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Asymptotic Normality Under Contiguity 
in a Dependence Case * 

K. L. MEHRA 

Summary. Let Xvl = (X, ia, X~2 , . . . ,  X~K, ) 1 < i<  nv be a sequence of independent random vectors 
following the regression model X~ ~j = e + fl C~ 0 + ery,. ~j, with - oo < c~, fl, C, 0 < 0% ~r > 0, and where 
Y ~ = ( Y ~ ,  ..., Y,.~K,), 1 < i<  n~, are independent random vectors with absolutely continuous distribu- 
tions U~ ~i)) and with densities f~~176 (x")=(x~, x2 . . . . .  xr,)), Define S ~ = ~  y~ d~,~ ~-,.R~j where 

/ N n~ i j 

{{vk: l < k < N ~ } -  _1 - (Nv=i~Ki )  i s a =  double sequence of real n u m b e r s , - o g < d v i j < o o  and Rvlj=rank 

of X, ij in a combined ranking of N~ components X~ij, 1 < j < K i, 1 < i < n~. Under certain assumptions 
on the densities f~~176 and the sequences {{,ij}, {d~ij} and {C~ij}, the asymptotic normality of the 
sequence {S~}, as nv --+ 0% is proved. The results extend similar results of Hfijek [3] and I-4], from inde- 
pendently distributed components to the above pattern of dependence. An extension of the main 
theorem also covers the case when some of the distributions F")(x ~~ are singular. The connection 
between the H/tjek condition (1.8) of [4] and the present condition (6.1) on the multivariate densities 
f~o (x~i)) is also discussed. 

1. Introduction 

Let Xvi-~--(Xvil, Xvi2 . . . .  ,XviKi), i = l , 2 , . . . , n ~ ,  with nv--*oe as v--roe, be a 
sequence of n~ independent random vectors, where 

Xvi=o~(i)-~-fi  f v i  -~'0" Yvi, (1.1) 

a{i)=(~, ~ , . . . ,a )  (with Ki components), C~i=(C~il, C~i2 .. . .  , C~iK), -- oe <~, 
fi<oe, a > 0  are constants and Yvi=(Y~il, Y~i= . . . . .  Y~iKi) are n independent 
random vectors distributed according to absolutely continuous distribution 
functions (d.f.'s) F(x)=F{i)(x)=F(x, ,  x2 . . . . .  XK) (X=X{O=(Xl, X2, .-.,XK)), i=  
l, 2, ..., n,; (although F(x) depends on i, i is being suppressed for convenience). 

nv 

Denote N~ = ~ Ki and let V~l < V~2, ..., < V~N~ stand for the N~ ordered random 
i=, 

components X~j,  I < j < K ~ ,  l< i<n~;  then if R~i ~ is the rank of X~j  in the 
above ordering, X~ij= V~.av,~ 1. Consider now a double sequence of real numbers 
{{~k: k=  1, 2 . . . .  , N~} and define 

nv Ki 

i = 1  j = l  

nv Ki 

where d,.~i are constants (not all zero) with ~ ~ d ~ = 0  and satisfying the 
condition (2.3). i= x i= 1 

* Prepared with the partial support of the National Research Council of Canada Grant A-3061. 

1. On account of the absolute continuity of F(x), we may assume with probability one that no 
two of the X's are equal. 
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The purpose of this paper is to prove, under a set of sufficient conditions 
(stated in Section 2; see also the concluding remarks) on the d.f.'s F(Z)(x) and the 
sequences {C~ ~j} and {~, k: k=  1, 2, . . . ,  N~}, the asymptotic normality, as v-~ o% 
of the sums S~ defined by (1.2). The present results extend those of H~tjek [4] 
to a case where the random components X~ ij may not all be independent. Also 
in the proofs the constants d,~j are different, in general, from the constants C~j 
and may not satisfy the condition (2.4)(ii). We are thus proving a Central Limit 
Theorem where the summands are functions of the random variables (compo- 
nents) which follow a certain pattern of dependence. The methods of proof follow 
the same line as in [4-1 based on the notion of "contiguous" measures introduced 
by Lecam [6] and H~tjek [4]. In the process, certain results of H~tjek [3] are also 
extended in Section 3. Sections 4 and 5 contain, respectively, the main theorem 
and an extension of the case when some F ~) (x), i = 1, 2, . . . ,  n~, are singular distribu- 
tions. In the concluding Section 6, an application of the main theorem useful in 
nonparametric satistical theory is also considered. 

