Z. Wahrscheinlichkeitstheorie verw. Gebiete 57, 419-440 (1981)

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © Springer-Verlag 1981

Some Limit Theorems of Donsker-Varadhan Type for Markov Process Expectations

Hiroyuki Ôkura

Department of Mathematics, Osaka University, Toyonaka, Osaka 560, Japan

Introduction

In the present paper we shall be concerned with generalization of those results by M.D. Donsker and S.R.S. Varadhan [2, 3]. They have given in [3] the solution of the sausage problem for symmetric stable processes. Our goal is to extend this result to the case of symmetric Lévy processes which are close to a symmetric stable process (Theorem 4.1).

The contents of this paper are as follows. Let $0 < \alpha \le 2$ and let $X^{(\alpha)} = (X_t, P_x^{(\alpha)})$ be a symmetric stable process on \mathbb{R}^d of order α . Let $X = (X_t, P_x)$ be another symmetric Lévy process on \mathbb{R}^d . We shall assume that the process X is close to the process $X^{(\alpha)}$ in the sense that conditions (Q_1) and (Q_2) in Lemma 3.1 hold. Theorem 4.1 asserts that the solution of the sausage problem for the process X is given by the asymptotic formulas (4.5) and (4.6), which are reduced to the solution by Donsker and Varadhan [3] when $X = X^{(\alpha)}$. It should be noted that the limiting constant $k(v, L^{(\alpha)})$ is common for the processes satisfying conditions (Q_1) and (Q_2) .

The proof of the upper estimate (4.5) goes along the same idea as in [3]. For this purpose we first define $X_t^s = X_0 + s^{-1}(X_{s^{x_t}} - X_0), t \ge 0$, for any path X_t , $t \ge 0$ and any s > 0, and then have to treat the one-parameter family $\{(\pi(X_i^s), P_x); s > 0\}$ of Lévy processes on a torus T in \mathbb{R}^d , where π denotes the canonical map of R^d onto T. In the special case of $X = X^{(\alpha)}$ the law of $(\pi(X_t^s), P_x^{(\alpha)})$ is identical with that of $(\pi(X_t), P_x^{(\alpha)})$ for any s > 0 by virtue of the scaling property of $X^{(\alpha)}$. Donsker and Varadhan [3] have proved the upper estimate in the special case of $X = X^{(\alpha)}$ by applying to the process $(\pi(X_{i}), P_{i}^{(\alpha)})$ the general theorem on the asymptotic evaluation of certain expectations with respect to a Markov process on a compact space. The last theorem has been obtained by Donsker and Varadhan [2]. Thus in order to use the method of [3] for our general case we have to extend the results of [2] in such a manner that they apply to a one-parameter family of Markov processes on a compact space. This extension will be done in Sects. 1-3; Theorem 1.1 extends the first half of Theorem 1.2 of [2] and in case of Lévy processes on a torus Theorem 3.1 extends the first half of Theorem 5.1 of [2] and its corollary.

The proof of the lower estimate (4.6) of Theorem 4.1 is quite different. We shall not use any results of Sects. 1-3, but use the method essentially due to L.A. Pastur [7] in which some related problems are treated. We further note that the author [6; Theorem 6.2'] has proved a similar result to (4.6) for the case of the pinned processes of the process X.

In Sect. 5 we shall give necessary and sufficient conditions for (Q_1) , a sufficient condition for (Q_2) and some examples.

The author wishes to express his sincere gratitude to M. Fukushima for having suggested him the problem and to T. Watanabe for continual encouragement and valuable advice.

1. A One-Parameter Family of Markov Processes on a Compact Space

Let X be a compact metric space and \mathfrak{B}_{x} its topological Borel field. Let M(X) denote the set of all signed measures of bounded variation defined on X. The norm $\|\mu\|$ of $\mu \in M(X)$ is defined by the total variation $\|\mu\| = \sup_{\substack{A \in \mathfrak{B}_{x} \\ A \in \mathfrak{B}_{x}}} (\mu(A) - \mu(A^{c}))$. Let B(X) (resp. C(X)) denote the space of all bounded Borel (resp. continuous) functions on X with the supremum norm $\|\cdot\|_{\infty}$. Let $\langle \mu, f \rangle = \int_{X} \mu(dx) f(x)$ for

 $\mu \in M(X)$ and $f \in B(X)$.

Let p(t, x, dy) be a Feller transition probability on X, T_t the corresponding semigroup on C(X) and L the infinitesimal generator of T_t with domain $\mathscr{D}(L) \subset C(X)$. Let Ω be the set of all X-valued right continuous functions $\omega = x(\cdot)$ on $[0, \infty)$ having left hand limits on $(0, \infty)$. It is well known that there exists a Hunt process $(\Omega, x(t), P_x: t \ge 0, x \in X)$ having p(t, x, dy) as its transition probability.

Let \mathcal{M} denote the space of all probability measures on X. We shall endow \mathcal{M} with the weak topology so that \mathcal{M} is a compact metric space. For any t > 0, $\omega = x(\cdot) \in \Omega$ and $A \in \mathfrak{B}_{\mathfrak{X}}$, let

$$L_t(\omega, A) = \frac{1}{t} \int_0^t \chi_A(\mathbf{x}(\sigma)) \, d\sigma.$$
(1.1)

Note that $L_t(\omega, \cdot) \in \mathcal{M}$ for each t > 0 and $\omega \in \Omega$. For each $x \in X$ and t > 0, let $Q_{x,t}$ be the probability measure on \mathcal{M} induced by the map $\omega \to L_t(\omega, \cdot)$ of Ω into \mathcal{M} from P_x , i.e., for any Borel subset B of \mathcal{M} ,

$$Q_{x,t}(B) = P_x(\omega \in \Omega; L_t(\omega, \cdot) \in B).$$

Following Donsker and Varadhan we define the *I*-functional $I(\mu)$, $\mu \in \mathcal{M}$ corresponding to the transition probability p(t, x, dy) by

$$I(\mu) = -\inf_{\substack{u > 0\\ u \in \mathscr{D}(L)}} \langle \mu, Lu/u \rangle.$$
(1.2)

 $I(\mu)$ is a non-negative, lower semicontinuous functional on \mathcal{M} .

We assume that there exists a finite reference measure λ on X such that p(t, x, dy) is absolutely continuous relative to λ for each t > 0 and $x \in X$. Let γ

denote the space of all $\mu \in \mathcal{M}$ which are absolutely continuous relative to λ . We shall endow γ with the norm topology. Note that if $\mu \in \mathcal{M}(X)$ is absolutely continuous relative to λ , then $f = d\mu/d\lambda \in L^1(\lambda)$ and $\|\mu\| = \|f\|_{L^1(\lambda)}$. Thus one can identify γ with the subset of $L^1(\lambda)$ with the $L^1(\lambda)$ -norm topology. Let $\{k_{\varepsilon}(x, y); \varepsilon > 0\}$ be a family of measurable functions on $X \times X$ such that $k_{\varepsilon}(x, \cdot) \in \gamma$ for each $\varepsilon > 0$ and $x \in X$. Define, for any $\varepsilon > 0$, t > 0, $\omega = x(\cdot) \in \Omega$ and $y \in X$,

$$I_{t}^{\varepsilon}(\omega, y) = \int_{\mathcal{X}} k_{\varepsilon}(x, y) L_{t}(\omega, dx)$$
$$= \frac{1}{t} \int_{0}^{t} k_{\varepsilon}(x(\sigma), y) d\sigma.$$
(1.3)

Note that $l_t^{\varepsilon}(\omega, \cdot) \in \gamma$ for each $\varepsilon > 0$, t > 0 and $\omega \in \Omega$. Let $\varepsilon(t)$ be a positive function of t > 0 tending to zero as $t \to \infty$ and let

$$g_t(\omega, y) = l_t^{e(t)}(\omega, y).$$
 (1.4)

The map $\omega \rightarrow g_t(\omega, \cdot)$ of Ω into γ is measurable for each t > 0 so that the probability measure $R_{x,t}$ on γ is defined by

$$R_{x,t}(A) = P_x(\omega \in \Omega; g_t(\omega, \cdot) \in A),$$

where A is any Borel subset of γ .

In the first half of Theorem 1.2 in [2], Donsker and Varadhan have proved the following relation under their Assumptions A, B, C and D: If C is any closed subset of γ , then

$$\limsup_{t \to \infty} \frac{1}{t} \log R_{x,t}(C) \leq -\inf_{\mu \in C} I(\mu).$$
(1.5)

In this paper we shall consider a one-parameter family $\{p^s(t, x, dy); s \in (0, \infty]\}$ of Feller transition probabilities instead of a single p(t, x, dy). Let s(t) be any positive function increasing to infinity with t. Generalizing (1.5), we claim that $R_{x,t}^{s(t)}$ obeys the following relation: For every closed subset C of γ ,

$$\limsup_{t\to\infty}\frac{1}{t}\log R^{s(t)}_{x,t}(C) \leq -\inf_{\mu\in C}I^{\infty}(\mu).$$

Here and after the semigroup, generator, *I*-functional, P_x -measure, $Q_{x,t}$ -measure and $R_{x,t}$ -measure corresponding to $p^s(t, x, dy)$ are denoted by T_t^s , L^s , $I^s(\mu)$, P_x^s , $Q_{x,t}^s$ and $R_{x,t}^s$, respectively.

We now state the assumption for the one-parameter family $\{p^{s}(t, x, dy); s \in (0, \infty]\}$.

Assumption A. (i) There exists a subset \mathscr{D}_0 of $\bigcap_{s \in \{0,\infty\}} \mathscr{D}(L^s)$ such that \mathscr{D}_0 is uniformly dense in C(X), $T_t^{\infty} \mathscr{D}_0 \subset \mathscr{D}_0$ for all t > 0, and $L^s u$ tends to $L^{\infty} u$ uniformly as $s \to \infty$ for each $u \in \mathscr{D}_0$.

(ii) For each $s \in (0, \infty]$, t > 0 and $x \in X$, $p^{s}(t, x, dy)$ is absolutely continuous relative to λ with the density $p^{s}(t, x, y)$ and, moreover, $a^{s}(t) \equiv \inf_{x, y} p^{s}(t, x, y) > 0$ and $A^{s}(t) \equiv \sup_{x, y} p^{s}(t, x, y) < \infty$ hold for each t > 0 and $s \in (0, \infty]$.

(iii) For each t > 0, $p^{s}(t, x, y)$ tends to $p^{\infty}(t, x, y)$ uniformly for x and y as $s \rightarrow \infty$.

