
Z. Wahrscheinlichkeitstheorie verw. Gebiete 
57, 419-440 (1981) 

Zeitschrift ftir 

Wahrscheinlichkeitstheorie 
und verwandte Gebiete 

�9 Springer-Verlag 198l 

Some Limit Theorems of Donsker-Varadhan Type 
for Markov Process Expectations 

Hiroyuki Okura 

Department of Mathematics, Osaka University, Toyonaka, Osaka 560, Japan 

Introduction 

In the present paper we shall be concerned with generalization of those results 
by M.D. Donsker and S.R.S. Varadhan [2, 3]. They have given in [33 the 
solution of the sausage problem for symmetric stable processes. Our goal is to 
extend this result to the case of symmetric LSvy processes which are close to a 
symmetric stable process (Theorem 4.1). 

The contents of this paper  are as follows. Let 0 < : ~ < 2  and let X (~) 
=(Xt,  (~) P~ ) be a symmetric stable process on R d of order c~. Let X = (Xt, P~) be 
another symmetric LSvy process on R d. We shall assume that the process X is 
close to the process X (~ in the sense that conditions (Q1) and (Q2) in Lem- 
ma 3.1 hold. Theorem 4.1 asserts that the solution of the sausage problem for 
the process X is given by the asymptotic formulas (4.5) and (4.6), which are 
reduced to the solution by Donsker and Varadhan [3] when X = X (~). It  should 
be noted that the limiting constant k(v,L (~) is common for the processes 
satisfying conditions (Ql) and (Q2). 

The proof  of the upper estimate (4.5) goes along the same idea as in [31. 
For this purpose we first define s _  - X~-Xo+s (Xs~-Xo), t>O, for any path Xt, 
t > 0  and any s > 0 ,  and then have to treat the one-parameter family 
{(rE(XT), P~); s>0}  of L6vy processes on a torus T in R d, where rc denotes the 
canonical map of R e onto T. In the special case of X = X  (~) the law of 
(~(X~), (~) P~' ) is identical with that of (u(Xt), P~(~)) for any s > 0  by virtue of the 
scaling property of X (~). Donsker and Varadhan [3 3 have proved the upper 
estimate in the special case of X = X  (~) by applying to the process (u(X~), P~(~)) 
the general theorem on the asymptotic evaluation of certain expectations with 
respect to a Markov process on a compact  space. The last theorem has been 
obtained by Donsker and Varadhan [2 3. Thus in order to use the method of 
[3J for our general case we have to extend the results of [2J in such a manner 
that they apply to a one-parameter family of Markov processes on a compact 
space. This extension will be done in Sects. 1--3; Theorem 1.1 extends the first 
half of Theorem 1.2 of [2J and in case of Ldvy processes on a torus Theo- 
rem 3.1 extends the first half of Theorem 5.1 of [-21 and its corollary.  
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The proof of the lower estimate (4.6) of Theorem 4.1 is quite different. We 
shall not use any results of Sects. 1-3, but use the method essentially due to 
L.A. Pastur [7] in which some related problems are treated. We further note 
that the author [6; Theorem 6.2'] has proved a similar result to (4.6) for the 
case of the pinned processes of the process X. 

In Sect. 5 we shall give necessary and sufficient conditions for (Q~), a 
sufficient condition for (Q2) and some examples. 

The author wishes to express his sincere gratitude to M. Fukushima for having suggested him 
the problem and to T. Watanabe for continual encouragement and valuable advice. 

1. A One-Parameter Family of Markov Processes on a Compact Space 

Let Jf be a compact metric space and ~3 X its topological Borel field. Let M(X) 
denote the set of all signed measures of bounded variation defined on X. The 
norm II/~kl o f /~aM(X)  is defined by the total variation I1~11 = sup (/~(A)-#(AC)). 

Let B(X) (resp. C(X)) denote the space of all bounded Borel (resp. continuous) 
functions on X with the supremum norm ]]-t]~. Let Q~,f )=j '#(dx) f (x)  for 

# e M ( J f )  and f~B(X) .  
�9 Let p(t, x, dy) be a Feller transition probability on Jr, T~ the corresponding 

semigroup on C(J() and L the infinitesimal generator of T t with domain 
N ( L ) c  C(X). Let ~2 be the set of all X-valued right continuous functions 
= x ( . )  on [0, oe) having left hand limits on (0, oe). It is well known that there 
exists a Hunt  process (YL x(t), Ix: t>O, x a X )  having p(t, x, dy) as its transition 
probability. 

Let ~ denote the space of all probability measures on Jr. We shall endow 
with the weak topology so that Jet is a compact metric space. For  any t > 0, 

~o=x( . ) e f2  and A ~ 3 ~ ,  let 

Note that L,(o3, .)~J// for each t > 0  and m~f2. For  each x e X  and t > 0 ,  let 
Qs be the probability measure on d /  induced by the map a~-~L,(co,-) of f~ 
into j~  from P~, i.e., for any Borel subset B of Jd, 

Q~,t(B)=P~(o~E~2; Lt(e) , ")eB). 

Following Donsker and Varadhan we define the /-functional I(/~), /~e~/  
corresponding to the transition probability p(t, x, dy) by 

I (# )=  - inf (#, Lu/u). (1.2) 
u > 0  

ue~(L) 

I(#) is a non-negative, lower semicontinuous functional on J t .  
We assume that there exists a finite reference measure 2 on X such that 

p(t, x, dy) is absolutely continuous relative to 2 for each t > 0  and x e J f .  Let ? 
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denote the space of all # ~ ~ which are absolutely continuous relative to 2. We 
shall endow y with the norm topology. Note that if #eM(X)  is absolutely 
continuous relative to 2, then f=d#/d2~Ll(2)  and II#ll = IlfllL,(z). Thus one 
can identify ? with the subset of L~(2) with the L~(2)-norm topology. Let 
{k~(x,y); e>0} b e a  family of measurable functions on J f x X  such that 
k~(x, ")e7 for each e>0  and xeJ f .  Define, for any e>0,  t>0 ,  co=x( . )ef2  and 
yEX,  

/~(co, y)= j' k~(x, y)L,(co, dx) 

i k~(x(~), y) d~. (t.3) 
t b 

Note that t~(m,')E~ for each e>0, t > 0  and coe~2. Let e(t) be a positive 
function of t > 0  tending to zero as t ~  and let 

gt(~o, y ) =  l;'t)(co, y). (1.4) 

The map co~g,(co,') of f2 into 7 is measurable for each t > 0  so that the 
probability measure R~,~ on 7 is defined by 

R~,,(A)=P~((oz(2; gt(co, ")cA), 

where A is any Boret subset of 7- 
tn the first half of Theorem 1.2 in [2], Donsker and Varadhan have proved 

the following relation under their Assumptions A, B, C and D: If C is any 
closed subset of 7, then 

limsup 1 , ~  t logRx,  t(C)< - infI( /~) .  (1.5) 
~tt~C 

In this paper we shall consider a one-parameter family {pS(t,x, dy); 
s t (0 ,  ~ ] }  of Feller transition probabilities instead of a single p(t, x, dy). Let 
s(t) be any positive function increasing to infinity with t. Generalizing (1.5), we 
claim that m ~t) obeys the following relation: For every closed subset C of 7, ~X~ t 

1 t 
limsup t log R~,! ~ (C) < - inf 1 ~ (#). 