2. Assumptions 

Assume that the d.f.'s F (i) (x), 1 <= i<= n~, satisfy the following conditions: 

(i) For any subset Av= {i} c {1, 2 . . . .  , n~}, the marginal joint distribu- 
tion of any m components Y~j~ 1 <_k<_m, where m < m i n  Ki is the same 
for all i6A~: i~A~ 

(ii) F(x)=F(O(x (i)) is absolutely continuous and possesses a contin- 
uous density f (x)  =f(x(i)), 1 < i < nv. 

(iii) The derivative f(J)= g f  /3xj exists and is finite for each x, except per- 
haps for a countable number of them, and satisfies for each j = 1, 2,. . . ,  Ki, 
whatever K~ may be, the condition 0 < ~ [{f(J)(x)}2/f(x)] dx < oo. 

(Define the integrand to be zero when f (x)---0.) 

(2.1) 

If F1 denotes the marginal distribution of a single component and F2 denotes 
the bivariate marginal distribution of (Y~ij, Y~ij,) and so on, then the condition 
(2.1)(i) states that F1, F2, ... do not depend on i, 1 ____i_<__ n~; nor on j, (j,j'),... if, in 
addition, F(1)(xl,..., xni ) are symmetric in the arguments. The condition (2.1)(iii) 
is not too stringent a condition: It is satisfied when F(x) is multivariate normal 
and for Ki = 1, it is satisfied by several well known unvariate distributions (see [4]). 
It is also satisfied when the components Y~ ~j, 1 _< j < K~, are independent and the 
marginal distributions satisfy this condition. It is satisfied by the multivariate 
symmetric Cauchy (see Feller [1], p. 69) and logistic distributions (see Gumbel [2]), 
and so on (see also the concluding remarks). Also, in case of the symmetry 
of F(x), the condition (2.1)(iii) is essentially a single condition and may be stated 
for any fixed j, say j =  1. Further for K~ = 1, it reduces to (cf. (6.2) of [4]). 

1 

~12 (u) du < oo (2.2) 
0 

where rl(u)={-f;(F~ l(u))/fl(F ~ ~(u))}, 0 < u < l ,  f ;=df~ /dx  and Fl-l(u)= 
Inf{x: f l (x  ) = u}. 
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and 

For the sequences { C~ia} and {d~ij}, we impose the conditions 

Lim ~max I d ~ j ] a / ~ ~ o o  ((~,j) j~=ld2ij} = 0 '  

(i) Lim max I ~i;I C2ij =0  
v~oo ((i , j)  i= 

nv Ki 
(ii) sup ~ ~ C~i~<o% 

v i = 1  j ~ l  

(2.3) 

(2.4) 

where (without loss of generality) we assume ~ ~ C~za=0. For the sequence of 
i j 

vectors {~vk: k = l ,  2,... ,N~}, assume that ~ 1 < r  and that there 
1 

exists a nonconstant, nondecreasing function ~(u) on (0, 1) with ~ ~2(u)du< 0% 
0 

such that the step function ~(u) defined on (0, 1) by ~(u)=~,k=~(k/(Nv+l)) 
for ( k -  1/N~)<u<(k/Nd, k= 1, 2 ... .  , N~, satisfies the condition 

1 

Lim ~ {~(u)-r  2 du=O. (2.5) 
v ~ o o  0 

3. Preliminary Results 

Consider a sequence {Uvi: i=1,2, . . . ,n~},  with gv i : (Uv i  D gvi2, ... ,  gviKi), 
of independent random vectors such that 

(i) Each component U~zi ( l<i<n~, I<__j<Kz) is distributed mar- 
ginally as a uniform random variable over (0, 1). 

(ii) Random vector U~i is distributed according to a continuous 
d.f. G(x)=G(i)(x)=G(xl, xz . . . . .  xK) which is jointly symmetric in the 
arguments and such that P[U~ij=U~ij.]=O for every pair (j,j'), with 
j=l=j'. 