(iv) For each t > 0, the map $x \to p^{\infty}(t, x, \cdot)$ of X into $\gamma \subset L^{1}(\lambda)$ is continuous.

Remark. If $p^{s}(t, x, dy)$ is independent of s, that is, the family $\{p^{s}(t, x, dy); s \in (0, \infty]\}$ consists only of a single transition probability p(t, x, dy), then the above Assumption A is reduced to Assumptions A and D in [2].

Theorem 1.1. Let $\{p^s(t, x, dy); s \in (0, \infty]\}$ be a one-parameter family of Feller transition probabilities on X satisfying Assumption A. Let $\{k_{\varepsilon}(x, y); \varepsilon > 0\}$ be a family of functions on $X \times X$ satisfying Assumption B of [2] and $\varepsilon(t)$ a positive function satisfying Assumption C of [2]. Then for each closed subset C of γ (in the norm topology) and each $x \in X$,

$$\limsup_{t \to \infty} \frac{1}{t} \log R_{x,t}^{s(t)}(C) \leq -\inf_{\mu \in C} I^{\infty}(\mu).$$
(1.6)

The next theorem is a corollary of Theorem 1.1, which follows from the lower semicontinuity of $I^{\infty}(\mu)$, and the compactness of $\{\mu; I^{\infty}(\mu) \leq l\}, l < \infty$ (see [2; p. 285]) by the arguments in Varadhan [9; Sect. 3].

Theorem 1.2. Suppose that the assumptions of Theorem 1.1 are satisfied. Let $\{\Phi_t(f); t>0\}$ be a family of measurable functionals on γ and Φ any functional on γ such that, for each $f \in \gamma$ with $I^{\infty}(f) < \infty$ and each family $\{f_t\} \subset \gamma$ converging to f in norm, $\liminf_{t\to\infty} \Phi_t(f) \ge \Phi(f)$. We assume $\Phi_t(f) \ge 0$ for all t>0 and $f \in \gamma$. Then

Iner

$$\limsup_{t \to \infty} \frac{1}{t} \log \int_{\gamma} \exp\left\{-t \Phi_t(f)\right\} R_{x,t}^{s(t)}(df) \leq -\inf_{f \in \gamma} \left[\Phi(f) + I^{\infty}(f)\right], \tag{1.7}$$

where $I^{\infty}(f) = I^{\infty}(\mu)$ with $\mu = f \cdot \lambda \in \gamma$.

We shall prove Theorem 1.1 in Sect. 2. In Sect. 3 we shall give a class of examples for Theorem 1.2 which will be used in Sect. 4 for the sausage problem.

2. The Proof of Theorem 1.1

In this section we shall give the proof of Theorem 1.1. We first give some preliminary results. Recall that

$$I^{s}(\mu) = -\inf_{\substack{u \geq 0\\ u \in \mathscr{D}(L^{s})}} \langle \mu, L^{s} u/u \rangle, \quad \mu \in \mathscr{M}, \ s \in (0, \infty].$$

We have the following lemma.

Lemma 2.1. Suppose that Assumption A(i) is satisfied. Then, for each $\mu \in \mathcal{M}$,

$$I^{\infty}(\mu) = -\inf_{\substack{u > 0\\ u \in \mathscr{D}_{0}}} \langle \mu, L^{\infty} u/u \rangle.$$
(2.1)

The proof is carried out along the same line as in [4; Lemma 2.1]. We omit the detail.

The following theorem generalizes the first half of Theorem 3 of [1].

Theorem 2.1. Suppose that Assumption A(i) is satisfied. Let s(t) be any positive function increasing to infinity with t. Then, for each closed subset C of \mathcal{M} (in the weak topology) and each $x \in X$,

$$\limsup_{t \to \infty} \frac{1}{t} \log Q_{x,t}^{s(t)}(C) \leq -\inf_{\mu \in C} I^{\infty}(\mu).$$
(2.2)

Proof. The proof is similar to that of the first half of Theorem 3 in [1]. Let $s \in (0, \infty]$ be fixed. Then one can prove that, for each $u \in \mathscr{D}(L^s)$ with u > 0 and each Borel subset B of \mathscr{M} ,

$$Q_{x,t}^{s}(B) \leq \frac{u(x)}{\min u(y)} \exp\left\{t \sup_{\mu \in B} \langle \mu, L^{s}u/u \rangle\right\}$$

(see [1; p. 40]). Since $\min u(y) > 0$,

у

4

$$\limsup_{t \to \infty} \frac{1}{t} \log Q_{x,t}^{s(t)}(B) \leq \limsup_{t \to \infty} \sup_{\mu \in B} \langle \mu, L^{s(t)} u/u \rangle.$$
(2.3)

Let $u \in \mathscr{D}_0$ and u > 0. By Assumption A(i), $L^s u/u$ tends to $L^{\infty} u/u$ uniformly as $s \to \infty$ and thus $\langle \mu, L^s u/u \rangle$ tends to $\langle \mu, L^{\infty} u/u \rangle$ uniformly for $\mu \in \mathscr{M}$ as $s \to \infty$ so that the right hand side of (2.3) is equal to $\sup_{\mu \in B} \langle \mu, L^{\infty} u/u \rangle$. Hence we have, for any Borel subset B of \mathscr{M} ,

$$\limsup_{t \to \infty} \frac{1}{t} \log Q_{x,t}^{s(t)}(B) \leq \inf_{\substack{u > 0 \\ u \in \mathscr{D}_0}} \sup_{\mu \in B} \langle \mu, L^{\infty} u/u \rangle.$$
(2.4)

This relation implies that, for each closed (compact) subset C of \mathcal{M} ,

$$\limsup_{t \to \infty} \frac{1}{t} \log Q_{x,t}^{s(t)}(C) \leq \sup_{\substack{\mu \in C \\ u \in \mathscr{Q}_0}} \inf_{\substack{u > 0 \\ u \in \mathscr{Q}_0}} \langle \mu, L^{\infty} u/u \rangle$$
(2.5)

(see [1; p. 40]). Since the right hand side of (2.5) is equal to $-\inf_{\mu \in C} I^{\infty}(\mu)$ by Lemma 2.1, the proof of Theorem 2.1 is complete.

In the remainder of this section we shall assume that the three assumptions of Theorem 1.1 are satisfied. The map T_i^s of C(X) into C(X) is given by

$$(T_t^s \phi)(x) = \int_{\mathcal{X}} p^s(t, x, y) \phi(y) \lambda(dy), \quad \phi \in C(X).$$

We also think of T_i^s as the dual map on M(X) defined by

$$(\mu T_t^s)(dy) = (\int_{\mathcal{X}} p^s(t, x, y) \, \mu(dx)) \, \lambda(dy), \qquad \mu \in M(\mathcal{X}).$$

Note that T_t^s maps \mathcal{M} into γ . Similarly, by K_{ε} we denote two maps in duality defined by

$$(K_{\varepsilon}\phi)(x) = \int_{\mathfrak{X}} k_{\varepsilon}(x, y) \phi(y) \lambda(dy), \quad \phi \in C(\mathfrak{X})$$

and

$$(\mu K_{\varepsilon})(dy) = (\int_{\mathfrak{X}} k_{\varepsilon}(x, y) \,\mu(dx)) \,\lambda(dy), \qquad \mu \in M(X).$$

Assumptions B(iii) and (iv) of [2; p.281] assure that K_{ε} forms a compact operator of C(X) into itself and it also maps \mathcal{M} into γ .

We need some lemmas. First, by Assumption A(iv), we have the following lemma.

Lemma 2.2 ([2; p. 293]). For each $\delta > 0$, the map $\mu \rightarrow \mu T_{\delta}^{\infty}$ of \mathcal{M} (with the weak topology) into γ (with the norm topology) is continuous.

Next we prepare two lemmas involving the family $\{I^s(\mu); s \in (0, \infty]\}$ of *I*-functionals.

Lemma 2.3. Suppose that a sequence $\{\mu_n\} \subset \mathcal{M}$ converges weakly to $\mu \in \mathcal{M}$ and $s_n \to \infty$, then

$$I^{\infty}(\mu) \leq \liminf_{n \to \infty} I^{s_n}(\mu_n).$$

Proof. It follows from Assumption A(i) that if $u \in \mathcal{D}_0$ and u > 0, then $\langle \mu_n, L^{s_n} u/u \rangle$ tends to $\langle \mu, L^{\infty} u/u \rangle$ as $n \to \infty$. Thus the lemma is an immediate consequence of Lemma 2.1.

Lemma 2.4. Let $\{\mu_n\}$ be a sequence in γ and $\{s_n\}$ a sequence tending to infinity. Suppose that $\sup_{n} I^{s_n}(\mu_n) < \infty$. Then $\{\mu_n\}$ is totally bounded in γ in the norm topology.

Proof. One can assume that μ_n converges weakly to an element $\mu \in \mathcal{M}$ since \mathcal{M} is compact. Then, by Lemma 2.3, we have

$$I^{\infty}(\mu) \leq \liminf_{n \to \infty} I^{s_n}(\mu_n) \leq l, \qquad (2.6)$$

where $l = \sup_{n} I^{s_n}(\mu_n) < \infty$. We have only to show that

$$\|\mu_n - \mu\| \to 0$$
 as $n \to \infty$. (2.7)

To this end observe that, for each t > 0,

 $\|\mu_n - \mu\| \leq \|\mu_n - \mu_n T_t^{s_n}\| + \|\mu_n (T_t^{s_n} - T_t^{\infty})\| + \|(\mu_n - \mu) T_t^{\infty}\| + \|\mu T_t^{\infty} - \mu\|.$

424

The third term on the right tends to zero as $n \rightarrow \infty$ by Lemma 2.2. One can show that the second term also tends to zero as follows:

$$\begin{aligned} \|\mu_n(T_t^{s_n} - T_t^{\infty})\| &= \|\int_{\mathfrak{X}} \mu_n(dx)(p^{s_n}(t, x, \cdot) - p^{\infty}(t, x, \cdot))\|_{L^1(\lambda)} \\ &\leq \int_{\mathfrak{X}} \lambda(dy) \int_{\mathfrak{X}} \mu_n(dx) |p^{s_n}(t, x, y) - p^{\infty}(t, x, y)| \\ &\leq \lambda(\mathfrak{X}) \cdot \sup_{x, y} |p^{s_n}(t, x, y) - p^{\infty}(t, x, y)|; \end{aligned}$$

the last term tends to zero as $n \rightarrow \infty$ by Assumption A(iii). Thus, by (2.6), we have

$$\limsup_{n \to \infty} \|\mu_n - \mu\| \le \sup_n \sup_{I^{s_n}(\mu) \le I} \|\mu - \mu T_I^{s_n}\| + \sup_{I^{\infty}(\mu) \le I} \|\mu - \mu T_I^{\infty}\|$$
(2.8)

for each t > 0. It follows from Corollary in p. 44 of [1] that each term on the right hand side of (2.8) tends to zero as $t \rightarrow 0$. Thus we have (2.7), which proves the lemma.