Here and after the semigroup, generator, I-functional, P~-measure, Q~,cmeasure 
and R~.cmeasure corresponding to pS(t, x, dy) are denoted by T~ s, L ~, P(#), P~, 
Q~,~ and R~, t, respectively. 

We now state the assumption for the one-parameter family {p~(t,x, dy); 
st(0, ~3}. 

Assumption A. (i) There exists a subset ~o of (') @(L ~) such that ~o is 
sE(0,  oz] 

un~orrnly dense in C(X), T ~ @ o ~ o  for all t>0 ,  and L~u tends to L~u 
uniformly as s ~  ~ for each u ~ ~o. 
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(ii) For each se(0, oo], t > 0  and x e X ,  pS(t,x, dy) is absolutely continuous 
relative to 2 with the density pS(t, x, y) and, moreover, aS(t)-infpS(t,x, y ) > 0  and 

x ,  y 

AS(t)-suppS(t, x, y)< oo hold for each t > 0  and se(O, oo]. 
X, y 

(iii) For each t>0 ,  p~(t,x,y) tends to p~( t , x ,y )  uniformly for x and y as 
S--> OO. 

(iv) For each t>0 ,  the map x--+p~~ x, ") of X into 7cL1(2) is continuous. 

Remark. If pS(t,x, dy) is independent of s, that is, the family {pS(t,x, dy); 
se(0, oo]} consists only of a single transition probability p(t, x, dy), then the 
above Assumption A is reduced to Assumptions A and D in [2]. 

Theorem 1.1. Let {pS(t,x, dy); se(0, oo]} be a one-parameter family of Feller 
transition probabilities on X satisfying Assumption A. Let {k~(x, y); e>0} be a 
family of functions on X x X satisfying Assumption B of [2] and e(t) a positive 
function satisfying Assumption C of [2]. Then for each closed subset C of ~ (in 
the norm topology) and each x e X,  

limsup 1 log RS(t](C)<-_ - inf I ~176 (#). (1.6) 
t ~ c o  ~ ' #eC 

The next theorem is a corollary of Theorem 1.1, which follows from the 
lower semicontinuity of U~ and the compactness of {#; I~176 l}, l<  oo (see 
[2; p. 285]) by the arguments in Varadhan [9; Sect. 3]. 

Theorem 1.2. Suppose that the assumptions of Theorem 1.1 are satisfied. Let 
{~,(f);  t>0}  be a family of measurable functionaIs on ~ and �9 any functional 
on 7 such that, for each f e ~ with I ~ ( f ) <  oo and each family {ft} c 7 converging 
to f in norm, l iminf~ t ( f )>~b( f  ). We assume ~bt(f)>O for all t > 0  and f e T .  

t ~ o o  

Then 

1 
limsuP t logj 'exp{- t~) t ( f )}R~x(9(df )< - infE(1)( f)+I~176 (1.7) 

where I~176176176 with #= f . 2e7.  

We shall prove Theorem 1.1 in Sect. 2. In Sect. 3 we shall give a class of 
examples for Theorem 1.2 which will be used in Sect. 4 for the sausage prob- 
lem. 

2. The Proof  of  Theorem 1.1 

In this section we shall give the proof of Theorem 1.1. We first give some 
preliminary results. Recall that 

P ( # ) = -  inf (#,LSu/u), # e  J / ,  se(0, c~]. 
u > 0  

u E ~ ( L  s) 

We have the following lemma. 
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Lemma 2.1. Suppose that Assumption A(i) is satisfied. Then, for each #~ /E ,  

I~ (# )=  - inf (#,  L~176 (2.1) 
u > O  

u E ~ O  

The proof is carried out along the same line as in [4; Lemma 2.1]. We omit 
the detail. 

The following theorem generalizes the first half of Theorem 3 of [1]. 

Theorem 2.1. Suppose that Assumption A(i) is satisfied. Let s(t) be any positive 
function increasing to infinity with t. Then, for each closed subset C of ~ (in 
the weak topology) and each x ~ X,  

1 
limsup t log ~x,,,Os(t!(C~,= < - inf I~ (#). (2.2) 

t ~ o o  /x~C 

Proof. The proof is similar to that of the first half of Theorem 3 in [1]. Let 
s~(0, oo] be fixed. Then one can prove that, for each u ~ ( U )  with u > 0  and 
each Borel subset B of Jd, 

Q~,t (B) <__ miU(n x~) exp { t sup (#, L s u/u) } 
u(y) ~ 

Y 

(see [1; p.40]). Since minu(y)>0 ,  
Y 

1 s(C limsup - log Qx ](B) < limsup sup (#, L s~t) u/u). (2.3) 
t ~ o o  t ' - -  t ~ a o  # E B  

Let u s ~  o and u>0 .  By Assumption A(i), Uu/u tends to L~u/u uniformly as 
s~ oo  and thus (#, Uu/u)  tends to (#, L~ uniformly for # s J g  as s~o o  so 
that the right hand side of (2.3) is equal to sup(#,  L~u/u).  Hence we have, for 
any Borel subset B of all, ,~B 

1 
limsup t log Q~(,t](B) < inf sup (#, L ~ u/u). 

t ~ c o  u > 0  # ~ B  
u ~ o  

(2.4) 

This relation implies that, for each closed (compact) subset C of J/l, 

t limsup - log QS(](C) < sup inf (#, L ~176 u/u) 
t ~ o o  t ' - - # ~ C  u > 0  

u ~ o  

(2.5) 

(see [-1; p. 40]). Since the right band side of (2.5) is equal to - i n f i X ( # )  by 
# E C  

Lemma 2.1, the proof of Theorem 2.1 is complete. 
In the remainder of this section we shall assume that the three assumptions 

of Theorem 1.1 are satisfied. The map T, S of C(X) into C(X) is given by 

(T~O)(x)=j'p~(t,x,y)O(y)2(dy), ( ~ C ( X ) .  
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We also think of Tt ~ as the dual map on M(3f) defined by 

(#TtS)(dy)=(j'ps(t, x, y)f(dx))2(dy),  # ~ M ( X ) .  
7( 

Note that Tt + maps ~g{ into 7. Similarly, by K~ we denote two maps in duality 
defined by 

(K~b)(x) = j' k~(x, y)~(y)2(dy), ~ C ( X )  

and 

(#K~)(dy)=(j" k~(x, y)#(dx))2(dy), # e M ( X ) .  

Assumptions B(iii) and (iv) of [2; p.281] assure that K~ forms a compact 
operator of C(X) into itself and it also maps ~{ into ?. 

We need some lemmas. First, by Assumption A(iv), we have the following 
lemma. 

Lemma 2.2 ([2; p. 293]). For each 6>0,  the map #~#T~ ~ o f / d  (with the weak 
topology) into ~ (with the norm topology) is continuous. 

Next we prepare two lemmas involving the family {P(#); s~(0, ~ ] }  of I- 
functionals. 