(iii) The condition (2.1)(i) is satisfied for the distributions G(~ in 
place of F (1) (x). 

(3.1) 

Let as before R~i j denote the rank of U~ij in a combined ordering of the 
nv 

N~ = ~ K i components U~ ij's. The second condition in (3.1)(ii) has been assumed 
i = 1  

to ensure that, with probability 1, all components have distinct ranks. We shall 
concern ourselves in this section with the asymptotic behaviour of the sums S~ 
under the assumptions (3.1). The results in Theorem 3.1 below are analogues 
of Theorems 3.1 and 3.2 of Hfijek [3] and are based on the following extension 
of Lemma 2.1 of [3]: Let Zvl <Z~2 <-." <Z~N~ denote the ordered components 
U~ii's i.e., U~ii=Z~R j,  K*= max Ki, E,l={i :  Ki=l}, l=1 ,2 , .  K*, n~t= 

~ '  t < = i < n ~  " ' '  

number of elements in Evl and N~z= ~ K~. 
iEEvl 

13" 
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Lemma 3.1. Let E(. ) stand .for the expectation operation under the assumptions 
(3.1). Then for every i~E~l, 

E[~(C~ij)-~(R~ij/(S~+l))]2<=--(8 K~*)4N~t l<k<%l~k--~[max - (/ ~Sv (r ~)- 2 ),~ 
= = \ k ~  1 / 

where ~ = ( E  ~k)/N~. 
k 

Proof. First we note that for every pair (i,j), l<j<=Ki and ieE~, with E~ 
non-empty, 

P [R~ u = k/(Z~l, Z~2,..., Z,N~)] < (1/N~l) a.s. (3.2) 
To see this, let n(k) denote the L.H.S. of (3.2). Then on account of the symmetry r i j  

condition (3.1)(ii), ,(k)_,,(k) for every pair ( j , f )  and on account of (3.1)(iii), r i j  - -  Fij" 

p!k)=n!k! for every pair (j, j') and i, i'~E~ I. Denoting the common value by pl k~, 1J gltJ t 

we have K* K* K, 
E N~IPl k'= E E E Pl f' 

/=1 ,1=1 ieEvl j = l  

nv Ki 

= E 2 ,'.n(k')= 1 a.s., 
i = l  j = l  

from which (3.2) follows. Now let v be surpressed for convenience while writing 
U~u, R~u, Z~u, n~ and N~'s. On account of (3.2) we have for every i~E~z, with Evl 
non-empty, 

E [r (U,j)- ~ (Rij/(N + i))] 2 

= E [E ({~, (U~j)- #, (Ru/(N + i))} 2/(Z,, Z2 ..... ZN))] 
N =E[k~__eP[Rij=k/(Zl,...,ZN)]{~v(Zk)__~v(k/(N._~ i))}2] (3.3) 

' ] <= N~, E = ~ ( Z ~ ) - ~ ( k / ( N +  11) }  = . 

Now let M denote the number of Uij's less than (m/N) (m < N) and I A the indicator 

function of the set A, then M = ~ Itv, j < (~/mJ and it is easily verified that 
i=1 j = l  

n K~ 

Var(M)< ~ Ki ~ Var(Iw~j<(m/m l) 
i=1 1=1 (3.4) 

< K* m [1 - (m/N)]. 
From (3.3), (3.4) and the remaining arguments of Lemma 2.1 of [31, the proof 
follows. 

We need the following notation for the statement of Theorem 3.1: Let 

F I 1 ( i ) 2 ]  I f. ~(u)r v)- ~(u)du 
~ _  L ' O 0  

(u)du- r 
(3.5) 

I- "• z l/F l 
L i=1 j ' j "  - I /  ' L i = I  j = l  _1 
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where G(u, v) is the marginal d.f. of (U~j, U, ij,) and denote 
nv Ki 

rv*= E E dvij~(Uvij) 
i=1 j = l  

nv Ki 

i=1 j = l  
Assume further that 

(3.6) 

K~<t for alli .  (3.7) 

Theorem3.1. Assume that either (i) K i = K  and Limin f (1 -#~2)>0  or (ii) 

d~i j = 0, 1 < i <_ n,,, and Lim (n~l/nv) = (z > 0 for every 1 for which E~t is non-empty. 
J 
Then under the conditions (2.3), (2.4), (2.5), (3.1) and (3.7), 

(a) Lira {E(S~- T~)2/Var(T,)} =0  

(b) Lira {E(T~- T*)2/Var T~} =0.  