In the remainder of this section we denote by ϕ any function in C(X) and by s(t) any function increasing to infinity with t>0. For any $\varepsilon>0$, $\delta>0$ and ϕ , we define

$$\phi_{\varepsilon,\delta} = K_{\varepsilon} (T_{\delta}^{\infty} - I) \phi.$$
(2.9)

Here and after we denote by I the identity operators on C(X) and M(X). For each $s \in (0, \infty]$, we define a functional $\lambda^s(\phi)$ on C(X) by

$$\lambda^{s}(\phi) = \sup_{\mu \in \mathcal{M}} \left[\langle \mu, \phi \rangle - I^{s}(\mu) \right].$$
(2.10)

The following lemma corresponds to Lemma 2.1 of [2].

Lemma 2.5. For each $0 < \rho < \infty$,

$$\limsup_{\delta \to 0} \limsup_{t \to \infty} \sup_{\|\phi\|_{\infty} \le \rho} \lambda^{s(t)}(\phi_{\varepsilon(t),\,\delta}) \le 0.$$
(2.11)

Proof. By the argument of [2; pp. 284–285] we have only to show that

$$\lim_{\delta \to 0} \limsup_{t \to \infty} \sup_{I^{s(t)}(\mu) \leq 2\rho} \|\mu K_{\varepsilon(t)}(T^{\infty}_{\delta} - I)\| = 0.$$
(2.12)

To this end let

$$\eta(\delta) = \limsup_{t \to \infty} \sup_{I^{s(t)}(\mu) \leq 2\rho} \|\mu K_{\varepsilon(t)}(T_{\delta}^{\infty} - I)\|, \quad \delta > 0.$$

For each $\delta > 0$, we can choose sequences $t_n > 0$ and $\mu_n \in \gamma$ such that t_n tends to infinity, $I^{s_n}(\mu_n) \leq 2\rho$ $(s_n = s(t_n))$ and

$$\lim_{n \to \infty} \|\mu_n K_{\varepsilon_n}(T^{\infty}_{\delta} - I)\| = \eta(\delta) \qquad (\varepsilon_n = \varepsilon(t_n)).$$
(2.13)

By Lemma 2.4, we can assume that there exists an element $\mu \in \gamma$ such that $\lim_{n \to \infty} ||\mu_n - \mu|| = 0$. Then it follows from Lemma 2.3 that

$$I^{\infty}(\mu) \leq \liminf_{n \to \infty} I^{s_n}(\mu_n) \leq 2\rho.$$
(2.14)

Noting the contraction properties of the operators T^{∞}_{δ} and K_{ε} on M(X), we have

$$\begin{split} \|\mu_{n}K_{\varepsilon_{n}}(T_{\delta}^{\infty}-I)\| &\leq \|(\mu_{n}-\mu)K_{\varepsilon_{n}}(T_{\delta}^{\infty}-I)\| + \|\mu K_{\varepsilon_{n}}(T_{\delta}^{\infty}-I)\| \\ &\leq 2\|\mu_{n}-\mu\| + \|(\mu K_{\varepsilon_{n}}-\mu)T_{\delta}^{\infty}\| + \|\mu T_{\delta}^{\infty}-\mu\| + \|\mu-\mu K_{\varepsilon_{n}}\| \\ &\leq 2\|\mu_{n}-\mu\| + 2\|\mu K_{\varepsilon_{n}}-\mu\| + \|\mu T_{\delta}^{\infty}-\mu\|. \end{split}$$

The first term on the right side tends to zero as $n \rightarrow \infty$ and the second tends to zero by Assumption B(v) of [2]. Thus, by (2.13) and (2.14), we have $\eta(\delta) \leq \sup_{I^{\infty}(\mu) \leq 2\rho} \|\mu T_{\delta}^{\infty} - \mu\|$. The right hand side tends to zero as $\delta \to 0$ by Corollary in p. 44 of [1], which completes the proof of Lemma 2.5.

Let $g_t(\omega, y)$ be the function defined by (1.4). For any $\delta > 0$, we define

$$g_t^{\delta}(\omega, y) = \int_x p^{\infty}(\delta, x, y) g_t(\omega, x) \lambda(dx)$$
(2.15)

and

$$\Delta_t^{\delta}(\omega) = \|g_t^{\delta}(\omega, \cdot) - g_t(\omega, \cdot)\|_{L^1(\lambda)}.$$
(2.16)

Now we prove the main estimate corresponding to Theorem 3.1 of [2].

Theorem 2.2. For each $\theta > 0$ and $x \in X$,

$$\limsup_{\delta \to 0} \limsup_{t \to \infty} \frac{1}{t} \log P_x^{s(t)}(\varDelta_t^{\delta}(\omega) \ge \theta) = -\infty.$$
(2.17)

Proof. Let $s \in (0, \infty]$ be fixed. Then Lemma 2.2 of [2] holds for the process $(\Omega, x(t), P_x^s; t \ge 0, x \in X)$ by Assumption A(ii). Thus, by the argument of [2; pp. 289–290], we have, for any $0 < \rho < \infty$,

$$P_x^s(\varDelta_t^{\delta} \ge \theta) \le N_{\theta/8}(\varepsilon(t)) e^{-t\rho\theta/4} C_{\rho}^s \exp(t\lambda_{t,\delta,\rho}^s),$$

where $N_{\theta/8}(\varepsilon(t))$ denotes the smallest number of $\frac{\theta}{8}$ -covering of the image of the unit ball in C(X) under the compact operator $K_{\varepsilon(t)}$,

$$\lambda_{t,\,\delta,\,\rho}^{s} = \sup_{\|\phi\|_{\infty} \leq 1/2} \lambda^{s}(\rho \,\phi_{\varepsilon(t),\,\delta}) \quad \text{and} \quad C_{\rho}^{s} = e^{2\rho} A^{s}(1)/a^{s}(1);$$

the concrete form of C_{ρ}^{s} was given in the proof of Lemma 2.2 of [2].

Assumption C of [2; p. 283] asserts that, for each $\theta > 0$,

$$\alpha(\theta) \equiv \limsup_{t \to \infty} \frac{1}{t} \log N_{\theta/8}(\varepsilon(t)) < \infty.$$

Since Assumption A(iii) implies that $C_{\rho}^{s} \rightarrow C_{\rho}^{\infty}(<\infty)$ as $s \rightarrow \infty$, we have $\limsup_{t \to \infty} \frac{1}{t} \log C_{\rho}^{s(t)} = 0. \text{ Note that } \lambda_{t,\delta,\rho}^{s} = \sup_{\|\phi\|_{\infty} \le \rho/2} \lambda^{s}(\phi_{\varepsilon(t),\delta}) \text{ by the linearity of the}$

map $\phi \rightarrow \phi_{\varepsilon,\delta}$. Thus, we have, by Lemma 2.5, $\limsup_{\delta \rightarrow 0} \limsup_{t \rightarrow \infty} \lambda_{t,\delta,\rho}^{s(t)} \leq 0$. Hence we have

$$\limsup_{\delta \to 0} \limsup_{t \to \infty} \frac{1}{t} \log P_x^{s(t)}(\Delta_t^{\delta} \ge \theta) \le \alpha(\theta) - \rho \,\theta/4.$$

Letting $\rho \rightarrow \infty$, we have the theorem.

Finally we shall give the proof of Theorem 1.1. Recall that $R_{x,t}^s$ is the measure on γ induced by the map $\omega \rightarrow g_t(\omega, \cdot)$ of Ω into γ from P_x^s . We shall also consider the measure $R_{x,t}^{s,\delta}$ on γ induced by the map $\omega \rightarrow g_t^{\delta}(\omega, \cdot)$. Note that

$$R^{s,\delta}_{x,t}(A) = R^s_{x,t}(\mu \in \gamma; \mu T^{\infty}_{\delta} \in A)$$

for any measurable subset A of γ .

Proof of Theorem 1.1. Theorem 2.1 implies that for each $C \subset \gamma$ which is a closed subset of \mathcal{M} in the weak topology,

$$\limsup_{t \to \infty} \frac{1}{t} \log R_{x,t}^{s(t)}(C) \leq -\inf_{\mu \in C} I^{\infty}(\mu)$$
(2.18)

(see the proof of Theorem 4.1 of [2]). By Lemma 2.2, this inequality implies that

$$\limsup_{t \to \infty} \frac{1}{t} \log R_{x,t}^{s(t),\,\delta}(C) \leq -\inf_{\mu T_{\delta}^{\infty} \in C} I^{\infty}(\mu)$$
(2.19)

for each $\delta > 0$ and each closed subset C of γ in the norm topology (see the proof of Theorem 4.2 of [2]). Let C be any closed subset of γ in the norm topology and let $C_{\theta} = \{\beta \in \gamma; \|\beta - \alpha\| < \theta \text{ for some } \alpha \in C\}, \theta > 0$. Then we have

$$R_{x,t}^{s}(C) \leq R_{x,t}^{s,\delta}(\overline{C}_{\theta}) + P_{x}^{s}(\Delta_{t}^{\delta}(\omega) \geq \theta),$$

where \overline{C}_{θ} denotes the norm closure of C_{θ} (see [2; p. 293]). Thus it follows from Theorem 2.2 and (2.19) that

$$\limsup_{t \to \infty} \frac{1}{t} \log R_{x,t}^{s(t)}(C) \leq \liminf_{\theta \to 0} \liminf_{\delta \to 0} \limsup_{t \to \infty} \frac{1}{t} \log R_{x,t}^{s(t),\delta}(\bar{C}_{\theta})$$
$$\leq -\limsup_{\theta \to 0} \limsup_{\delta \to 0} \inf_{\mu T_{\theta}^{\infty} \in \bar{C}_{\theta}} I^{\infty}(\mu)$$
(2.20)

(see [2; p. 294]). By the relation

$$\liminf_{\substack{\theta \to 0 \\ \delta \neq 0}} \inf_{\mu T_{\delta}^{\infty} \in \bar{C}_{\theta}} I^{\infty}(\mu) \ge \inf_{\mu \in C} I^{\infty}(\mu)$$

((4.5) of [2]), we have the theorem.