Lemma 2.3. Suppose that a sequence {#.} c~/~ converges weakly to #~J/ /  and 
s .~oo as n~oo, then 

I + (#) =< liminf I s" (#,). 

Proof. It follows from Assumption A(i) that if u ~  o and u>0 ,  then 
(#n, LS"u/u) tends to (# ,L~u /u )  as n ~ .  Thus the lemma is an immediate 
consequence of Lemma 2.1. 

Lemma 2.4. Let {#,} be a sequence in 7 and {sn} a sequence tending to infinity. 
Suppose that s u p P " ( # , ) < ~ .  Then {#+} is totally bounded in ? in the norm 
topology. 

Proof. One can assume that #, converges weakly to an element # ~ Jr since dg 
is compact. Then, by Lemma 2.3, we have 

I ~o (#) < liminf P" (#,) < 1, (2.6) 
n ~ o o  

where l=suplS"(#,)< oo. We have only to show that 
n 

II#,-#ll ~ 0  as n--+ oo. (2.7) 

To this end observe that, for each t > 0, 

I1#.-#11 _-< l l # . - # .  T?"II + II#.(r? " -  T,+)II + Ir(#o-#)T,+II + tilT, + -#l ] .  



Some Limit Theorems of Donsker-Varadhan Type 425 

The third term on the right tends to zero as n~c~  by Lemma2.2. One can 
show that the second term also tends to zero as follows: 

It#,(Tt ~ ' -  Tt~')lf-- II j" #,(dx)(pS'( t, x, . ) -p~176 x, "))t[L*(a) 
f f  

__< j' 2(dy) j' #,(dx)Ip~"(t, x, y ) - p ~ ( t ,  x, y)J 
r~ x 

__<,~(x). sup lp~-(t, x, y)-p~~ x, y)F; 
X~y 

the last term tends to zero as n--+oo by Assumption A(iii). Thus, by (2.6), we 
have 

limsup I]#.-#11 <sup sup tj#-#Tt~'lt + sup ]l#-#Tt~jl (2.8) 
n ~ o o  n l S ~ ( # ) N l  t m ( # ) N /  

for each t>0 .  It follows from Corollary in p.44 of [1] that each term on the 
right hand side of (2.8) tends to zero as t-~0. Thus we have (2.7), which proves 
the lemma. 

In the remainder of this section we denote by q5 any function in C(J() and 
by s(t) any function increasing to infinity with t>0 .  For any e>0,  ~ > 0  and 0, 
we define 

qS~,a = K~(T6 ~ - I )  ~b. (2.9) 

Here and after we denote by I the identity operators on C(Jf) and M(J(). For 
each s s (0, oo], we define a functional 2s(q~) on C(X) by 

)?(~)= sup [(/~, ~b) -P (# ) ] .  (2.10) 
,u e d'g 

The following lemma corresponds to Lemma 2.1 of [2]. 

Lemma 2.5. For each 0 < p < oo, 

limsup limsup sup ,~J(~ (2.11) 

Proof. By the argument of [2; pp. 284-285] we have only to show that 

lim limsup sup IJ#K~m(T6 ~ -I)]1 =0.  (2.12) 
c ~ O  t - * m  ls ( t ) (#)<=2p 

To this end let 

~/(6) =limsup sup t[#K~o(Ta~176 c5>0. 
t ~ o o  ls~t)(u)  < 2 p  

For each c5 >0, we can choose sequences t, >0  and #, e 7 such that t, tends to 
infinity, P"(# , )<2p (Sn=S(t,)) and 

lim ]!#,K~,(Ta~~ = t/(e5) (~,=e(t,)). (2.13) 
n ~ o o  

By Lemma 2.4, we can assume that there exists an element #E 7 such that 
lira Jl#,-#lj =0. Then it follows from Lemma 2.3 that 

? t~co  

I ~ (#) < liminf I s" (#.) < 2 p. (2.14) 
n ~ c ~  
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Noting the contraction properties of the operators T6 ~~ and K~ on M(X), we 
have 

IL#, K~,(T2 ~ -I)[I < [[(#,- #) K~,(To ~ -I)l l  + I]#K~(T3 ~ -I)ll  

N2 I[#.-#ll + 11(#1~.-#)T~ ~176 I[ + []#T~ ~176 -#l l  + [ l # -#g~ l l  

__<2 H#~-#[] + 2  ]IgK~-#[[  + ][# T~ ~176 -#[I .  

The first term on the right side tends to zero as n~oo  and the second tends 
to zero by Assumption B(v) of [-2]. Thus, by (2.13) and (2.14), we have 
t/(6)N sup []#T~ ~176 The right hand side tends to zero as 6 ~ 0  by Corollary 

I~ < 2p 

in p. 44 of [1], which completes the proof of Lemma 2.5. 
Let gt(co, y) be the function defined by (1.4). For any 6 > 0, we define 

g~ (co, y) = j' p oo (6, x, y) gt (co, x) 2(d x) (2.15) 

and 

A~(~o)= ~ ~o �9 Llg , ( ,  ) -  g,(co, ")ILL~(~). (2.16) 

Now we prove the main estimate corresponding to Theorem 3.1 of [2]. 

Theorem 2.2. For each 0 > 0 and x ~ X,  

limsup limsup i log P~(t)(A~ (co) >= O)= - o o .  

6 ~ 0  t ~  
(2.17) 

Proof. Let s E(0, oo] be fixed. Then Lemma2.2 of [23 holds for the process 
((Lx(t) ,  P]: t>O, x ~ N )  by AssumptionA(ii).  Thus, by the argument of [2; 
pp. 289-290], we have, for any 0 < p < oo, 

P[ (A ~ > O) < No/8 (e (t)) e - tp o/4 C~p exp (t 2 s, ~. p), 

0 
where No/s(e(t)) denotes the smallest number of y-covering of the image of the 

unit ball in C(X) under the compact operator K~(,), 

2t,~,~= sup ;~(pqb~(t),~ ) and C~=e2pA~(1)/a~(1); 
I[,;b]k~ < 1/2 

the concrete form of C~ was given in the proof of Lemma 2.2 of [2]. 
Assumption C of [2; p. 2833 asserts that, for each 0>0,  

1 
c~(0) = limsup ~ log No/s(e(t)) < oo. 

t~cO t 

Since Assumption A(iii) implies that C ; ~ C ~ ( < o o )  as s~oo ,  we have 
1 

l imsup- logC~ (t)=0. Note that 2s~,p= sup U(q~(,),a) by the linearity of the 
t ~ e  t ][4q[ ~ <__p/2 
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map ~b--*qS~ a. Thus, we have, by Lemma 2.5, " ' " ~  < hmsup hmsupz,.,~.s ,=0.  Hence we 
have a~ o ,~ ,  

limsup limsup i log P7 (')(A, a > 0) < ee(0)- p 0/4. 
5 ~ 0  t ~ m  L 

Letting p ~ ~ ,  we have the theorem. 
Finally we shall give the proof  of Theorem 1.1. Recall that R s is the X~t 

measure on ? induced by the map r .) of ~ into 7 from P~. We shall 
also consider the measure R~,'~ on 7 induced by the map 69-->g~(o~,-). Note that 