Proof. We prove part (a); part (b) is easily proved through similar arguments. 
For convenience we shall again suppress v as in the proof of Lemma 3.1. First con- 
sider the case (ii). Setting tvij= ~ ( U / j ) - ~ ( n i j / ( N  + 1)) we note that, on account of 
the symmetry condition (3.1)(ii), E(tv i j) and a 2 = Vat (t, it) do not depend on j and 
r,,=Cov(t~ij, t,.i,r does not depend on (j,j'). Consequently E(Sv-TO=O, so 
that denoting t~i = ~ d~ijt~i; we obtain 

) 

E(Sv -  T~) 2 = V a r ( S v -  T 0 

Var(t ,)+ Cov(t . t.,) 
i i ~ i '  

= E ( E  d2ij) G2 AV Z (  2 dvijdvij')"cii 
i j i j t j '  

+ ~ Cov(t~i, t,i, ). 
i#:i' 

But since Z d~ij=O, Z dZ~i~ = - ~,, d~ijd~ij,, and 
J J j , j "  

C ~  -~ E dvljdvi'j ' Tii" 
\ j = l  j ' = l  

= ( j ~ l d v i j l ( j , ~ l d v i ' J ' )  "cii' 

~-0,  

so that using the easily verifiable relation - z ,  < aZ/(K~-1), (K~ > 2), we obtain 

( S t -  2 = Z (Z  d ,j) - 
i j 

<= Z (Z dZ,J)K, a2/(Ki-  1) (3.8) 
i j 

< 2 Z (Z d2ij) E [~  ( Ui~ ) - ~ (R,/(N + 1))] 2. 
i j 
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On account of the condition (2.5), it easily follows that Var (T~)~Var (T~*), so that 
from (3.8) and Lemma 3.1, we obtain 

E ( S  v - -  Tv) 2 ~ 4 1/2 t ~ ~ Z dZu Z dZlJ 
Var (T0 - ~ j j ieEvt 

Nv 

Using the fact that #~= 1 and (3.16) and (3.17) of H/tjek [-33 (with a's replaced 
by ~'s), the proof of part (a)(ii) follows. The proof of part (a)(i) can be accomplished 

?Iv K 

similarly by using ~ ~ dvu--0, the symmetry properties and deriving an in- 
i=1 j=t 

equality similar to (3.8). The proof is complete. 

Remark 3.1. It is important to observe that the symmetry condition in (3.1)(ii) 
is not an essential condition: For example, if Ki = K and ~ d~ij = 0 or all 1 < j < K, 

it is easily seen that the conclusions of Theorem 3.1 continue to hold under the 
same conditions, but without the condition of symmetry of G(xl, x2 . . . . .  xK) in 
the arguments. 

4. The Main Theorem 

The proof of the main theorem below, concerning the asymptotic normality 
of the sequence Sv under the model (1.1), is based on the notion of sequences of 
"contiguous" measures: Consider two sequences {P~} and {Q~} of probability 
measures defined on a sequence of measurable spaces (:g;, d,) ,  1 < v <  oo. If 
P~(A~)~ 0 implies Q~(AO~O, as v ~  0% for any sequences of events of A~e~4~, 
then the measures Q~ are said to be contiguous to the measures P~. Contiguity 
implies that the P~-singular part in the decomposition of Q~ (with respect to P~) 
tends to zero, as v --, oe. 