3. The One-Parameter Family of Lévy Processes on a Torus

In this section we shall consider a class of examples for Theorem 1.2 which will be used in $\S4$ for the sausage problem.

Let R^d be the *d*-dimensional Euclidean space. Let M > 0 be fixed and let $G = (MZ)^d$, where $(MZ)^d$ denotes the discrete subgroup of R^d consisting of vectors having for each coordinate an integral multiple of M. We take as the compact metric space X the *d*-dimensional torus $T = R^d/G$ of size M. Let π denote the canonical map of R^d onto T. We may identify T with the subset $\{x = (x^1, ..., x^d); 0 \le x^i < M, i = 1, ..., d\}$ of R^d .

Let $X = (X_t, P_x: t \ge 0, x \in \mathbb{R}^d)$ be a symmetric Lévy process on \mathbb{R}^d ; here by a Lévy process we mean a Hunt process with stationary independent increments. It is well known that the process $(\pi(X_t), P_x: t \ge 0, x \in T)$ is a Lévy process on the torus T, which will be denoted by $\pi(X)$. In the following we shall make a one-parameter family of Lévy processes on the torus T satisfying Assumption A and apply Theorem 1.2.

Let $Q(\xi)$ be the exponent of the Lévy process X on \mathbb{R}^d , i.e.,

$$E_0[\exp(i\langle\xi, X_t\rangle)] = \exp\{-tQ(\xi)\}, \quad t > 0, \ \xi \in \mathbb{R}^d;$$
(3.1)

here and after E_x denotes the expectation with respect to P_x for each $x \in \mathbb{R}^d$. $Q(\xi)$ is a non-negative, symmetric, continuous function. Let $0 < \alpha \leq 2$. A symmetric Lévy process on \mathbb{R}^d is said to be a symmetric stable process of order α and denoted by $X^{(\alpha)}$ if the exponent $Q^{(\alpha)}(\xi)$ has the property that $Q^{(\alpha)}(\lambda\xi) = \lambda^{\alpha} Q^{(\alpha)}(\xi)$ for $\lambda > 0$. For the concrete forms $Q(\xi)$ and $Q^{(\alpha)}(\xi)$ see (5.1) and (5.2), respectively.

We fix a symmetric stable process $X^{(\alpha)}$ with exponent $Q^{(\alpha)}(\xi)$. Let X be another symmetric Lévy process with exponent $Q(\xi)$. For any sample path X_t , $t \ge 0$, of X and any $s \in (0, \infty)$, let $X_t^s = X_0 + s^{-1}(X_{s^{\alpha_t}} - X_0)$, $t \ge 0$. It is easy to see that, for each $s \in (0, \infty)$, the process $X^s = (X_t^s, P_x: t \ge 0, x \in \mathbb{R}^d)$ is a symmetric Lévy process with the exponent $Q^s(\xi)$ defined by

$$Q^{s}(\xi) = s^{\alpha} Q(s^{-1} \xi).$$
(3.2)

We now write X^{∞} for $X^{(\alpha)}$. Thus we have a one-parameter family $\{\pi(X^s); s \in (0, \infty]\}$ of Lévy processes on *T*. Let $p^s(t, x, dy)$ be the transition probability of $\pi(X^s)$ for each $s \in (0, \infty]$. We define

$$Q_*(\xi) = \inf_{s \ge 1} Q^s(\xi).$$

Lemma 3.1. The one-parameter family $\{p^s(t, x, dy); s \in (0, \infty]\}$ of transition probabilities on T defined above satisfies Assumption A under the following conditions on the processes X and $X^{(\alpha)}$, or rather on the exponents $Q(\xi)$ and $Q^{(\alpha)}(\xi)$:

$$(\mathbf{Q}_1) \quad Q(\boldsymbol{\xi}) = Q^{(\alpha)}(\boldsymbol{\xi}) + o(|\boldsymbol{\xi}|^{\alpha}) \quad (|\boldsymbol{\xi}| \downarrow 0).$$

(Q₂) For any t > 0 and r > 0, $\sum_{\xi \in (rZ)^d} \exp\{-tQ_*(\xi)\} < \infty$.

For the proof we shall introduce the Fourier transform on T. Let λ be the Lebesgue measure on the torus T and let $\tilde{G} = \left(\frac{2\pi}{M}Z\right)^d$. For any function f in $L^1(\lambda)$, the Fourier transform \hat{f} of f is the function defined by

$$\hat{f}(\xi) = M^{-d/2} \int_{T} e^{i\langle\xi, x\rangle} f(x) dx, \quad \xi \in \tilde{G}.$$
(3.3)

Moreover, if $f \in C(T)$ (the space of continuous functions) and $\sum_{\xi \in \widehat{G}} |\widehat{f}(\xi)| < \infty$, then we have the inversion formula

$$f(x) = M^{-d/2} \sum_{\xi \in \tilde{G}} e^{-i\langle \xi, x \rangle} \hat{f}(\xi), \quad x \in T.$$
(3.4)

Remark. One can replace condition (Q_2) in Lemma 3.1 by the following weaker condition:

$$(\mathbf{Q}_{2,M}) \quad For \ any \ t > 0, \ \sum_{\xi \in \overline{G}} \exp\left\{-t Q_{*}(\xi)\right\} < \infty.$$

In fact we shall prove Lemma 3.1 under the conditions (Q_1) and $(Q_{2,M})$.

Proof of Lemma 3.1. We first observe that, for each $\xi \in \tilde{G}$,

$$E_0\left[\exp\left\{i\langle\xi,\pi(X_t^s)\rangle\right\}\right] = \exp\left\{-tQ^s(\xi)\right\}, \quad t \ge 0, \ s \in (0, \infty).$$
(3.5)

In the following we shall write $Q^{\infty}(\xi)$ for $Q^{(\alpha)}(\xi)$. We have $Q^{s}(\xi) \ge Q_{*}(\xi)$ for $s \in (0, \infty]$ by condition (Q_{1}) . Thus it follows from condition $(Q_{2,M})$ that $\sum_{\xi \in G} \exp\{-tQ^{s}(\xi)\} < \infty$ for any t > 0 and $s \in (0, \infty]$. Hence, for each $s \in (0, \infty]$, we can define a function

$$p^{s}(t, x) = M^{-d} \sum_{\xi \in \widetilde{G}} \exp\left\{-i\langle \xi, x \rangle - t Q^{s}(\xi)\right\},$$
(3.6)

which is continuous in $x \in T$ and analytic in t > 0. Let $p^s(t, x, y) = p^s(t, y - x)$ for t > 0, $x \in T$, $y \in T$ and $s \in (0, \infty]$. Then $p^s(t, x, y)$ is the density of $p^s(t, x, dy)$ relative to $\lambda(dy)$ for each $s \in (0, \infty]$, t > 0 and $x \in T$. Assumptions A(ii) and (iv) are easily verified except for the condition

$$a^{s}(t) \equiv \inf_{x, y} p^{s}(t, x, y) > 0, \quad t > 0.$$
 (3.7)

To prove (3.7) it suffices to show that $p^{s}(t, x) > 0$ for any t > 0 and $x \in T$. One can show this by an elementary argument as in [6; Proposition 3.1].

We next check Assumption A(iii). It suffices to show that, for each t > 0, $p^{s}(t, x)$ converges to $p^{\infty}(t, x)$ uniformly for $x \in T$ as $s \to \infty$. Since condition (Q_1) implies that exp $\{-tQ^{s}(\xi)\}$ tends to exp $\{-tQ^{\infty}(\xi)\}$ as $s \to \infty$, the desired assertion follows from the expression (3.6) and condition $(Q_{2,M})$.

Finally we check Assumption A(i). Let T_t^s be the semigroup on C(T) corresponding to $p^s(t, x, dy)$. Then we have, for any $f \in C(T)$,

$$T_t^s f(x) = \int_T p^s(t, y) f(x+y) \, dy, \quad x \in T, \ t > 0, \ s \in (0, \infty].$$
(3.8)

One can easily see that T_t^s is a strongly continuous Feller semigroup. Let L^s be the infinitesimal generator of T_t^s with domain $\mathscr{D}(L^s)$. Let $C^{\infty}(T)$ denote the space of all C^{∞} -functions on T. We shall check Assumption A(i) with \mathscr{D}_0 $= C^{\infty}(T)$, that is, the following four assertions: (a) $C^{\infty}(T) \subset \mathscr{D}(L^s)$ for each $s \in (0, \infty]$, (b) $C^{\infty}(T)$ is uniformly dense in C(T), (c) $T_t^{\infty} C^{\infty}(T) \subset C^{\infty}(T)$ for all t > 0, and (d) $L^s u$ tends to $L^{\infty} u$ uniformly as $s \to \infty$ for each $u \in C^{\infty}(T)$. Assertion (b) is obvious and assertion (c) is immediate from (3.8). To prove (a) and (d) we note the following bound:

$$Q^{s}(\xi) \leq c |\xi|^{2} \quad \text{for } |\xi| \geq 1, \ \xi \in \tilde{G} \text{ and } s \in [1, \infty];$$

$$(3.9)$$

this follows from the relation $Q(\xi) \leq c'(|\xi|^{\alpha} + |\xi|^2)$, which is obtained from condition (Q_1) . Note that $(\widehat{T_t^s u})(\xi) = \exp\{-t Q^s(\xi)\} \times \hat{u}(\xi), \xi \in \widetilde{G}$ for each $u \in C(T)$ and $s \in (0, \infty]$. By an elementary calculation we have $|t^{-1}[(\widehat{T_t^s u})(\xi) - \hat{u}(\xi)]| \leq Q^s(\xi) |\hat{u}(\xi)|$ for any t > 0 and $t^{-1}[(\widehat{T_t^s u})(\xi) - \hat{u}(\xi)] \rightarrow -Q^s(\xi) \hat{u}(\xi)$ as $t \rightarrow 0$. Thus, by the inversion formula (3.4) and the bound (3.9), one can show that if $u \in C(T)$ satisfies

$$\sum_{\xi \in \tilde{G}} |\xi|^2 |\hat{u}(\xi)| < \infty, \qquad (3.10)$$

then $t^{-1}[T_t^s u - u]$ converges uniformly as $t \to 0$, that is, $u \in \mathcal{D}(L^s)$ and moreover

$$\widehat{(E^{s}u)}(\xi) = -Q^{s}(\xi)\,\widehat{u}(\xi), \quad \xi \in \tilde{G}.$$
(3.11)

Thus assertion (a) follows from the fact that $u \in C^{\infty}(T)$ satisfies (3.10). To see (d) it suffices to show that $\sum_{\xi \in \widehat{G}} |\widehat{(L^s u)}(\xi) - (\widehat{L^\infty u})(\xi)|$ tends to zero as $s \to \infty$. This follows from (3.9), (3.10), (3.11) and the fact that $Q^s(\xi) \to Q^{\infty}(\xi)$ as $s \to \infty$ for each $\xi \in \widehat{G}$. This completes the proof of Lemma 3.1.