S, b _ _  S , Rx, t (A ) -R~ ,~ (#e? ,  #T~ ~ c A )  

for any measurable subset A of 7- 

Proof  o f  Theorem 1.I. Theorem 2.1 implies that for each C c 7  which is a 
closed subset of ~ in the weak topology, 

1 
R~, t (C) _<_ - inf I ~o (#) (2.18) limsup t log ~(t) 

t ~  ~ ~ C  

(see the proof of Theorem 4.1 of [2]). By Lemma 2.2, this inequality implies 
that 

1 ~t  a _ i~o l imsup-  log R~(] ' (C)_< inf (#) (2.19) 
t + m  t ' - -  # T ~ e C  

for each 6 > 0  and each closed subset C of 7 in the norm topology (see the 
proof of Theorem 4.2 of [2]). Let C be any closed subset of 7 in the norm 
topology and let Co={f l~?;  Ilfi-c~[[ < 0  for some ~e  C}, 0>0 .  Then we have 

U~,t(C ) ~,a - <=Rx, t( Co) + ps(Aat (co)>= 0), 

where C o denotes the norm closure of C o (see [2; p. 293]). Thus it follows from 
Theorem 2.2 and (2.19) that 

1 st limsup I log R~* I (C) < liminf liminf limsup - log R~ (]' a(C0) 

< - l i m s u p  limsup inf I~(#) (2.20) 
0 ~ 0  a ~ O  ~ T ~ . C o  

(see [2; p. 294]). By the relation 

liminf inf I ~(#) > inf I ~(#) 
0 ~ 0  # T f ~ C o  t ~ C  
6--, 0 

((4.5) of [2]), we have the theorem. 

3 .  T h e  One-Parameter Family of L6vy Processes on a T o r u s  

In this section we shall consider a class of examples for Theorem 1.2 which will 
be used in w 4 for the sausage problem. 
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Let R e be the d-dimensional Euclidean space. Let M > 0  be fixed and let G 
= ( M Z )  a, where (MZ) e denotes the discrete subgroup of R e consisting of 
vectors having for each coordinate an integral multiple of M. We take as the 
compact metric space Jf the d-dimensional torus T=Re/G of size M. Let ~z 
denote the canonical map of R e onto T. We may identify T with the subset {x 
=(x  1 . . . . .  xd); O<__xi<M, i=1  . . . .  ,d} o f R  a. 

Let X=(X~, Px: t>O, x e R  d) be a symmetric L6vy process on Re; here by a 
L6vy process we mean a Hunt  process with stationary independent increments. 
It is well known that the process (Tz(Xt),P~: t>O, x e T )  is a L6vy process on 
the torus T, which will be denoted by re(X). In the following we shall make a 
one-parameter family of L6vy processes on the torus T satisfying Assumption 
A and apply Theorem 1.2. 

Let Q(~) be the exponent of the L6vy process X on R d, i.e., 

Eo[exp(i<~,Xt>)]=exp{-tQ(~)}, t>0 ,  ~eRd; (3.1) 

here and after E~ denotes the expectation with respect to Px for each x e R d. 
Q(~) is a non-negative, symmetric, continuous function. Let 0 < ~ < 2 .  A sym- 
metric Lbvy process on R d is said to be a symmetric stable process of order c~ 
and denoted by X (~) if the exponent Q(~)(~) has the property that Q(~)(2~) 
=UQ(=)({) for 2>0 .  For the concrete forms Q(~) and Q(=)({) see (5.1) and (5.2), 
respectively. 

We fix a symmetric stable process X (=) with exponent Q(~)(~). Let X be 
another symmetric Lhvy process with exponent Q(~). For  any sample path X t, 
t>0 ,  of X and any se(0, oo), let X~=Xo+s- l (Xs~ , -Xo) ,  t>O. It is easy to see 
that, for each se(0, oo), the process Xs=(X~,P~: t>O, x e R  ~) is a symmetric 
L6vy process with the exponent Q*({) defined by 

Q~(~) =s~Q( s-1 4). (3.2) 

We now write x ~176 for x (~). Thus we have a one-parameter family {n(X~); 
se(0, oo]} of L6vy processes on T. Let p~(t, x, dy) be the transition probability 
of ~c(X ~) for each se(0, oo]. We define 

Q,(~) = inf Q~(~). 
s > l  

Lemma3.1.  The one-parameter family {p~(t,x, dy); se(0, oo]} of transition 
probabilities on T defined above satisfies Assumption A under the following 
conditions on the processes .X and X ~, or rather on the exponents Q(~) and 

(Q1) Q(~)=Q(~)(~)+o(Ir ~) ([~[.L0). 

(Q2) Forany t>Oandr>O,  ~ e x p { - t Q , ( ~ ) } < o o .  
r  d 

For the proof we shall introduce the Fourier transform on T. Let 2 be the 

Lebesgue measure on the torus T and let G =  Z For  any function f in 

L I (2), the Fourier transform f of f is the function defined by 

f(~)=M-d/2 j'ei<r f (x)dx ,  ~effJ. (3,3) 
T 
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Moreover, if f e  C(T) (the space of continuous functions) and ~ [f(~)[ < or, 

then we have the inversion formula 

f(x) = M -el2 ~ e -i <e'~>f(~), x e T. (3.4) 
~eO 

Remark. One can replace condition (Q2) in Lemma 3.1 by the following weaker 
condition: 

(Q2.M) For anyt>O, ~ exp{ - tQ , (~ )}<ov .  

In fact we shall prove Lemma 3.1 under the conditions (Q1) and (Q2,M). 

Proof of Lemma 3.1. We first observe that, for each ~ e G, 

Eo[ex p {i(~, ~(X~))}] =exp { -tQs(~)}, t>0 ,  se(0, oo). (3.5) 

In the following we shall write Qoo(~) for Q(~)(~). We have Q~(~)>Q,(~) for 
s~(0, oo] by condition (Q1)- Thus it follows from condition (Qz, M) that 
~ e x p { - t Q ~ ( ~ ) } < o o  for any t > 0  and st(0,  oo]. Hence, for each se(0, oo], 

~eG I 

we can define a function 

f ( t , x ) = M  e ~ exp{_i(~,x)_tQ~(~)} ,  
~eG 

(3.6) 

which is continuous in x s  T and analytic in t>0 .  Let pS(t,x,y)=p~(t, y - x )  for 
t>0 ,  xsT ,  y e T  and s~(0, oo]. Then p~(t,x,y) is the density of f ( t , x ,  dy) 
relative to 2(dy) for each st(0,  oo], t > 0  and x~ T. Assumptions A(ii) and (iv) 
are easily verified except for the condition 

aS(t)=-infpS(t, x, y)>0,  t>0 .  (3.7) 
X~ y 

To prove (3.7) it suffices to show that f ( t , x )>O for any t > 0  and x~T. One 
can showthis by an elementary argument as in [6; Proposition 3.1]. 

We next check Assumption A(iii). It suffices to show that, for each t>0,  
f ( t ,  x) converges to poo(t, x) uniformly for x s T as s-- ,~.  Since condition (Q1) 
implies that exp{-tQ~(~)} tends to exp{-tQoo(~)} as s~oo,  the desired asser- 
tion follows from the expression (3.6) and condition (Q2,M). 