Now let Q~i, i<i<n~,  and Qv stand, respectively, for the probability distri- 
butions of the vectors  Xvi~-(Xvil, Xvi2,...,XviKi), l<=i<n~, and Xv=(X~I, 
X~2 , ..., X~,,~) under the model (1.1), and P~i, l< i<n~ ,  and P~ correspond to the 
model (1.1) with fl=0. The proof of the main theorem below is accomplished, as 
in [4], by showing that under the assumed conditions Q~ are contiguous to P~ 
and that the conclusions of Lemma 4.2 of Hhjek [4] apply irrespective of whether 
X~ are univariate or multivariate. We need the following 

Lemma 4.1. Let s(x)= s(x~, x2 , . . . ,  x~) be absolutely continuous in each argu- 
ment x~, 1 <c~<_K, for almost all (w.r. to the Lebesgue measure #(r-~) on E~ r-~))  
x(~)eE(f -1)= {Y(~)=(Yt, ..., Y~-I, Y~+I, ..., Y~): - oo <yi < oe} such that for each, 

K 

1 <_c~<_K, ~ (as/6xj)2dx< o0. Then if h=(h~, hz, ..., h~) and []h]l 2 = ~ hE,: 
E (K) j =  1 

Ilhll-~o E;") Ilhl[ j=l Ithll ~xj dx=O, 

where E(K)= K-dimensional Cartesian space. 
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Proof. First we prove that  

Lim ~ {s (x-h(J+l) ) -s (x-h(J) )~s}  2 
Ilhl[~0 E(m " hi Oxj dx=O (4.1) 

where t#)=(O,O,...,hj, hj+~ ..... hK). To see this let h * = ( 0 , 0 , . . . , 0 ,  hj, 0, ... , 0) 
and y = x - h (j), where y = (Yl, Y2, --., YK). Then 

s(y+h*)-s(y) as(y+hO))_~ 2 
L. H. S. = Lim E(~& hj ~Yi j dy ]]h N so 

_<2Lim ~ I -s(y+h*)-s(y) ~?s(Y)'~ 2 
- HhH~0 E(~,,L hj cgyj J dy 

{ ~s(y) Os(y + h~ } ~35 + 2  Lim el& dy. ]]h][ so 

The second term on the right equals zero by the well-known property of "con- 
tinuity of translation in the L2-norm" for all quadratically integrable functions 
(see, for example, Hewitt and Stromberg [5], p. 199). The first term on the right 
can be proved to be equal to zero by using Lemma 4.3 of [4] and the Lebesgue 
dominated convergence theorem. To see this let 

E}K-1)= {yO)=(y~ .... ,35-1, ))+1 ..... YK): -- oo < yi< co} 
and note that  since ~ {c~s(y)/c~yj} 2 dy < 0% we have for almost all y(J)~E~ I~-1~ 

E (K) 

h(yO))= -~ (~?s(y) "~Zd35< oo ; (4.2) 
_o~k ~35 ) 

since s(y) is absolutely continuous in each argument  xj for almost all y(J)~E} K-I), 
it follows from (4.2) and Lemma 4.3 of [4] that  for almost all y(J)~E} ~:-~ 

oo ;.s(,+h,*/-sO,) 
_ I. a y j J  

-.i> O, 

as hj + 0, and from (4.23) of [4] that I ghs (flU))[ ~ 4 h (y(J)) with ~ h (y(J)) dy (j) < 0% so 
that  the Lebesgue dominated convergence theorem applies and (4.1) is proved. 
The proof  of the Lemma now follows from (4.1) and 

O<_ Lim j~, ~s(x)-s(x-h) ~ hj  ~S } 2 
--Ilhll~O ( Hhll ;=,  ]lhN Oxj dx 

< Lim j~ ,  Is:~=~]~hJ {s(x-h(;+l')-s(x-h ~xxjJJ c~S ~q2dx 
= Ilhll ~o j 

--<--Kj__~ 1.= IIhN~oLim ~;> s(x-h(J+l))-s(x-h(J))hj 6~Xjj~S "~2 dx 

= 0 ;  

the proof  is complete. 



180 K.L. Mehra: 

Let Y(Y~/P~)oN(G, b 2) denote that (u ~ converges in distribution to 
the normal N(0, 1) distribution, under P~. 