Let $\tilde{k}(x)$ be an arbitrary probability density on \mathbb{R}^d relative to the Lebesgue measure. For $\varepsilon > 0$, define

$$\widetilde{k}_{\varepsilon}(x) = \varepsilon^{-d} \widetilde{k}(\varepsilon^{-1} x),$$

$$k_{\varepsilon}(x) = \sum_{g \in G} \widetilde{k}_{\varepsilon}(x+g), \quad x \in T.$$
(3.12)

It is known [2] that Assumptions B and C in [2] are satisfied by

$$k_{\varepsilon}(x, y) = k_{\varepsilon}(x - y)$$
 and $\varepsilon(t) = t^{-1/d}$. (3.13)

We have seen that Theorems 1.1 and 1.2 are applicable to the present case. For the convenience of reference for the sausage problem in Sect. 4 we shall restate Theorem 1.2 as it applies to this case.

For a given M > 0, let T_M denote the *d*-dimensional torus of size M and π the projection of \mathbb{R}^d onto T_M . Let $k_{\varepsilon}(x-y)$ and $\varepsilon(t)$ be defined by (3.12) and (3.13). For a path $\omega = x(\cdot)$ on T_M , define

$$g_t(\omega, y) = \frac{1}{t} \int_0^t k_{\varepsilon(t)}(x(\sigma) - y) \, d\sigma, \quad y \in T_M.$$
(3.14)

Let γ_M be the space of all probability densities on T_M relative to the Lebesgue measure λ endowed with the $L^1(\lambda)$ -norm topology. Note that $g_t(\omega, \cdot) \in \gamma_M$. Let $I_M^{(\alpha)}(f), f \in \gamma_M$, be the *I*-functional corresponding to the projection $\pi(X^{(\alpha)})$ of $X^{(\alpha)}$ onto T_M . We then have the following theorem.

Theorem 3.1. Let $X^{(\alpha)}$ and $X = (X_t, P_x; t \ge 0, x \in \mathbb{R}^d)$ satisfy conditions (Q_1) and (Q_2) in Lemma 3.1. Let $\Phi_i(f)$, t > 0 and $\Phi(f)$ be the functionals on γ_M satisfying the conditions in Theorem 1.2. Then, for any s(t) increasing to infinity with t > 0 and any $x \in \mathbb{R}^d$,

$$\limsup_{t \to \infty} \frac{1}{t} \log E_x \left[\exp\left\{ -t \Phi_t(g_t(\pi(X^{s(t)}), \cdot)) \right\} \right]$$
$$\leq -\inf_{f \in \gamma_M} \left[\Phi(f) + I_M^{(a)}(f) \right]. \tag{3.15}$$

Here $\pi(X^s)$ denotes the path $\{\pi(X^s_t), t \ge 0\}$ on T_M and $X^s_t = X_0 + s^{-1}(X_{s^{\alpha_t}} - X_0), t \ge 0, s > 0.$

Remark. If $X = X^{(\alpha)}$, then every $X^s = (X_t^s, P_x)$ has the same law. In this case Theorem 3.1 is nothing but the corollary to Theorem 5.1 of [2].

4. The Sausage Problem for a Class of Lévy Processes on R^d

Let $S(x,\varepsilon)$ denote the sphere in \mathbb{R}^d of radius $\varepsilon > 0$ with center at $x \in \mathbb{R}^d$. By the sausage of a symmetric Lévy process $X = (X_t, P_x; t \ge 0, x \in \mathbb{R}^d)$ we mean the random set $C_t^{\varepsilon}(X_t) = \bigcup_{\substack{0 \le s < t \\ 0 \le s < t}} S(X_s, \varepsilon)$ (see [3]). Let |A| denote the *d*-dimensional Lebesgue measure of any measurable subset A of \mathbb{R}^d . Note that $|C_t^{\varepsilon}(X_t)|$ is a functional of the path of X increasing with t.

Let $0 < \alpha \leq 2$ and let $X^{(\alpha)} = (X_t, P_x^{(\alpha)})$ be a symmetric stable process of order α with exponent $Q^{(\alpha)}(\xi)$ satisfying the nondegeneracy assumption $\inf_{\substack{|\xi|=1\\ \xi|=1}} Q^{(\alpha)}(\xi) > 0$. Let $L^{(\alpha)}$ be the infinitesimal generator of $X^{(\alpha)}$ and let $E_x^{(\alpha)}$ denote the expectation with respect to $P_x^{(\alpha)}$. Donsker and Varadhan [3] have proved that, for each $x \in \mathbb{R}^d$, v > 0 and $\varepsilon > 0$,

$$\lim_{t \to \infty} t^{-d/(d+\alpha)} \log E_x^{(\alpha)} [\exp\{-v | C_t^{\varepsilon}(X.)|\}] = -k(v, L^{(\alpha)}),$$
(4.1)

$$k(\nu, L^{(\alpha)}) = \nu^{\alpha/(d+\alpha)} \left(\frac{d+\alpha}{\alpha}\right) \left(\frac{\alpha \lambda_{\alpha}}{d}\right)^{d/(d+\alpha)}, \tag{4.2}$$

with $\lambda_{\alpha} = \inf_{G} \lambda(G)$, where the infimum is taken over all open sets G in \mathbb{R}^{d} of unit volume and $\lambda(G)$ denotes the smallest eigenvalue of the eigenvalue problem $-L^{(\alpha)}u = \lambda u$ with the Dirichlet condition: u(x) = 0, $x \in G^{c}$ (see [3] and [6; Sect. 4] for the precise definition of $\lambda(G)$).

The purpose of this section is to extend the above result to a class of Lévy processes which are close to $X^{(\alpha)}$. Let $X^{(\alpha)}$ be as above and $X = (X_t, P_x)$ another symmetric Lévy process. We assume that $X^{(\alpha)}$ and X satisfy conditions (Q_1) and (Q_2) in Lemma 3.1. In the theorem below we shall prove

$$\lim_{t \to \infty} t^{-d/(d+\alpha)} \log E_x[\exp\{-v | C_t^{\varepsilon}(X.)|\}] = -k(v, L^{(\alpha)}).$$
(4.3)

As in [3], however, we shall actually treat a more general functional $F(t, X_{\cdot})$ defined below rather than $\exp\{-\nu |C_t^{\epsilon}(X_{\cdot})|\}$. Let $\varphi(x)$ be a $[0, \infty]$ -valued Borel function on \mathbb{R}^d . We define, for any t > 0 and $\nu > 0$,

$$F(t, X_{\bullet}) = \exp\left(-v \int_{\mathbb{R}^d} \left(1 - \exp\left\{-\int_0^t \varphi(X_s - y) \, ds\right\}\right) dy\right).$$
(4.4)

Note that if, in particular, $\varphi(x) = \infty$ for $|x| < \varepsilon$ and $\varphi(x) = 0$ for $|x| \ge \varepsilon$, then $F(t, X_{\cdot}) = \exp\{-\nu |C_t^{\varepsilon}(X_{\cdot})|\}$.

Theorem 4.1. Let $X^{(\alpha)}$ and X satisfy conditions (Q_1) and (Q_2) in Lemma 3.1. Suppose that $\int \varphi(x) dx > 0$, then

$$\limsup_{t \to \infty} t^{-d/(d+\alpha)} \log E_x[F(t, X_{\cdot})] \leq -k(v, L^{(\alpha)}).$$
(4.5)

Moreover, if $\varphi(x) = o(|x|^{-(d+\alpha)})(|x| \to \infty)$, then

$$\liminf_{t \to \infty} t^{-d/(d+\alpha)} \log E_x[F(t, X_{\cdot})] \ge -k(v, L^{(\alpha)}).$$
(4.6)

Here $k(v, L^{(\alpha)})$ is defined by (4.2).

Proof of the Upper Estimate. We shall prove (4.5) showing how Theorem 3.1 applies to the functional $F(t, X_{\cdot})$ in (4.4). We can, without loss of generality, assume (see [3; p. 560]) that $\varphi(x) = a\tilde{k}(x), x \in \mathbb{R}^d$, where $\tilde{k}(x)$ is a probability density relative to the Lebesgue measure and a > 0. For a given M > 0, we define $g_t(\omega, y)$ for any path ω on T_M and $y \in T_M$ by (3.14), where $k_{\varepsilon}(x)$ is defined by (3.12) from the above $\tilde{k}(x)$ and $\varepsilon(t)$ by (3.13). Note that $g_t(\omega, \cdot) \in \gamma_M$.

By changes of variables and using the argument in [3; p. 562], we have

$$F(t, X_{\bullet}) \leq \exp\{-\tau \Phi_{\tau}(g_{\tau}(\pi(X_{\bullet}^{s}), \cdot)))\}, \qquad (4.7)$$

where $\tau = \tau(t) = t^{d/(d+\alpha)}$, $s = s(\tau) = \tau^{1/d} = t^{1/(d+\alpha)}$ and

$$\Phi_{\tau}(f) = v \int_{T_M} (1 - \exp\{-\tau^{a/d} a f(y)\}) dy, \quad f \in \gamma_M.$$

As was pointed out in [3; p. 563], the family of functionals $\Phi_{\tau}(f)$, $\tau > 0$ on γ_M has the property that if $f_{\tau} \in \gamma_M$ converges to f in $L^1(\lambda)$, then $\liminf_{\tau \to \infty} \Phi_{\tau}(f_{\tau}) \ge \Phi(f)$, where $\Phi(f) = v |\{x \in T_M; f(x) > 0\}|$. Therefore, by Theorem 3.1, we have

$$\limsup_{\tau \to \infty} \frac{1}{\tau} \log E_{x} [\exp\{-\tau \Phi_{\tau}(g_{\tau}(\pi(X_{\cdot}^{s(\tau)}), \cdot))\}]$$

$$\leq -\inf_{f \in \gamma_{M}} [\Phi(f) + I_{M}^{(\alpha)}(f)], \qquad (4.8)$$

where $I_M^{(\alpha)}(f)$ is the *I*-functional corresponding to the projection $\pi(X^{(\alpha)})$ of $X^{(\alpha)}$ onto the torus T_M . By (4.7),

$$\limsup_{t\to\infty} t^{-d/(d+\alpha)} \log E_x[F(t,X.)]$$

is dominated by the left hand side of (4.8). Thus, taking infimum over M > 0, we have

$$\limsup_{t \to \infty} t^{-d/(d+\alpha)} \log E_x[F(t, X_{\cdot})]$$

$$\leq -\sup_{M > 0} \inf_{f \in \gamma_M} [v|\{y \in T_M; f(y) > 0\}| + I_M^{(\alpha)}(f)].$$
(4.9)

It has already been shown in [3; Lemma 3.5, 3.6 and 3.9] that the right hand side of (4.9) is not greater than $-k(v, L^{(\alpha)})$. This completes the proof of (4.5).