Finally we check Assumption A(i). Let Tt s be the semigroup on C(T) 
corresponding to pS(t, x, dy). Then we have, for any f ~  C(T), 

T, Sf(x)=j 'ps(t ,y)f(x+y)dy,  x sT ,  t>0 ,  s6(0, oo]. (3.8) 
T 

One can easily see that T, s is a strongly continuous Feller semigroup. Let L s be 
the infinitesimal generator of T, s with domain N(LS). Let C~176 denote the 
space of all C~176 on T. We shall check Assumption A(i) with ~o 
=Ca(T) ,  that is, the following four assertions: (a) Coo(T)c~(L ~) for each 
st(0,  oo], (b) C~176 is uniformly dense in C(T), (c) T, oo Coo(r)c Coo(T) for all 
t>0 ,  and (d) LSu tends to Loou uniformly as s-~oo for each us Coo(T). 
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Assertion (b) is obvious and assertion (c) is immediate from (3.8). To prove 
(a) and (d) we note the following bound: 

Q~(~)<cl~[ 2 for I~l_-__l, ~ G  and s t [ l ,  oo]; (3.9) 

this follows tu the relation Q(~)<c'(l~l~+l~12), which is obtained from con- 

dition (Q1). Note that (Tflu)(r162 x fi(~), ~ G  for each u e C(T) 

and ss(0, ov]. By an elementary calculation we have [t-l[(T~'u)(~) 

-~(~)]l<Q'(~)la(~)l for any t > 0  and t- l[(Tflu)(~)-fi(r162 as 
t--,0. Thus, by the inversion formula (3.4) and the bound (3.9), one can show 
that if u ~ C(T) satisfies 

l~l z Ifi(~)l < oo, (3.10) 

then t - l [7~u-u]  converges uniformly as t-~0, that is, u s ~ ( U )  and moreover 

(L~)(~)= -(2~(~)~(~), ~d ,  (3.11) 

Thus assertion (a) follows from the fact that u~C~(T) satisfies (3.10). To see (d) 

it suffices to show that ~.l(L~u)(~)-(L~u)(r tends to zero as s~ov.  This 

follows from (3.9), (3.t0), (3.11) and the fact that Q~(~)---+Q~(~) as s~ov  for each 
~6G. This completes the proof of Lemma 3.1. 

Let/~(x) be an arbitrary probability density on R ~ relative to the Lebesgue 
measure. For e > 0, define 

/~ (x) = e -d/~(e- 1 x), (3.12) 

k~(x)= Y,~(x+g), x~T. 
gEG 

It is known [2] that Assumptions B and C in [2] are satisfied by 

k~(x,y)=k~(x-y) and e(t)=t -~/~ (3.13) 

We have seen that Theorems 1.1 and 1.2 are applicable to the present case. 
For the convenience of reference for the sausage problem in Sect. 4 we shall 
restate Theorem 1.2 as it applies to this case. 

For a given M > 0 ,  let T M denote the d-dimensional torus of size M and 
the projection of R d onto Tv. Let k~(x-y) and e(t) be defined by (3.12) and 
(3.13). For a path c0=x(.)  on Tu, define 

1 t 
gt(co, y)=t!k~(t)(x(a)-y)da, y~T~. (3.14) 

Let 7~,t be the space of all probability densities on T~u relative to the Lebesgue 
measure 2 endowed with the La(2)-norm topology. Note that g,(co,-)eTM. Let 
I~( f) ,  f~7~, be the/-functional  corresponding to the projection rc(X ~)) of X (~) 
onto T~f. We then have the following theorem. 
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Theorem3.1. Let X ~) and X=(Xt,P~: t >O, x e R  d) satisfy conditions (Q0 and 
(Q2) in Lemma 3.1. Let q)~(f), t > 0  and ~b(f) be the functionats on 7M satisfying 
the conditions in Theorem 1.2. Then, for any s(t) increasing to infinity with t > 0  
and any x~R  ~, 

1 
limsup - logE~ [exp { - t~bt(g,(zc(X~.(t)), .))}] 

t~co /; 

< -- inf [~b(f) +I~t)(f)]. (3.15) 
f e ~  

Here rc(X~.) denotes the path {rc(X~), t>0}  on T M and X ~ = X o + s - I ( X r  
t>0 ,  s>0 .  

Remark. If X = X  ~, then every Xs=(x~s,P~) has the same law. In this case 
Theorem 3.1 is nothing but the corollary to Theorem 5.1 of [2]. 

4. The Sausage Problem for a Class of L6vy Processes o n  R d 

Let S(x,e) denote the sphere in R e of radius ~>0 with center at x s R  ~. By the 
sausage of a symmetric L6vy process X = ( X t ,  P~:t>O, x e R  ~) we mean the 
random set C~(X.)= U S(X~,O (see [3]). Let 111 denote the d-dimensional 

O<s<t  

Lebesgue measure of any measurable subset A of R e. Note that t c ~ ( x . ) l  is a 
functional of the path of X increasing with t. 

Let 0 < c~ < 2 and let X (~) = (X t, P~(~)) be a symmetric stable process of order 
with exponent Q(~)(~) satisfying the nondegeneracy assumption inf Q(~)(~)>0. 

I~1=1 
Let L (~) be the infinitesimal generator of X (~ and let E(2 ) denote the expectation 
with respect to P~(~). Donsker and Varadhan [3] have proved that, for each 
x~R e, v > 0  and e>0,  

lim t-d/(e+~)logE(~)[exp { - v I C~ (X.)t}] = - k(v, L(~)), (4.1) 

\ T I  ' 
(4.2) 

with ).~ = inf2(G), where the infimum is taken over all open sets G in R d of unit 
G 

volume and 2(G) denotes the smallest eigenvalue of the eigenvalue problem 
- I2~)u=2u with the Dirichlet condition: u(x)=0, x e G  c (see [3] and [6; 
Sect. 4] for the precise definition of 2(G)). 

The purpose of this section is to extend the above result to a class of L6vy 
processes which are close to X (~). Let X (') be as above and X = ( X t ,  P~) another 
symmetric L6vy process. We assume that X (~ and X satisfy conditions (Q1) 
and (Q2) in Lemma 3.1. In the theorem below we shall prove 

lira t -e/(e+~) logE~ [exp { - v I CT(X.)l}] = - k(v, IA% (4.3) 
t--* O:3 
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As in [3], however, we shall actually treat a more general functional F(t, X.) 
defined below rather than e x p { - v  IQ(X.)t}. Let (o(x) be a [0, oo]-valued Borel 
function on R e. We define, for any t > 0 and v > 0, 

F ( t , X . ) = e x p ( - v ; ( 1 - e x p { - i q O ( X s - y ) d s } ) d y  ) . (4.4) 

Note that if, in particular, ~p(x)=oo for lx l<e and (p(x)=0 for Ixl>~, then 
F(t, X.) = exp { - v I C~(X.)I}. 