Theorem 4.1. Suppose that the model (1.1), together with conditions (2.1), (2.4) 
and the symmetry of F(x 1 .... , xK~ ) in the arguments, holds and that either the 
conditions (i) or the conditions (ii) of Theorem 3.1 are satisfied. Then under the 
assumptions (2.3), (2.5) and (3.7), the sequence S,, defined by (1.2), satisfies 

with ~q# ( Sv) --* g (m~ , bE), 
1 

m =(Z E 3 S ,(u) du, 
~ j  o (4.3)  

b 2 = ( ~  ~ d2ij)[ i ~Z(u)du-(i  {(u)du)21(l-#v2), 

where 2 and #, are given by (3.5), t/(u) by (2.2) and G(u,v) is the d.f of the vector 
(el ( g i j), 1:1 ( g ij'))" 

Ki 
Remark. Under the conditions (ii) of Theorem 3.1, viz., ~ d, ij=O for each i, 

#~ = 1 so that b 2 reduces to j= 1 

b 2 = ( Z  Z d2ij) I (2 (u )  d u -  ~ ( u ) ~ ( v ) a G ( u ,  v) . 
i j t-O 0 0 

Pro@ Let si(x)= [f(x(O)]~; then on account of the condition (2.1)(iii) each 
(t?sl/~xj), j= 1, 2, ..., K~, is quadratically integrable and consequently the con- 
clusion of Lemma 4.1 holds for each s~(x), i= 1, 2 .... , n~. Also (4.15) of [4] takes 
the form 

i=1 ( si(Yvi) 

where 7--(fl/o-) and Yvi=X~i-e(i~-flCvi. Letting hvij=TC~ij, h~i=TCvi, E(.) 
stand for the expectation under P~ and T~' = ~ ~ C~ij [f~ it follows 
that i j 

E {W~-E(W~)-T T~} 2 

< = 4 7 2 ~ i ( ~ 2 , : ( s ( x ) - s ( s - h ~ )  h~ij Qsi-~ 2 
. . c ,  i j lJ~ ~ ~ Llhvi]l cOxj) dx (4.4) 

---~ 0 ,  

on account of Lemma 4.1, Ki < t and (2.4) (ii). Further it is easily seen that E ( W j ~  
-72z~/4 and that for the sums T~' i Lindeberg-Feller condition (see Loeve [7] 
p. 280) is satisfied due to Ki < t and (2.4)(i), so that from (4.4) we obtain ~r (W~/P~) --, 
N ( -  7 2 z~/4, 7 2 z~), where 

z~ = E ~ {2 C~iJ If(J)(x)/]//f(x)]} 2 dx. 
i j 

The condition (4.17) of [4] is also satisfied on account the same conditions. Since 
z 2 remains bounded, as v ~ c~, assuming without loss of generality that z 2 --+ z 2 < o% 
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it follows from Lemma 4.2 of [4] that {Q~} is contiguous to {P~} and that 

P~ - Lira {Lv +�89 7 2 T z - 7 T(} = 0, (4.5) 

where L~ is given by (4.16) of [4]. 

We will now use part (iii) of this lemma to establish the asymptotic normality 
of S~ under Q~, as v--+ o9. Let U~is=FI(Y,,ij), then the vectors U~i , l<i<n,. ,  satisfy 
the conditions (3.1). Consequently, if we set T * =  Z ~, dm~(Ft(Y~ij) ) it follows 
using Lindeberg-Feller theorem again that i j 

5f (T~*/P~) ---, N(0, b2), (4.6) 

and from Theorem (3.1) and the contiguity of {(2~} to {P~} that if, after proper 
normalization, one of the limits exists 

Lira ~(S,/Q~)= Lim 5f(T*/Q~). (4.7) 

To apply part (iii) of Lemma 4.2 of [4], we need to prove the asymptotic bivariate 
normality of L~ and T* or equivalently (cf. Section 7 of Wald-Wolfowitz [9]) that 
of an arbitrary linear combination of L~ and (T*/d~), say, aL~+b(T*/d~), where 
d ~ = ( ~ , ~  dZ,s)L For this it suffices on account of (4.5)to prove the asymptotic 

i j 
normality of H~ = a 7 T" + b (T**/d,) - (7 2 "C 2 a/2). Now 

H~* = tL - t; (/-/~) = z Z ~/" * / ~  t-vij  ~ -viii 
i j 

where r~] = - a C~o {fo)(y~)/f(y~3} and r~ 2] = b (d~Ud,) ~ (F~(Yvi)). Clearly we may 
, , (t) (2) assume that Lira inf Vat (H~) > 0. Now note that, if H ~ =  ~. (r;i j + rr 

