y and the set Wy= Q) {w(y, fl)} where Z~ indicates the set of all the 
functions fl: Z~ 2 --~ S I .  fl~Z2 

By using the previous lemma, one easily derives the following: 

Theorem4. For any x~21 the set 2;x coincides with the convex hull of W~: 
Zx = K(Wx). Analogously Zy = K(Wy). 

Proof Consider a point z~K(Wx) , then there is an 2 > 0  with ~ ~ 2(~)= 1 in 
the simplex 2~ of R "i"' such that for all 0-1 sZ1 and 0- 2 EZ2: 

z(0-1, 0-2) = ~ ;4cOw(x, ~)(0-~, 0-2) 
~E2'2 l 

and therefore 

O'2~Z 2 C~Z 2 0"2 ~Z2 

which implies K(Wx)cZx. Conversely, let us consider a point z e Z  x and define 
for each matrix a: Sa x $2 ---' R a function ~,,: 2; 1 - - ,  z~ 2 such that 

max a(0-1, s2)=a(0-1, 0~m(0-1) ) 
$ 2 ~ 2  

for all 0-1~Z1, 

thus, for the point z e Z  x under consideration, one has 

a - z :  • 2 a(0-1, a2)z(al, a2) < 2 maxa(o-t, s2) 2 z(o-l, a2) 
0"1~ 10"2E~' 2 O-1~ 1 s 2 ~ 2  0-2E~2 

= Y~ a(0-1, ~m(~rl))X(0-O=a" W(X, C~,,). 
O'IE~ 1 

For each vector aeR "'• there is a w(x, O~m) such that a .(w(x, em)--Z)>--_O. 
Thus, from Lemma 3 it follows that the point z belongs to K(Wx). Similarly, one 
could prove the remaining equality. (q. e. d.) 

As an immediate consequence of this result, one obtains that the intersection 
set L(x, y) is a polyhedron. 

3. An Example 

Let us demonstrate geometrically and analytically, by an example, which is 
the easiest non trivial one, the nature of joint strategy set L(x, y). 
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Let the strategy sets X 1 and X 2 be the set {1, 2}. Then, the cooperative strategy 

set X 1 • ~2 is spanned by its vertices 

exl =el  | el2 =(1, 0) | (1, 0), e~2 =e l  | e~ =(1, 0) | (0, 1) 

ez~=e~Qe~=(0,1)@(1,0) and e22=e~Qe~=(0,1)|  

Now, for a given mixed strategy of the first player xs2~, Theorem 4 provides 
that the vertices of the convex polyhedron X x are 

x| ~,  x| x(l) 0 0 x(2)' x(2)x(01)' x(01)x(2)" 

Analogously, the convex polyhedron Xy has the following four vertices 

as it is shown in the figure. 

(0, | ,;,, ;), ,(o ,? 

e12 

~ e22 

L(x,y)=~x n~y 

e11 e21 

Actually, the intersection set L(x, y) as it is seen in the illustration is a segment 
which can be expressed as the convex hull of two points. But the analytical ex- 
pression of these two points depends on the values of x~2i and y~22, since 
they are located in different faces for different values. 

Introducing the extremal points 

P =  y(O1) x(1) ~, I x(1) o 
x(2)-y(1) '  ~g= x(2)-y(2) y(z)' 

R=X(1)-y(2)x(2) Y(O 21 and s=Y~ ) x(1)-y(l),x(2) 

which belong to the corresponding faces of the simplex just considered for appro- 
priated values of xe21 and ye22, we have, by simple computation that 

[K(S,P) when x(2)>y(1) and x(1)>y(1), (7cl) 
~K(Q,P) when x(2)>y(1) and x(2)>y(2), (~2) 

L(x'Y)=|K(Q,R) when x(2)>y(2) and x(1)>y(2), (~a) 
! (K(S,R) when x(1)>y(2) and x(1)>y(1), (~4)- 
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Now, one can express the point x | y ~ L(x, y) in terms of the extremal points. 
Indeed, let us consider the continuous function ~nat which assigns for each pair of 
non-cooperative strategy in 21 x 22 a value in the unit interval defined by 

Ix(l) when n I 

)nat=~y (1) when TC 2 

Ix(Z) when n 3 
(y(2) when n 4. 

Then, it results that for any pair x~21 and y~22: 
X @ y = "~nat (X, y) T-~- (1 --/~nat (X, y)) O 

where T and U are the corresponding points P, Q, R and S depending on the 
values ofxs2j  and yE22 as before. 