Theorem 4.1. Let X (~) and X satisfy conditions (Q1) and (Q2) in Lemma 3.1. 
Suppose that j'q~ (x) dx  > O, then 

limsup t -  a/(a + ~) log E x [ F ( t, X.)] =< - k(v,/J~)). (4.5) 
r  

Moreover, i f  (p (x) = o(Ixt- (a+~)) ([xt--+ co), then 

l iminft  -a/(e+~) logEx [F(t, X.)] > - k(v, 12~)). (4.6) 
t ~ c t 3  

Here k(v,/2 ~)) is defined by (4.2). 

Proof  of  the Upper Estimate. We shall prove (4.5) showing how Theorem 3.1 
applies to the functional F(t ,X. )  in (4.4). We can, without loss of generality, 
assume (see [3; p. 560]) that (p(x)=a~(x), xER  a, where ~(x) is a probability 
density relative to the Lebesgue measure and a>0 .  For a given M > 0 ,  we 
define g~(o:),y) for any path co on T M and y~T~u by (3.14), where ks(x ) is defined 
by (3.12) from the above ~(x) and e(t) by (3.13). Note  that gt(~o, ")aTM- 

By changes of variables and using the argument in [3; p. 562], we have 

F(t, X.) <= exp { - z ~b~(g~(~(X~.), .))}, (4.7) 

where z = z(t) = t a/(a+~), s = s(z) = z 1/a = t 1/(a+~) and 

e ~ ( f ) = v  j" (1 -exp{-z~ /aa f (y )} )dy ,  f~TM. 
T M  

As was pointed out in [3; p. 563], the family of functionals ~ ( f ) ,  z > 0  on 7M 
has the property that if .f~EyM converges to f in L1(2), then liminf~b~(f~)> ~b(f), 

: c ~ o o  

where ~0(f) = ~, t { x ~ T u ; f ( x  ) > 0} 1- Therefore, by Theorem 3.1, we have 

limsup 1 logE~ [exp { - z ~b~(g~(~ (X.~(~)), .))}] 

< - inf [~b(f) +I~t)(f)], (4.8) 

where I~)( f )  is the/-functional  corresponding to the projection ~z(X (~)) of X (~) 
onto the torus T M. By (4.7), 

limsup t -  a/(a + ~) lo g E~ IF (t, X.)] 
t ~ c l 3  
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is dominated by the left hand side of (4.8). Thus, taking infimum over M > 0, 
we have 

limsup t -a/(a+") logE x IF(t, X.)] 
t ~ o o  

< - sup inf Iv J{Y~rM;f(y)>O}l +I~)(f)] .  (4.9) 
M > 0  f e'] ar 

It has already been shown in [3; Lemma 3.5, 3.6 and 3.9] that the right hand 
side of (4.9) is not greater than -k(v,/J~)). This completes the proof of (4.5). 

Next we shall be concerned with the lower estimate (4.6). In the following 
we shall denote by C~(R d) the space of all C~-functions on R a with compact 
support and define, for any measurable function f on R ~, IIft!~=maxlf(x)] 

x 

and Itftlp =(j" [f(x)ff dx) l/p, p = 1, 2. 
We shall prepare a generalized version of the lemma due to Pastur [7]. 

Lemma 4.1. Let {q(x): xeR  a} be a stationary random field defined on a probabil- 
ity space with P and E denoting its probability measure and expectation, re- 
spectively. Let $(' , ')  be the Dirichlet form (see [5]) of a symmetric Idvy process 
X =(X,P~) on R a. Suppose that E[e -tq(~ < ~ for each t>0 .  Then 

E[e-~q'~ >-_E x Ex [exp { -  i q(X~)ds}] 

>(tifil ~" tlfH 1) -~ exp { -  [t #(f,,f) + ~( f ) ]}  (4.10) 

Jbr any f ~ C~(R a) such that [If il 2 = 1, where E x E~ denotes the expectation with 
respect to the product measure P x P~ and 

~ ( f ) =  - l o g E [ e x p { -  j' tq(x)fZ(x)dx}]. (4.11) 
R a 

Pastur [7] has proved (4.10) in case of X being the Brownian motion. The 
proof of the general case is similar. Hence we omit the proof (see also [6; 
Theorem 7.1]). 

Proof of the Lower Estimate. Let H(dy) denote a Poisson random measure on 
R a with characteristic measure v 1. I, where I" I denotes the d-dimensional Lebes- 
gue measure. Then 

q(x)= j" (p(x-y)H(dy) (4.12) 
R a 

defines a stationary random field {q(x):xeRa}, where q~(x) is that appeared in 
(4.4). Then it is easy to see that 

E [ e x p { -  j" tq(x)fa(x)dx}] 
R a 

= e x p ( -  v ~ (1 - exp { - j" tq~(x-y)fZ(x) dx}) dy). 
R a R e, 
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Hence, by Lemma 4.1, we have 

E x [ F ( t , X . ) ] = E x E  x exp - q(Xs)ds 

>_-(llfll~o" I[/111)-' e x p { - [ t C ( f , f ) + ~ ( f ) ] }  (4.13) 

for any f e C ~ ( R  d) and, by Definitions (4.4) and (4.11), we have 

~ ( f ) =  v j' (1 - exp{  - j' t cp(x-y) f2(x)dx})dy .  
R a R a 

For each f ~  C~ (R a) with [I f II 2 = 1 and R > 0, define 

fn(X) =n-d /2 f (R  - ix), x~R  a. 

Let R(t)=t  '/(a+~), t>0.  It has been proved [6; Lemma 8.2] that condition (Q1) 
implies that 

~(fR(t),fR(t)) = t-~l(d+cO E(~)(f f )  + o(t-~l(a+~)) (4.14) 

as t~oo,  where g(~)(.,-) denotes the Dirichlet form of X (~). It has also been 
proved in [6; Lemma 8.3] that the condition 

~o(x)=o(Ixl -(d+~)) (Ixl--,oo) 
implies that 

~(fR(,) < td/(a+~) V [El + o(t a/(d+~)) (4.15) 

as t--* 0% where E denotes the support of f Thus, noting that 

I[A(,II~'IIfR(,II1 =l l f l l~ ' l l f l lx ,  t>0 ,  

we have, by (4.13), (4.14) and (4.15), 

liminf t -  a/(a + ~) log E x IF (t, X.)] 
t ~ 0 9  

> - [g(~)(f f )  + v [{Y ;f2 (y) > 0} 1] 

for each f e C ~ ( R  a) with Ilfl12 = 1, and hence 

liminft a/(a+~) logE~ [F(t, X.)] 
t ~ o 9  

>__ - inf [g(~(f,f)+vl{y;f2(y)>O}l]. (4.16) 
f e C ~  <Ra), It f II 2 = 1 

It is known [3; Theorem 3.2 and Lemma 3.9] that 

inf [v lEl+ inf l(#)]=k(v, I3~)), 
E : c o m p a c t  # : # ( E )  = I 
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where 1(#) denotes the /-functional corresponding to the symmetric stable 
process X (=) and # denotes any probability measure on R e. Thus we have only 
to show that 

inf [vl{y;f2(y)>O}l+g(~l( f f )]  
feC~(Ra), II/ll 2= 1 

< inf D I g I +  inf I(#)]. (4.17) 
E: compact #:# (E) = 1 

To this end, we note the relation between I(#) and g(~)(ff). It is known [-3; 
p. 533] that if I (#)<oo,  then # has the density g relative to the Lebesgue 

measure on R e such that I(#)=g(=)(l/g,]fg). Let E be any compact subset of R e 
and # a probability measure supported on E with the density g such that I(#) 

=g(~)(]fg,]/g)< oo. Then by a standard mollification argument one can find a 
family fa, 6 > 0 of functions in C; ~ (R e) with ]l fa]l 2 = 1 such that 

lim g(~)(fa,fa) = g(~)(1/g,]/g) and limsup I{Y ;fa 2 (Y) > 0}1 < I EI, 
6 ~ 0  ,5~0 

which proves (4.17). This completes the proof of (4.6). 