J 
1 

E (H~,) ~ } 
Var (H*) + ~(w~(m))~ 

2t 2 2 
< Var(H*) ~ 2 ~ 2 ~ E{I[lrS')~A>=(~/2KO(Var(H.))-~l(41i? '2)}, 

�9 j j '  / = 1  / ' = 1  

and that Var(H*) remains bounded, as v ~ oQ. It easily follows that the Linde- 
berg-Feller condition is satisfied by H* under the assumed conditions. It fol- 
lows that ~ (L~,  T~*/P~) converges to a bivariate normal distribution which 
coupled with (4.6), (4.7) and an application of part (iii) of Lemma 4.2 of [4] shows 
that ~q~(G/Q~)~N(m~, b~), as v ~  r where m ~ c o v ( T * ,  T~'), under P~, and b~ is 
given by (4.3). Now 

m~cov(T,*, T~') 

= ~, Cov( - Z C~is [fo)(y~i)/f(y~i)], ~ d~is ~ (el (Yvij))) 
j J 

= E 2 c~,5 d~ ~ S [-f (J~ (~)] ~ ( 5  %)) d~ 
i j 

-~- E E Cv ij dv ij' I ( -- fO)(x) )  r (5  (xy,)) d x  
i j:~j" 

1 
= (E Z c~, d~,)~. (u)r (u)du. 

i j o 
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The last equality follows by using the notation (2.2) and the fact that the second 
term in the preceeding expression vanishes identically on account of (2.1)(iii); 
the proof is complete. 

Remark 4.1. In view of the remark 3:1, clearly if K i = K and ~ dij= 0 for each 
i 

1 <_j<=K, one can similarly prove the asymptotic normality (with appropriate 
constants m~ and b 2) of the sequence {S~} under the same conditions as in 
Theorem 4.1, but without the condition of symmetry of F ( x l , . . . ,  xK) in the argu- 
ments. This remark applies to Theorem 5.1 also. 

5. Extension: When Some F t~ (x) are Singular 

Let the rank of a distribution F(x) in E tK) denote the smallest integer r, such 
that the total mass of the distribution F(x) is contained in a linear subspace of 
dimensions r. Let 

(i) Each F (i) (x )  has rank r i < K i. 

�9 t \  �9 =~= .t (ii) P [Yij = Yij'] = 0 for every pair (j, j ) j j and 1 < i_< nv. 
(5.1) 

(i) The marginal distribution of any rz components of 

Y~i=(Y~il, Y~i2, "", Y~iK,) 

is absolutely continuous with density f(~)(x) = f(~,)(x D x 2 .. . .  , Xri), 1 ~ i ~ n v . 

(ii) The conditions (2.1) are satisfied, with Ki replaced by r i in (2.1)(ii) 
and (iii). 

(5.2) 

Theorem 5.1. Let the model (1.1) with conditions (2.4), (5.1) and (5.2) hold. Then 
under the same conditions as for Theorem 4.1, ~ ( S v ) ~  N(mv, b2), with m v and b E 
given by (4.3). 

Proof. Let U~ij=Fl(Yvij). Since Fl(x ) is absolutely continuous (in fact, only 
continuity is enough) P[U~ij=U~iy]=O is equivalent to P[Y~/j=Yvij,]=0 for 
every fixed i and pair (j, f). Clearly then the conditions (3.1) are all satisfied for 
the U~i's defined above and consequently the conclusions of Theorem 3.1 are 
applicable. 