Next we shall be concerned with the lower estimate (4.6). In the following we shall denote by $C_0^{\infty}(\mathbb{R}^d)$ the space of all C^{∞} -functions on \mathbb{R}^d with compact support and define, for any measurable function f on \mathbb{R}^d , $\|f\|_{\infty} = \max |f(x)|$

and $||f||_p = (\int |f(x)|^p dx)^{1/p}$, p = 1, 2. We shall prepare a generalized version of the lemma due to Pastur [7].

Lemma 4.1. Let $\{q(x): x \in \mathbb{R}^d\}$ be a stationary random field defined on a probability space with P and E denoting its probability measure and expectation, respectively. Let $\mathscr{E}(\cdot, \cdot)$ be the Dirichlet form (see [5]) of a symmetric Lévy process $X = (X_t, P_x)$ on \mathbb{R}^d . Suppose that $E[e^{-tq(0)}] < \infty$ for each t > 0. Then

$$E[e^{-tq(0)}] \ge E \times E_x \left[\exp\left\{ -\int_0^t q(X_s) \, ds \right\} \right]$$

$$\ge (\|f\|_{\infty} \cdot \|f\|_1)^{-1} \exp\{-[t \, \mathscr{E}(f, f) + \Psi_t(f)]\}$$
(4.10)

for any $f \in C_0^{\infty}(\mathbb{R}^d)$ such that $||f||_2 = 1$, where $E \times E_x$ denotes the expectation with respect to the product measure $P \times P_x$ and

$$\Psi_t(f) = -\log E[\exp\{-\int_{R^d} t \, q(x) f^2(x) \, dx\}].$$
(4.11)

Pastur [7] has proved (4.10) in case of X being the Brownian motion. The proof of the general case is similar. Hence we omit the proof (see also [6]; Theorem 7.1]).

Proof of the Lower Estimate. Let $\Pi(dy)$ denote a Poisson random measure on R^d with characteristic measure $v | \cdot |$, where $| \cdot |$ denotes the d-dimensional Lebesgue measure. Then

$$q(x) = \int_{R^d} \varphi(x - y) \Pi(dy)$$
(4.12)

defines a stationary random field $\{q(x): x \in \mathbb{R}^d\}$, where $\varphi(x)$ is that appeared in (4.4). Then it is easy to see that

$$E\left[\exp\left\{-\int_{0}^{t}q(X_{s})ds\right\}\right] = \exp\left(-v\int_{R^{d}}\left(1-\exp\left\{-\int_{0}^{t}\varphi(X_{s}-y)ds\right\}\right)dy\right),$$
$$E\left[\exp\left\{-\int_{R^{d}}tq(x)f^{2}(x)dx\right\}\right]$$
$$= \exp\left(-v\int_{R^{d}}(1-\exp\left\{-\int_{R^{d}}t\phi(x-y)f^{2}(x)dx\right\}\right)dy\right).$$

Hence, by Lemma 4.1, we have

$$E_{x}[F(t, X_{\cdot})] = E \times E_{x} \left[\exp \left\{ -\int_{0}^{t} q(X_{s}) ds \right\} \right]$$

$$\geq (\|f\|_{\infty} \cdot \|f\|_{1})^{-1} \exp \{ -[t \mathscr{E}(f, f) + \Psi_{t}(f)] \}$$
(4.13)

for any $f \in C_0^{\infty}(\mathbb{R}^d)$ and, by Definitions (4.4) and (4.11), we have

$$F(t, X_{\bullet}) = E\left[\exp\left\{-\int_{0}^{t} q(X_{s}) ds\right\}\right],$$

$$\Psi_{t}(f) = v \int_{\mathbb{R}^{d}} (1 - \exp\left\{-\int_{\mathbb{R}^{d}} t \, \varphi(x - y) f^{2}(x) dx\right\}) dy.$$

For each $f \in C_0^{\infty}(\mathbb{R}^d)$ with $||f||_2 = 1$ and $\mathbb{R} > 0$, define

$$f_R(x) = R^{-d/2} f(R^{-1}x), \quad x \in R^d$$

Let $R(t) = t^{1/(d+\alpha)}$, t > 0. It has been proved [6; Lemma 8.2] that condition (Q₁) implies that

$$\mathscr{E}(f_{R(t)}, f_{R(t)}) = t^{-\alpha/(d+\alpha)} \mathscr{E}^{(\alpha)}(f, f) + o(t^{-\alpha/(d+\alpha)})$$
(4.14)

as $t \to \infty$, where $\mathscr{E}^{(\alpha)}(\cdot, \cdot)$ denotes the Dirichlet form of $X^{(\alpha)}$. It has also been proved in [6; Lemma 8.3] that the condition

$$\varphi(x) = o(|x|^{-(d+\alpha)}) \quad (|x| \to \infty)$$

$$\Psi_t(f_{R(t)}) \leq t^{d/(d+\alpha)} v |E| + o(t^{d/(d+\alpha)}) \quad (4.15)$$

implies that

as
$$t \rightarrow \infty$$
, where E denotes the support of f. Thus, noting that

$$||f_{R(t)}||_{\infty} \cdot ||f_{R(t)}||_{1} = ||f||_{\infty} \cdot ||f||_{1}, \quad t > 0,$$

we have, by (4.13), (4.14) and (4.15),

$$\liminf_{t \to \infty} t^{-d/(d+\alpha)} \log E_x[F(t, X.)]$$
$$\geq - \left[\mathscr{E}^{(\alpha)}(f, f) + v \left[\{y; f^2(y) > 0\} \right] \right]$$

for each $f \in C_0^{\infty}(\mathbb{R}^d)$ with $||f||_2 = 1$, and hence

$$\liminf_{t \to \infty} t^{-d/(d+\alpha)} \log E_x[F(t, X_{\cdot})] \\ \ge - \inf_{\substack{f \in C_0^{\infty}(\mathbb{R}^d), \|f\|_2 = 1}} [\mathscr{E}^{(\alpha)}(f, f) + v | \{y; f^2(y) > 0\} |].$$
(4.16)

It is known [3; Theorem 3.2 and Lemma 3.9] that

$$\inf_{E: \text{ compact}} \left[v |E| + \inf_{\mu: \mu(E) = 1} I(\mu) \right] = k(v, L^{(\alpha)}),$$

where $I(\mu)$ denotes the *I*-functional corresponding to the symmetric stable process $X^{(\alpha)}$ and μ denotes any probability measure on \mathbb{R}^d . Thus we have only to show that

$$\inf_{f \in C_0^{\infty}(\mathbb{R}^d), \|f\|_{2} = 1} [v|\{y; f^2(y) > 0\}| + \mathscr{E}^{(\alpha)}(f, f)] \\
\leq \inf_{E: \text{ compact}} [v|E| + \inf_{\mu: \mu(E) = 1} I(\mu)].$$
(4.17)

To this end, we note the relation between $I(\mu)$ and $\mathscr{E}^{(\alpha)}(f,f)$. It is known [3; p. 533] that if $I(\mu) < \infty$, then μ has the density g relative to the Lebesgue measure on \mathbb{R}^d such that $I(\mu) = \mathscr{E}^{(\alpha)}(\sqrt{g}, \sqrt{g})$. Let E be any compact subset of \mathbb{R}^d and μ a probability measure supported on E with the density g such that $I(\mu) = \mathscr{E}^{(\alpha)}(\sqrt{g}, \sqrt{g}) < \infty$. Then by a standard mollification argument one can find a family $f_{\delta}, \delta > 0$ of functions in $C_0^{\infty}(\mathbb{R}^d)$ with $||f_{\delta}||_2 = 1$ such that

$$\lim_{\delta \to 0} \mathscr{E}^{(\alpha)}(f_{\delta}, f_{\delta}) = \mathscr{E}^{(\alpha)}(\sqrt{g}, \sqrt{g}) \quad \text{and} \quad \limsup_{\delta \to 0} |\{y; f_{\delta}^{2}(y) > 0\}| \leq |E|,$$

which proves (4.17). This completes the proof of (4.6).

5. Necessary and Sufficient Conditions for (Q_1) and a Sufficient Condition for (Q_2)

Let $Q(\xi)$ be the exponent of a symmetric Lévy process $X = (X_t, P_x)$. Then, by the Lévy-Hintčin formula, we have

$$Q(\xi) = \frac{1}{2} \langle \xi, a\xi \rangle + \int_{R^d - \{0\}} (1 - \cos\langle \xi, y \rangle) n(dy), \quad \xi \in R^d$$
(5.1)

where a is a d-dimensional symmetric non-negative definite matrix and n(dy) a symmetric Radon measure on $R^d - \{0\}$ satisfying $\int (|y|^2 \wedge 1) n(dy) < \infty$. The measure n(dy) is called the Lévy measure. Let $Q^{(\alpha)}(\xi)$ be the exponent of a symmetric stable process $X^{(\alpha)} = (X_t, P_x^{(\alpha)})$ of order α . It is known that $Q^{(\alpha)}(\xi)$ has the form

$$Q^{(\alpha)}(\xi) = \int_{0S^{d-1}}^{\infty} \int_{0}^{\infty} (1 - \cos\langle \xi, r\sigma \rangle) \frac{\tilde{n}(d\sigma)}{r^{\alpha+1}} dr \quad \text{if } 0 < \alpha < 2,$$

$$= \frac{1}{2} \langle \xi, \tilde{a} \xi \rangle \qquad \text{if } \alpha = 2,$$
 (5.2)

where $\tilde{n}(d\sigma)$ is a symmetric finite measure on the unit sphere S^{d-1} and \tilde{a} is a symmetric non-negative definite matrix. In case of $0 < \alpha < 2$ the Lévy measure $n^{(\alpha)}(dy)$ of $X^{(\alpha)}$ is determined by the relation $n^{(\alpha)}(\Sigma(r)) = \alpha^{-1} r^{-\alpha} \tilde{n}(\Sigma)$, where

$$\Sigma(r) = \{ y \in R^d; |y| > r, |y|^{-1} y \in \Sigma \}, \quad r > 0$$

and Σ is any Borel subset of S^{d-1} . We assume that $\inf_{\substack{|\xi|=1\\ \xi|=1}} Q^{(\alpha)}(\xi) > 0$ (nondegeneracy assumption); this is satisfied if and only if, for $0 < \alpha < 2$, the support $S_0 \subset S^{d-1}$ of $\tilde{n}(d\sigma)$ spans R^d as a vector space; for $\alpha = 2$, \tilde{a} is positive definite. Recall that $X_t^s = X_0 + s^{-1}(X_{s^{\alpha_t}} - X_0), t \ge 0, s \in (0, \infty)$. We define the infinitely divisible distributions μ_s , s > 0 by $\mu_s(dx) = P_0(X_1^s \in dx)$ and the stable distribution $\mu^{(\alpha)}$ by $\mu^{(\alpha)}(dx) = P_0^{(\alpha)}(X_1 \in dx)$.