5. Necessary and Sufficient Conditions for (Q0 
and a Sufficient Condition for (Qz) 

Let Q({) be the exponent of a symmetric L6vy process X = (Xt, P~). Then, by the 
L6vy-Hint~in formula, we have 

Q ( ~ ) = l ( ~ , a { ) +  j" (1-cos({ ,y ) )n(dy) ,  ~eR d (5.1) 
Re-{0} 

where a is a d-dimensional symmetric non-negative definite matrix and n(dy) a 
symmetric Radon measure on R e -  {0} satisfying j'(lyl2 A 1)n(dy)< oo. The mea- 
sure n(dy) is called the L6vy measure. Let Q(=)(~) be the exponent of a 
symmetric stable process X(~)=(X,,Px (~)) of order ~. It is known that Q(~)(~) has 
the form 

-isd ~ ~(da) Q(=)({)- j" (1--cos({ ,ra))  r~TT-.dr if 0<c~<2, (5.2) 

= �89  if ~=2,  

where ~(da) is a symmetric finite measure on the unit sphere S e-1 and a is a 
symmetric non-negative definite matrix. In case of 0 <c~<2 the Ldvy measure 
n(~)(dy) of X (=) is determined by the relation n(=)(N(r))=c~ -* r-~h(X), where 

-S(r)={y~ee;lYl>r, lYl-ay~Z}, r>O 

and X is any Borel subset of S e-1. We assume that inf Q(~)(~)>0 (nonde- 
I~1=1 

generacy assumption); this is satisfied if and only if, for 0<c~<2, the support 
S o t S  e 1 of fi(d~r) spans R e as a vector space; for c~=2, c7 is positive definite. 
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Recall that  X] = X 0 + s -  1 (Xs= t _ X0), t > 0, s t (0 ,  oo). We define the infinitely 
divisible distributions #s, s > 0  by #s(dx)=Po(XSaedx) and the stable distribu- 
t ion #(~)by #(~)(dx)=Po(~)(X1Edx). 

Proposition 5.1. The following conditions are equivalent. 

(i) Condition (Qa) holds for Q(4) and Q(~)(4). 
(ii) gs converges weakly to #(~) as s ~  oo. 

(iii) The distribution #1 belongs to the domain of normal attraction of #~), 
i.e., v, converges weakly to #(~) as n--+oo, where v,(dx)=#,~/~(dx) 
= Po(n-1/~ X,~dx) .  

(iv) In case of 0<c~<2,  ~r~n(S(r))~fl(Z) as r~oo  for each continuity set 
X c S  e-1 of g(da). In case of c~=2, 

(4 ,g t~)=(4 ,  a4)  + ~(4,y)2n(dy) .  

Proof First we assume that  condi t ion (i) holds. Then  one can easily see that  
e x p { -  Qs(4)} tends to e x p { -  Q(~)(4)} uniformly on any compact  subset of R e as 
s ~ o o ,  which is equivalent  to condi t ion (ii). The  implication ( i i ) ~  (iii) is ob- 
vious. We next show (iii) ~ (i). Suppose that  condi t ion (iii) holds, then 
exp{ -nQ(n -1 /~O}  tends to e x p { - Q ( ~ ) ( 0  } uniformly on any compact  subset 
of R e as n--+ oo. Thus, using the inequali ty 

l e - ~ - e - Y l > m i n { e - ~ ,  e -y} Ix -y]  for x>__0 and y > 0 ,  

we have n Q(n -1/~ 4)~Q(=)(4) uniformly on any compact  subset of R e as n-+oo. 
Let  K, ,  n > l  be a sequence of compact  subsets of R e of the form K , = { 4 E R e ;  
(2n) -1/~ < 141 <n-l/~}. Then, for k >  1, {4~ee;  0 <  141 < k -t/a} = U K,  and 14l-~_-<2n 
for 4 e K , .  Hence  we obtain ,_>k 

sup 14t -= IQ(4)-Q(=)(~)I 
O<lgl__<k-~/= 

= sup sup l ~1- ~ [Q (4) - Q<~)(~)I 
n > k ~ eK~ 

= supn lQ(~) -Q  (4)1 < 2 sup (~) 
n>=k ~eK~ 

= 2 sup supl n Q (n- 1/~ ~) - -  Q(a)(~)l-->0 
n~k {~K1 

as k--+oo, which is condit ion (i). Finally we show (ii)<=> (iv). Let  a s and nS(dy) be 
the matr ix and L6vy measure,  respectively, in the representat ion (5.1) for the 
exponent  Q~(4). Then  it follows from Theorem 1.2 of [8] that  condi t ion (ii) 
holds if and only if the following two condit ions hold. 

(a) nS(Z(r))~n(~)(Z(r)) as s-+oo for each Z c S  e-1 and r > 0  such that X(r) is 
a continuity set of n(=)(dy). 

(b) lim limsup [(~, aS 4) + j' (4,y)2nS(dy)] 
e~O s ~ m  0 < I y l m s  

= lim l iminf[(~,  aS ~) + 5 ({,Y)zn*(dY)] 
g:+o s ~ o  O < l y l < e  

=C, a4). 
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Here we use the convent ion that in case of ~=2 ,  n(2)(dy)=O and in case of 
0 < ~ < 2 ,  a = 0 .  

On the other  hand  it is easy to see that n~(Z(r))=s~n(X(sr)), n(~)(Z(r)) 
= ~  l r - ~ / ~ ( Z ) ,  aS=s ~ 2a and 

j" (~,y)2nS(dy)=s ~-2 j" (~,y)2n(dy). 
o<lyl  <~ o <lyl <s~ 

Hence conditions (a) and (b) can be written as follows. 
In case of 0 < : ~ < 2 :  

(a)' ~r~n(N(r))--,~(N) as r--+or for each continuity set 21cS  e-1 of ft. 

(b)' lim limsups ~-2 j' ly]2n(dy)=O. 
e~O s-~oo 0 < [y] <st. 

In case of a = 2: 
(a)" n(y; [y[ > r) = o(r- 2) (r~ oo). 
(b)" ( { , a { ) +  j' (~,y)2n(dy)=(g, ag). 

ly[>0 

Thus we have only to prove the implications ( a ) ' ~  (b)' and ( b ) " ~  (a)". Let  
0 < ~ < 2. Then condit ion (a)' implies that N(r)  =- n(y; ]y] > r) = O(r  ~) (r-~ or 
Thus we get 

P 

j" lYlZn(dy)=-j'pZdN(p) 
0 < [ y l < r  o 

r 

= 2 j'p (N(p) - N(r))dp 
o 

= O ( r  2- ~) (r-+ ~) .  