One can extend this example in the general case by means of a continuous 
function 2, thus one has generated the point 

z(x, y)= y) T+ (1 -;4x, y), 

which represents the global action of both players when they choose x~21 and 
Y~X2 respectively. Of course, in most of the cases they are correlated. 

In the first instance, this fact might seem rather strange, since by the usual 
assumption in the game theory, the players act independently when they are 
choosing their own strategies. Now, this assumption concerning the rules of the 
game is generally not completely satisfied from an intuitive point of view in many 
games, for example when the players are physically present. Indeed, one might 
say that in such situations the independence is broken down by the disturbance of 
psychological mechanisms. Thus, in some sense the distortion from the independ- 
ence is measured by the function 2. Of course, without any doubt this very delicate 
point has some connection with the intuitive and usual concepts of experience 
and spying. 

4. On the Possibility of  an Extention 

In the simplest case just considered in the previous section, one could express 
the different correlated surfaces in the joint mixed strategy set by taking into 
account the function )4. This has been possible because we have known the vertices 
of the set L(x, y), but in general we do not know such kind of points in an explicit 
form. Therefore the distortion from the independence should be measured in a 
different way. 

Before going into this in detail let us mention that the computation of the 
vertices of L(x, y) is not a simple matter and it will not be treated here. 

For a given game F, a continuous function 

f: 21 • 22 

such that for all the xs21 and ye22 satisfies: f(x, y)eL(x, y) is called a coupling 
function of the game F. Intuitively such a function determines the cooperative 
surface f(2~ x 22) of strategies. When f coincides with the imbedding nat, then 
we have complete independence on the behavior of the players. The function f 
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is assumed given as a part of the game. It is related with the rules of the game and 
the characteristic of both players. Thus, the new components of the game F are 
now given in the following scheme 

21 • 22 
x• I "-& 

Z l x I 2 C .  tS ~ R 

Z1 x Z2 

where E s denotes the composition E of. 

Consider for each x e21 and ye22 the sets of the maxima and minima values, 

Xs(y) = {X~Za : Es(X, y)=max Es(u, y)} 
and .~2~ 

Ys(x)= {y~22 : Es(X , y)=min Es(X , v)}. 

Let ffa (A) be the set of coupling functions f such that X s (y) is contractible for 
every  YE~2 and similarly ~2(A) that set o f f  such that Ys(x) is contractible for 
every x~21, then by using the following general result due to Debreu [2], which 
can be easily derived from the theorem of fixed point due to Eilenberg and 
Montgomery [3], we will derive the Theorem 6 which indicates that the minimax 
property holds for a wide class of cooperative surfaces. 

Theorem 5. Let F*= {X~, Z~; A*} be a zero-sum two-person game such that 
the strategy sets Z~ and Z~ are contractible polyhedra, and for each ~r~6Z~ and 
~r 2 ~ Z 2 the sets 

{tr~ ~ N~' : A* (tr*, tx~) = min A (~*, t)} 
and 

{a'e2*" A*(a*, a~)=max A(s, a*)} 
seI~ 

are contractible. Then, if A is continuous the game F* has a saddle point. 

Theorem 6. For each f6E(A)=El(A)nE2(A) ,  the minimax property for E s 
holds true, that is, there exist points Y~6~'l and Y~272, such that 

E:(x, y)_< E:(~, y)__< ~:(~, y) 
for any x~21 and y~22. 

Proof. Consider the f-mixed extension given by ~ =  {Z1, 22; El} which by 
construction satisfies all the requirements of Theorem 5, since Ef is continuous. 
Thus, the validity of the assertion is completely guaranteed. (q. e. d.) 

Of course, the set for functions E (A) always contains the embedding nat. 
We will now show by an example that it can indeed have more than one 

element. 
Again, let us consider the simplest case of two-person games treated in 

Section 3, and let 2~ be a continuous function defined by 2~ (x, y) = ~ 2,at (x, y)~ [0, 1] 
where 0_< e_< 1. Thus, it induces a function f~ defined by 

f~(x, y)=,~(x, y) T+(1-2~(x, y))UeL(x, y) 

where T and U as before are the extremal points of L(x, y). When e =  1, then 
L=nat .  
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We want to see that under the condition 

A(1 -c~)=0 
where 

A =A(1, 1)+A(2, 2) -A(1,  2) -A(2,  1), 

the payoff function Ey~ is bilinear. Then s  and therefore Theorem 6 guar- 
antees the existence of a saddle point for E / .  