Let Q* and Pv* be defined as Q~ and P~ in Section 4 with 

= x 2  . . . .  , 

in place of F(i)(x)=(xl, x2 , . . . ,  xK~), and note that if the distribution F(~ is 
singular with rank r~ < K~, then any (K~-r0 components of the vector X~i can be 
expressed, with probability 1, as linear combinations of the remaining r~ compo- 
nents. Consequently, the distributions P~* and Q*~ are respectively equivalent to 
the distributions P~ and Q~, 1 < i N  n~. Proceeding as in the proof of Theorem 4.1 
with f(~)(x) in place of f(x)=ftxc,)(x) it follows that {(2*} is contiguous to {P~*}, 
or in other words, {Qv} is contiguous to {P~}. The rest of the arguments of Theorem 
4.1 apply verbatim and the proof follows. 
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6. An Application 

In this section we give an application to Theorem 5.1 useful in the non- 
parametric statistical theory. Let K~ = K and 

T~ j) = (~  ~, R~j)/l/n~ 1 < j < K, 
i 

and consider the sequence S~=(S~ 1), S~, z), ..., S(f )) with S~J)= T~(J)-E(T~J)), where 
E (-) denotes as before the expectation under P~. Clearly then 

i j '  

where 
el(J) . . . .  1/(K ]/n~) for j '  # j - - w j  

and 
, r  for j ' = j .  ~'v tJ '  

For the d's above, the condition ~ ~J) - d~ij,-O, l_~i<=n~, is satisfied. We can thus 
deduce i 

Theorem 6.1. Suppose that the model (1.1) with conditions (2.4), (5.1) and (5.2) 
holds. Then under the assumptions (2.3) and (2.5), the sequence {Sv} converges in 

(Wt(1) W/(2) ~ (K)~ and distribution to a normal random vector with the mean m~=,...v ,.-v , . . . ,  mv , 
the covariance matrix ~ = 1] Ojj,- (1/K)rl A 2, where 

1 

mf)=(Z r du, 
i 0 

1 i 1 

v). 
0 0 0  

Proof According to the arguments of Section 7 of Wald and Wolfowitz [9], 
it suffices to prove the asymptotic normality of for an arbitrary linear combination 
ofS~ j~, I < j < K ,  viz., 

Hv = ~ 2 (j~ S (j~ - X' V (V 3(J) ~ (J)~ 
v - - Z . . , . d . ~ / , ~ v i j  ' ' '  f ~ v R , , i j , "  

j i j" j 

If we set d'g; = ( ~  ~. ~(~j,,~'(j~), then the condition ~ d*~j, =0,  i=  1, 2 . . . . .  n~, are 
j j' 

satisfied whatever be the 2's. By applying Theorem 5.1 the proof follows after 
some computations. 

Concluding Remarks. Theorem 6.1 has been employed for investigating the 
asymptotic properties of certain testing and estimation procedures (e.g. in [8]). 
It is worth observing that in view of the statement of Lemma 4.1, the condition 
2.1(iii) can be replaced by a weaker condition, viz., for each 1 <_i<n~ (i is sup- 
pressed below for convenience), 

f ( x ) = f ( x l ,  x2 . . . . .  xK) is absolutely continuous in each argument x~, 
l'_<c~<_K, for almost all (w.r. to the Lebesgue measure /~(K-1) on E (K-I)) 
x(~) ~ E(~ - 1) = {if) = (Yl . . . .  , Y~- 1, Y~ +1, ..., YK): - oo < Yl < oo } and for each 
c~, l_<c~_<K, O< ~ [{f(~)(x)}2/.f(x)] dx< oe where f(~)(x)=~f/Ox~. 

E (K)  

(6.1) 
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It is proved in [8] (Theorem 4.2) that if a random vector X = (Xt, X2 . . . . .  XK) 
possesses a density f (x l ,  x2 . . . . .  xK) satisfying (6.1), the random vector Y= 
(Y1,..., Yt)=A. X, where A is a t x K  matrix of rank t < K ,  also satisfies (6.1). 
Accordingly if the distribution of X satisfies this condition, so will every marginal 
distribution. The above result together with the remarks of section 2 establishes 
a connection between the H~tjek condition (1.8) in [4] and the present condition 
(6.1). We conclude with the following remark: The assumption P [ Yvij = Y~ij,] = 0 
in Theorem 5.1 has been made to obviate, with probability 1, the problem of ties. 
In statistical applications, in case of a tie either the mean rank or randomization 
is employed in assigning ranks to the tied observations. On can, indeed, extend 
the above arguments to cover these cases also. 
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