Hence we obtain 

lim l imsups ~ 2 j. lyl2 n(dy) 
e~O s ~ m  O<[y] <s~ 

= l i m e  2- ~l imsupr ~-2 j" lylZn(dy)=O, 
e~O r - ~  0<  y i< r  

which is (b)'. Let  ~=2 .  Then (b)" implies that j']y]2 n(dy)< o0. Hence we have 

r2n(y;]yl>r)< j' [y]2n(dy)~O as r ~ o o ,  
lyl>r 

which is (a)'. This completes the proof. 
Next  we shall be converned with condit ion ( Q 2 ) .  

Proposition 5.2. Suppose that condition (Q0 holds for Q(~) and Q(~)(~). Then 
condition (Q2) holds if 

lira (log I~]) -1Q(~)= oo. (5.3) 

Proof By (5.3) there exists a constant  R > 0  and a positive function c(x) on 
JR, oo) increasing to infinity with x > R such that  

Q(~)>c(l~l) log I~[ for I~[>R. (5.4) 
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Let fl be fixed such as 0<fl<c~ and let e = c ~ - f l > 0 .  We can assume that 
R>e  1/~ and the function c(x), x > R  has the property that c(x)/c(y)<=(x/y) ~ for 
x>y>R.  In fact, if we define a minorant  c,(x) of c(x) by c,(x) 
= inf c(z)(x/J, x>R, then c,(x) has the above property and it also in- 

x>_z>=R 

creases to infinity with x. 
First we shall show that, for each s_> 1, 

QS(~)-s~Q(s l~)>c(l~l)logl~l if I~l>sR. (5.5) 

To this end we note that Q~(~)>s~c(l~l/s)log(l~l/s) if I~l>sR by (5.4). Let s > l  
and I~[>sR. Then we have c(l~l)<=s~c(l~l/s), and hence 

s~ c(l~l/s) log(l~l/s)-c(l~l) log l~l >=c(l~l) {s~ log(l~l/s)- log l~l}. 

One can prove that the right hand side is non-negative by differentiating with 
respect to s and noting the relation [(]/s>_R>_e 1/~. This proves (5.5). 

Next we shall prove that there exists a constant b > 0  such that, 

Q,(~)- infQS(~)>bc(l~l)log[~l if [~[__>R. (5.6) 
s > l  

To this end we note that there exists a constant c 0 > 0  such that 

Q ( 0 > c o l ~ l  = if I~I<R, (5.7) 

which follows from ( Q )  and the nondegeneracy assumption. Since (5.7) implies 
that QS(~)>c o 1~1 ~ if I~.1 <=sR, we have 

QS(~)>min{col~l~,c(l~l)logl~l}, I l l > R ,  s > l .  

Thus we have only to show that there exists a constant b > 0  such that 

col~l~>_bc(l~l)logl~l if I~I>R. (5.8) 

For this it suffices to show that supx-~c(x)logx< oo. Let x>R. Then we have 
x > R  

c(x)<c(R)(x/R) ~ and x-~logx<R-~logR since R>_eI/L Thus we obtain 

x -  ~ c (x) log x < c (R) R -  p x-~ log x < c (R) R -  ~ log R. 

This proves (5.6). 
Finally we shall check condition.(Q2). For  given t > 0  and r > 0  we choose 

R'>R so that tbc(R')>=d+ 1 and let G = ( r Z )  ~. Then, by (5.6), we have 

~exp{--tQ,(~)} <CR,+ ~ exp{-tbc(l~l)logl~l} 

_<-CR,+ ~, I~l-d-~<oo, 

where C e, denotes the cardinality of the set { ~ G ; I ~ [ < R ' } .  This completes the 
proof. 
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Remark. One can easily see that if limsup(logl~l)-lQ(~_)<oo, then (Q2)does 
not hold. leith, 

Examplel. Let 0<c~=~o<Cq<. . .<c~ ,<2  and let Q(~)=~,Q(~*)(~), where 
i = 0  

Q(~')({) is the exponent of a symmetric stable process of order cq for each i. 
Then condition (Qi) holds for Q(=)({) and Q(~). Further condition (Q2) holds if 
and only if Q~)({) is non-degenerate. 

Example 2. Let a(do-) be a symmetric finite measure on S a- i and let f (a ,  r) be a 
non-negative measurable function on S a- 1 x (0, oo) satisfying 

j" (reA1)f(a,r)fi(da)dr<oo and f ( - ~ , r ) = f ( a , r ) .  
osd-i 

Define the exponent Q(~) of a symmetric L6vy process by 

oo 

Q({)=j '  j' ( l -cos({ , ra)) f (a ,r ) f i (da)dr ,  {~Ra; 
O S  d 1 

the corresponding L6vy measure n(dy) is determined by the relation 

oo 

n(Z (r)) = j' j" f (a, p) fi(d a) d p 
r 2  

for any Borel subset Z of S a- 1 and r > 0. Let 0 < c~ < 2. Suppose that there exists 
a non-negative measurable function e(a) on S a- 1 such that 

and 

j" c(~r)fi(da)>O for any {:t:0 (5.9) 
I(~,~)t>o 

(1) 
s)'l f (a ' r ) - r~+l  fi(da)=o r~TT (r~oo). (5.10) 

Let ~(da) be the symmetric finite measure on S e- i defined by ~(da)=c(a)fi(da) 
and let Q(~)(~) be the exponent of a symmetric stable process defined by the 
first half of (5.2) with the above fi(da). Then, by (5.9), Q(~)(~) satisfies the 
nondegeneracy assumption and condition (Q1) holds for Q(~)(~) and Q(~). In 
fact by (5.10) we have, for any continuity set Z c S  a-1 of fi(da), 

oo 

[c~r~n(Z(r))-h(Z)]=c~r ~ ! ! f (a ,p ) f i (da)dp-  p 

oo , c ( ~ )  

Thus, by Proposition 5.1, condition (Q1) holds. 
Moreover, suppose that 

lim g(r) ao, 
r~ o (l/r) log(l/r) 

(5.11) 
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where g(r)= inf j' (,~,a>2f(a,r)Ft(da). Then one can show that condition 
t~1= i s d  1 

(5.3) in P r o p o s i t i o n  5.2 ho ld s  by the  f o l l o w i n g  obse rva t i on ,  a n d  h e n c e  (Q2) 
holds .  N o t i n g  tha t  

we get 

1-eos<~,ro->~ l~r2<~,6> 2 if r~lg1-1, 
7~ 

11•1 ~ 

Q({)>= j" rZdr ~ <~,a>zf(a,r)Pt(da) 
0 S d x 

] i~i - ~  

>_ j" r2l~12g(r)dr 
7~ 0 

1 }r21~[ ag(r/l~Ddr" 
7g o 

Thus, by Fatou's lemma, we 

liminf Q(~) 
Ir log 141 

have 

> 1 !r 2 (liminf g(r/lgi) 

1 i' [liminf g(r/l:]) )dr=c~. 
rc o \tr (l~l/r)log(l~l/r) 
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