Proposition 5.1. The following conditions are equivalent.

- (i) Condition (Q₁) holds for $Q(\xi)$ and $Q^{(\alpha)}(\xi)$.
- (ii) μ_s converges weakly to $\mu^{(\alpha)}$ as $s \to \infty$.

(iii) The distribution μ_1 belongs to the domain of normal attraction of $\mu^{(\alpha)}$, i.e., v_n converges weakly to $\mu^{(\alpha)}$ as $n \to \infty$, where $v_n(dx) = \mu_{n^{1/\alpha}}(dx) = P_0(n^{-1/\alpha}X_n \in dx)$.

(iv) In case of $0 < \alpha < 2$, $\alpha r^{\alpha} n(\Sigma(r)) \rightarrow \tilde{n}(\Sigma)$ as $r \rightarrow \infty$ for each continuity set $\Sigma \subset S^{d-1}$ of $\tilde{n}(d\sigma)$. In case of $\alpha = 2$,

$$\langle \xi, \tilde{a} \xi \rangle = \langle \xi, a \xi \rangle + \int \langle \xi, y \rangle^2 n(dy).$$

Proof. First we assume that condition (i) holds. Then one can easily see that $\exp\{-Q^{s}(\xi)\}$ tends to $\exp\{-Q^{(\alpha)}(\xi)\}$ uniformly on any compact subset of \mathbb{R}^{d} as $s \to \infty$, which is equivalent to condition (ii). The implication (ii) \Rightarrow (iii) is obvious. We next show (iii) \Rightarrow (i). Suppose that condition (iii) holds, then $\exp\{-nQ(n^{-1/\alpha}\xi)\}$ tends to $\exp\{-Q^{(\alpha)}(\xi)\}$ uniformly on any compact subset of \mathbb{R}^{d} as $n \to \infty$. Thus, using the inequality

$$|e^{-x}-e^{-y}| \ge \min\{e^{-x}, e^{-y}\} |x-y|$$
 for $x \ge 0$ and $y \ge 0$,

we have $nQ(n^{-1/\alpha}\xi) \rightarrow Q^{(\alpha)}(\xi)$ uniformly on any compact subset of R^d as $n \rightarrow \infty$. Let K_n , $n \ge 1$ be a sequence of compact subsets of R^d of the form $K_n = \{\xi \in R^d; (2n)^{-1/\alpha} \le |\xi| \le n^{-1/\alpha}\}$. Then, for $k \ge 1$, $\{\xi \in R^d; 0 < |\xi| \le k^{-1/\alpha}\} = \bigcup_{n \ge k} K_n$ and $|\xi|^{-\alpha} \le 2n$ for $\xi \in K_n$. Hence we obtain

$$\sup_{\substack{0 < |\xi| \le k^{-1/\alpha}}} |\xi|^{-\alpha} |Q(\xi) - Q^{(\alpha)}(\xi)|$$

$$= \sup_{\substack{n \ge k}} \sup_{\xi \in K_n} |\xi|^{-\alpha} |Q(\xi) - Q^{(\alpha)}(\xi)|$$

$$\le 2 \sup_{\substack{n \ge k}} \sup_{\xi \in K_n} |Q(\xi) - Q^{(\alpha)}(\xi)|$$

$$= 2 \sup_{\substack{n \ge k}} \sup_{\xi \in K_1} |nQ(n^{-1/\alpha}\xi) - Q^{(\alpha)}(\xi)| \to 0$$

as $k \to \infty$, which is condition (i). Finally we show (ii) \Leftrightarrow (iv). Let a^s and $n^s(dy)$ be the matrix and Lévy measure, respectively, in the representation (5.1) for the exponent $Q^s(\xi)$. Then it follows from Theorem 1.2 of [8] that condition (ii) holds if and only if the following two conditions hold.

(a) $n^{s}(\Sigma(r)) \rightarrow n^{(\alpha)}(\Sigma(r))$ as $s \rightarrow \infty$ for each $\Sigma \subset S^{d-1}$ and r > 0 such that $\Sigma(r)$ is a continuity set of $n^{(\alpha)}(dy)$.

(b)
$$\lim_{\varepsilon \to 0} \limsup_{s \to \infty} \left[\langle \xi, a^s \xi \rangle + \int_{0 < |y| < \varepsilon} \langle \xi, y \rangle^2 n^s(dy) \right]$$
$$= \lim_{\varepsilon \to 0} \lim_{s \to \infty} \inf \left[\langle \xi, a^s \xi \rangle + \int_{0 < |y| < \varepsilon} \langle \xi, y \rangle^2 n^s(dy) \right]$$
$$= \langle \xi, \tilde{a} \xi \rangle.$$

436

Here we use the convention that in case of $\alpha = 2$, $n^{(2)}(dy) = 0$ and in case of $0 < \alpha < 2$, $\tilde{a} = 0$.

On the other hand it is easy to see that $n^{s}(\Sigma(r)) = s^{\alpha} n(\Sigma(sr)), n^{(\alpha)}(\Sigma(r)) = \alpha^{-1} r^{-\alpha} \tilde{n}(\Sigma), a^{s} = s^{\alpha-2} a$ and

$$\int_{0 < |y| < \varepsilon} \langle \xi, y \rangle^2 n^s(dy) = s^{\alpha - 2} \int_{0 < |y| < s\varepsilon} \langle \xi, y \rangle^2 n(dy).$$

Hence conditions (a) and (b) can be written as follows.

In case of $0 < \alpha < 2$: (a)' $\alpha r^{\alpha} n(\Sigma(r)) \rightarrow \tilde{n}(\Sigma)$ as $r \rightarrow \infty$ for each continuity set $\Sigma \subset S^{d-1}$ of \tilde{n} . (b)' $\lim_{\varepsilon \to 0} \limsup_{s \to \infty} s^{\alpha-2} \int_{0 < |y| < s\varepsilon} |y|^2 n(dy) = 0$. In case of $\alpha = 2$: (a)'' $n(y; |y| > r) = o(r^{-2}) (r \rightarrow \infty)$. (b)'' $\langle \xi, a\xi \rangle + \int_{|y| > 0} \langle \xi, y \rangle^2 n(dy) = \langle \xi, \tilde{a}\xi \rangle$.

Thus we have only to prove the implications $(a)' \Rightarrow (b)'$ and $(b)'' \Rightarrow (a)''$. Let $0 < \alpha < 2$. Then condition (a)' implies that $N(r) \equiv n(y; |y| > r) = O(r^{-\alpha})(r \to \infty)$. Thus we get

$$\int_{0 < |y| < r} |y|^2 n(dy) = -\int_0^r \rho^2 dN(\rho)$$
$$= 2\int_0^r \rho(N(\rho) - N(r)) d\rho$$
$$= O(r^{2-\alpha}) \qquad (r \to \infty).$$

Hence we obtain

$$\lim_{\varepsilon \to 0} \limsup_{s \to \infty} s^{\alpha - 2} \int_{0 < |y| < s\varepsilon} |y|^2 n(dy)$$

=
$$\lim_{\varepsilon \to 0} \varepsilon^{2 - \alpha} \limsup_{r \to \infty} r^{\alpha - 2} \int_{0 < |y| < r} |y|^2 n(dy) = 0,$$

which is (b)'. Let $\alpha = 2$. Then (b)'' implies that $\int |y|^2 n(dy) < \infty$. Hence we have

$$r^2 n(y;|y|>r) \leq \int_{|y|>r} |y|^2 n(dy) \to 0 \quad \text{as} \quad r \to \infty,$$

which is (a)''. This completes the proof.

Next we shall be converned with condition (Q_2) .

Proposition 5.2. Suppose that condition (Q_1) holds for $Q(\xi)$ and $Q^{(\alpha)}(\xi)$. Then condition (Q_2) holds if

$$\lim_{|\xi| \to \infty} (\log |\xi|)^{-1} Q(\xi) = \infty.$$
(5.3)

Proof. By (5.3) there exists a constant R > 0 and a positive function c(x) on $[R, \infty)$ increasing to infinity with $x \ge R$ such that

$$Q(\xi) \ge c(|\xi|) \log |\xi| \quad \text{for } |\xi| \ge R.$$
(5.4)

Let β be fixed such as $0 < \beta < \alpha$ and let $\varepsilon = \alpha - \beta > 0$. We can assume that $R \ge e^{1/\varepsilon}$ and the function c(x), $x \ge R$ has the property that $c(x)/c(y) \le (x/y)^{\beta}$ for $x \ge y \ge R$. In fact, if we define a minorant $c_*(x)$ of c(x) by $c_*(x) = \inf_{\substack{x \ge z \ge R}} c(z)(x/z)^{\beta}$, $x \ge R$, then $c_*(x)$ has the above property and it also increases to infinity with x.