In order to obtain it, let us compute explicitely the values of the expectation 
function. On the region rq, we have 

L(x, y)=~ ,~= (x, y) s+(1 - ~  ~(x, y)) t' 

=c~x(1) Y(01) x(1)-y(1)x(2) + ( 1 - ~ x ( 1 ) )  y~l) x(2)-y(1)x(1) 

= c~ x(1) y(l)  x(1)-c~x(1)y(1) 
y ( 1 ) -  ~ x(1) y(1) x ( 2 ) - y ( 1 ) +  ~ x(1) y(1) ' 

Thus, the value of the payoff function in this region rq is 

El~ (x , y)= Es, e(x , y)=c~ A x( l )y (1 )+  (A(1, 2 ) -  A(2, 2))x(1) 

+(A(2, 1)-A(2,  2))y(1)+ A(2, 2). 

Similarly, one can obtain that in the region rc z the expectation which we in- 
dicate by Es, e (x, y) has the same expression as in ~ ,  and on the remaining regions 
rc 3 and re4 the expression of the expectation is 

El=(x,y)=eA x(Z)y(Z)+(A(2, 1)-A(1,  1))x(Z)+(A(1, 2)-A(1,  1))y(2)+A(1, 1). 

One can immediately verify that in the diagonal x (1 )+y(1)=  1 the first and 
seconds expressions coincide. Thus, the function El= is continuous. 

Now, for a given x~21, the derivative with respect to y(1)e[0, 1] is 

c? EI (x ,y)= j'. c~Ax(1)+A(2,1)-A(2,2) if (x,y)Erc~k37Z 2 
0y(1) = ~-c~A x(2)+A(1, 1)-A(1,  2) if (x,y)~z3u~z 4 

and then the payoff function is concave in y E ~  2 if and only if 

c~ A _~ A . 
On the other hand, 

c~ f c~A y(1)+ A(1,2)-A(2,2) if (x,y)~Tr1LJTZ 2 
8x(1) Ef=(x, Y)= ~ - ~ A  y(2)+A(1, 1)-A(2,  1) if (x, y)6~z3u ~z 4 

is the respective derivative with respect to x(1)~[0, 1]. Thus, E/= is convex in 
x ~ S  1 if and only if 

~A>A. 

From both inequalities, we get the condition A(1 -c0=0 .  If this equality 
holds, then the payoff function E I is bilinear. 

The case ~ = 1 corresponds to the classic case and when A = 0, then for each 
c~ [0, 1] the function E~= has a saddle point. 
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In the general case there is a subclass of coupling functions for which we will 
prove an interesting property. Let ~ I ( A ) c  El(A) be the set of coupling functions 
for which the payoff function E s is concave in x~2  a for each ye22 and 332(A) 
those which are convex in y s 2 2  for each xe2t .  Then one derives the following 
result: 

Lemma 7. I f  
f, ge 33(A)= 331(A)n 33a(A)~(A) ,  

then for each real number t~  [0, 1], the function l~ f +  ( 1 -  #)g belongs to 33 (A). 

Proof For any real number/~s [0, 1], one has that 

f ( x ,  y) + (1 - g (x, L(x, y) 

which indicates that the convex combination function is well defined. On the 
other hand, by construction, 

Euf +( l_~)g(x, y)=#Ef(x, y)+ (1 - # )  Eg(x, y). 

From the convexity and concavity of Ey and Eg, we see that the same con- 
ditions are satisfied for Euf+(l_u) ~. (q.e.d.) 

This result is nothing more than the convexity of 33 (A). Since this set belongs 
to the linear space of all the functions over 2 1 x 2 2 with values in the dual of 
Z 1 x Sa, the operation of convexity is consistent. 

As an immediate consequence appears the next fact: 

Corollary 8. I f  there is a coupling function f=t= nat in 33 (A), then there are in- 
finitely many functions for which the minimax theorem holds true. 

Proof Given a function f in 33 (A) which is not the natural embedding, consider 
the function f ,  = # f +  ( 1 -  #)nat  which by virtue of Lemma 7 belongs to 33(A). 
Thus, by Theorem 6, the assertion is guaranteed. (q.e.d.) 

The examination just made was concerned explicitely on the matrix: Now, 
the same study can be realized for a whole class of games having the same strategy 
sets. Thus, if 9.1 indicates the set of all the matrices with a fixed number of rows 
and columns, then from the above results one can inmediately derive that the 
non empty set 

A~9.1 A~9.1 
is convex. 
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