First we shall show that, for each $s \ge 1$,

$$Q^{s}(\xi) \equiv s^{\alpha} Q(s^{-1}\xi) \ge c(|\xi|) \log |\xi| \quad \text{if } |\xi| \ge sR.$$
(5.5)

To this end we note that $Q^s(\xi) \ge s^{\alpha} c(|\xi|/s) \log(|\xi|/s)$ if $|\xi| \ge sR$ by (5.4). Let $s \ge 1$ and $|\xi| \ge sR$. Then we have $c(|\xi|) \le s^{\beta} c(|\xi|/s)$, and hence

$$s^{\alpha} c(|\xi|/s) \log(|\xi|/s) - c(|\xi|) \log |\xi| \ge c(|\xi|) \{s^{\varepsilon} \log(|\xi|/s) - \log |\xi|\}.$$

One can prove that the right hand side is non-negative by differentiating with respect to s and noting the relation $|\xi|/s \ge R \ge e^{1/\epsilon}$. This proves (5.5).

Next we shall prove that there exists a constant b > 0 such that,

$$Q_{*}(\xi) \equiv \inf_{s \ge 1} Q^{s}(\xi) \ge b c(|\xi|) \log |\xi| \quad \text{if } |\xi| \ge R.$$
(5.6)

To this end we note that there exists a constant $c_0 > 0$ such that

$$Q(\xi) \ge c_0 |\xi|^{\alpha} \quad \text{if } |\xi| \le R, \tag{5.7}$$

which follows from (Q₁) and the nondegeneracy assumption. Since (5.7) implies that $Q^{s}(\xi) \ge c_{0} |\xi|^{\alpha}$ if $|\xi| \le sR$, we have

$$Q^{s}(\xi) \ge \min\{c_{0} |\xi|^{\alpha}, c(|\xi|) \log |\xi|\}, \quad |\xi| \ge R, \ s \ge 1.$$

Thus we have only to show that there exists a constant b > 0 such that

$$c_0 |\xi|^{\alpha} \ge b c(|\xi|) \log |\xi| \quad \text{if } |\xi| \ge R.$$
(5.8)

For this it suffices to show that $\sup_{x \ge R} x^{-\alpha} c(x) \log x < \infty$. Let $x \ge R$. Then we have

 $c(x) \leq c(R)(x/R)^{\beta}$ and $x^{-\varepsilon} \log x \leq R^{-\varepsilon} \log R$ since $R \geq e^{1/\varepsilon}$. Thus we obtain

$$x^{-\alpha}c(x)\log x \leq c(R)R^{-\beta}x^{-\varepsilon}\log x \leq c(R)R^{-\alpha}\log R.$$

This proves (5.6).

Finally we shall check condition (Q₂). For given t>0 and r>0 we choose $R' \ge R$ so that $tbc(R') \ge d+1$ and let $\tilde{G} = (rZ)^d$. Then, by (5.6), we have

$$\begin{split} \sum_{\boldsymbol{\xi} \in \tilde{G}} \exp\left\{-t \mathcal{Q}_{\ast}(\boldsymbol{\xi})\right\} &\leq C_{R'} + \sum_{\boldsymbol{\xi} \in \tilde{G}, \, |\boldsymbol{\xi}| \geq R'} \exp\left\{-t \, b \, c(|\boldsymbol{\xi}|) \log |\boldsymbol{\xi}|\right\} \\ &\leq C_{R'} + \sum_{\boldsymbol{\xi} \in \tilde{G}, \, |\boldsymbol{\xi}| \geq R'} |\boldsymbol{\xi}|^{-d-1} < \infty, \end{split}$$

where $C_{R'}$ denotes the cardinality of the set $\{\xi \in \tilde{G}; |\xi| \leq R'\}$. This completes the proof.

Remark. One can easily see that if $\limsup_{|\xi| \to \infty} (\log |\xi|)^{-1} Q(\xi) < \infty$, then (Q₂) does not hold.

Example 1. Let $0 < \alpha = \alpha_0 < \alpha_1 < ... < \alpha_n \leq 2$ and let $Q(\xi) = \sum_{i=0}^n Q^{(\alpha_i)}(\xi)$, where $Q^{(\alpha_i)}(\xi)$ is the exponent of a symmetric stable process of order α_i for each *i*. Then condition (Q_1) holds for $Q^{(\alpha)}(\xi)$ and $Q(\xi)$. Further condition (Q_2) holds if and only if $Q^{(\alpha)}(\xi)$ is non-degenerate.

Example 2. Let $\hat{n}(d\sigma)$ be a symmetric finite measure on S^{d-1} and let $f(\sigma, r)$ be a non-negative measurable function on $S^{d-1} \times (0, \infty)$ satisfying

$$\int_{0}^{\infty} \int_{S^{d-1}} (r^2 \wedge 1) f(\sigma, r) \hat{n}(d\sigma) dr < \infty \quad \text{and} \quad f(-\sigma, r) = f(\sigma, r).$$

Define the exponent $Q(\xi)$ of a symmetric Lévy process by

$$Q(\xi) = \int_{0}^{\infty} \int_{S^{d-1}} (1 - \cos\langle \xi, r\sigma \rangle) f(\sigma, r) \hat{n}(d\sigma) dr, \quad \xi \in \mathbb{R}^d;$$

the corresponding Lévy measure n(dy) is determined by the relation

$$n(\Sigma(r)) = \int_{r}^{\infty} \int_{\Sigma} f(\sigma, \rho) \,\hat{n}(d\sigma) \, d\rho$$

for any Borel subset Σ of S^{d-1} and r > 0. Let $0 < \alpha < 2$. Suppose that there exists a non-negative measurable function $c(\sigma)$ on S^{d-1} such that

$$\int_{|\langle \xi, \sigma \rangle| > 0} c(\sigma) \,\hat{n}(d\,\sigma) > 0 \quad \text{for any } \xi \neq 0$$
(5.9)

and

$$\int_{S^{d-1}} \left| f(\sigma, r) - \frac{c(\sigma)}{r^{\alpha+1}} \right| \hat{n}(d\sigma) = o\left(\frac{1}{r^{\alpha+1}}\right) \quad (r \to \infty).$$
(5.10)

Let $\tilde{n}(d\sigma)$ be the symmetric finite measure on S^{d-1} defined by $\tilde{n}(d\sigma) = c(\sigma) \hat{n}(d\sigma)$ and let $Q^{(\alpha)}(\xi)$ be the exponent of a symmetric stable process defined by the first half of (5.2) with the above $\tilde{n}(d\sigma)$. Then, by (5.9), $Q^{(\alpha)}(\xi)$ satisfies the nondegeneracy assumption and condition (Q_1) holds for $Q^{(\alpha)}(\xi)$ and $Q(\xi)$. In fact by (5.10) we have, for any continuity set $\Sigma \subset S^{d-1}$ of $\tilde{n}(d\sigma)$,

$$\begin{aligned} |\alpha r^{\alpha} n(\Sigma(r)) - \tilde{n}(\Sigma)| &= \alpha r^{\alpha} \left| \int_{r}^{\infty} \int_{\Sigma} f(\sigma, \rho) \hat{n}(d\sigma) d\rho - \int_{r}^{\infty} \int_{\Sigma} \frac{\tilde{n}(d\sigma)}{\rho^{\alpha+1}} d\rho \right| \\ &\leq \alpha r^{\alpha} \int_{r}^{\infty} d\rho \int_{S^{d-1}} \left| f(\sigma, \rho) - \frac{c(\sigma)}{\rho^{\alpha+1}} \right| \hat{n}(d\sigma) \to 0 \quad (r \to \infty). \end{aligned}$$

Thus, by Proposition 5.1, condition (Q_1) holds.

Moreover, suppose that

$$\lim_{r \to 0} \frac{g(r)}{(1/r)\log(1/r)} = \infty,$$
(5.11)

where $g(r) = \inf_{\substack{|\xi|=1 \\ S^{d-1}}} \langle \xi, \sigma \rangle^2 f(\sigma, r) \hat{n}(d\sigma)$. Then one can show that condition (5.3) in Proposition 5.2 holds by the following observation, and hence (Q₂) holds. Noting that

$$1 - \cos \langle \xi, r\sigma \rangle \! \geq \! \frac{1}{\pi} r^2 \langle \xi, \sigma \rangle^2 \quad \text{ if } r \! \leq \! |\xi|^{-1},$$

we get

$$Q(\xi) \ge \frac{1}{\pi} \int_{0}^{|\xi|^{-1}} r^2 dr \int_{S^{d-1}} \langle \xi, \sigma \rangle^2 f(\sigma, r) \hat{n}(d\sigma)$$

$$\ge \frac{1}{\pi} \int_{0}^{|\xi|^{-1}} r^2 |\xi|^2 g(r) dr$$

$$= \frac{1}{\pi} \int_{0}^{1} r^2 |\xi|^{-1} g(r/|\xi|) dr.$$

Thus, by Fatou's lemma, we have

$$\begin{split} \liminf_{|\xi| \to \infty} \frac{Q(\xi)}{\log |\xi|} &\geq \frac{1}{\pi} \int_{0}^{1} r^{2} \left(\liminf_{|\xi| \to \infty} \frac{g(r/|\xi|)}{|\xi| \log |\xi|} \right) dr \\ &= \frac{1}{\pi} \int_{0}^{1} r \left(\liminf_{|\xi| \to \infty} \frac{g(r/|\xi|)}{(|\xi|/r) \log(|\xi|/r)} \right) dr = \infty. \end{split}$$

References

- 1. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of Markov process expectations for large time, I. Comm. Pure Appl. Math. 28, 1-47 (1975)
- 2. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of Markov process expectations for large time, II. Comm. Pure Appl. Math. 28, 279-301 (1975)
- Donsker, M.D., Varadhan, S.R.S.: Asymptotics for the Wiener sausage. Comm. Pure Appl. Math. 28, 525-565 (1975)
- 4. Donsker, M.D., Varadhan, S.R.S.: On the principal eigenvalue of second-order elliptic differential operators. Comm. Pure Appl. Math. 29, 595-621 (1976)
- 5. Fukushima, M.: Dirichlet forms and Markov Processes. Amsterdam-Tokyo: North Holland-Kodansha 1980
- 6. Ôkura, H.: On the spectral distributions of certain integro-differential operators with random potential. Osaka J. Math. 16, 633-666 (1979)
- 7. Pastur, L.A.: Behavior of some Wiener integrals as t→∞ and the density of states of Schrödinger equation with random potential. (In Russian). Teor. Mat. Fiz. 32, 88-95 (1977)
- Rvačeva, E.L.: On domains of attraction of multi-dimensional distributions. Select. Transl. Math. Statist. and Probability 2, 183-205 (1962)
- 9. Varadhan, S.R.S.: Asymptotic probabilities and differential equations. Comm. Pure Appl. Math. 19, 261-286 (1966)

Received December 26, 1978

440