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O. I n t r o d u c t i o n  

In 1956 Hoeffding proved the following result ([5], Theorem 3): if X1 . . . . .  X. 
are independent Bernoulli random variables with parameters p~ . . . . .  p., and if 
g" {0, 1 . . . . .  n}~lR is strictly concave, then 

1 n 
where /3=2  ~ Pi and on the left hand side it is assumed that P(X i = 1)=/7 for 

n i = l  
all i=1  . . . . .  n. 

Recently, Bickel and van Zwet found a considerable extension of this 
result: let g: /Rm~IR and k e n  be given and let X~ . . . . .  X,  be independent real 
valued random variables with distributions #1,- . . ,# ,  and the extra condition 
that there is a finite subset A_~ IR m with cardinality k such that #j(A)= 1 for all 
j = l , . . . , n .  Then the following three conditions are equivalent: (1) the in- 
equality 

(,) 

holds for all n and all such #1 . . . . .  #n; (2) the inequality (*) holds for n = 2  and 

all such #i, #2; (3) the k x k-matrix (g(xi+xj))~,j= 1 ..... k is negative definite (i.e. 
[ 

c i c j g ( x i + x j ) < O  for all (c 1 . . . .  ,ck)~lR k with ~ c i = 0  ) for every choice o f  
i , j=l i=1 / 

x l  . . . . .  XkelR";  see [3]. 
Condition (3) is closely related to the notion of "negative definite functions" 

on abelian semigroups which has been investigated in [2], and it was tempting 
to find out the relationship between this class of functions on arbitrary abelian 
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semigroups and inequalities "of  type ( . ) ' .  Following this idea we have obtained 
a complete characterization of negative definite functions (Theorem 1 below). 
For  the important  subclass of completely alternating functions a similar ques- 
tion arises, however this problem turned out to be much more complicated 
and remained open for about  one year. Quite recently however we found out 
that our original guess was correct, providing for completely alternating func- 
tions, too, a new characterisation of probabilistic nature (Theorem 2 below). 

1. The Discrete Case 

Let (S, + ,  0) be an abelian semigroup with neutral element 0, let (f2, W, P) be a 
probability space and denote by Xt ,  X 2 . . . .  some S-valued random variables on 
(f2, ~,, P). In this first part  we do not impose some measurable or topological 
structure on S; we therefore say that X: f2~S  is a (simple) random variable iff 
{ X = s } ~ V s e S  and {X=s}  = 0  for all but finitely many ssS.  Any partial sum 
S , = X  1 +. . .  + X ,  then is also a random variable. The distribution #j of X j  is of 
course a finite convex combination of one-point measures on S. If g is an 
arbitrary real valued function on S and X is a (simple) S-valued random 
variable then g o X again is a simple real valued random variable. Let us recall 
the following 

Definition (cf. I-2]). A function g: S ~ I R  is called 

(i) positive definite iff sup ]g(s)l<oo and for every n > l  and every n-tuple 
sES 

(s 1 . . . . .  s,)eS" the n x n-matrix (g(s i+sj))i,j= 1 ..... , is positive semidefinite, 

(ii) negative definite iff g > 0  and for every n>2 ,  every n-tuple (s 1 . . . . .  s,)eS" 
and every n-tuple (c~ . . . . .  c,)~IR such that c~ + ... + c , = 0  we have 

~ c~c;g(s~+s~)>O, 
i , j ~ l  

(iii) completely monotone iff g>O and for every n > l ,  every n-tuple 
(a 1 . . . . .  a.)~S ~ and every s~S we have 

V,g(s;al . . . . .  a,)>=O, 

where 

V 1 g(s; al): = g ( s ) -  g(s + al) 
and 

V k g(s; a 1 . . . . .  ak) = Vk_ 1 g(s; a 1 . . . . .  ak- 1) 

- -Vk_ lg ( s+ak;a l , . . . , ak_  0 for k>2 ,  

(iv) completely alternating iff g>=0 and for every n>=l, every 
(a 1 . . . . .  a,)eS" and every sES we have 

n-tuple 

V.g(s; a 1 . . . . .  a.) < O. 



Probabilistic Characterisation of Alternating Functions 409 

The set of all functions fulfilling (i)-(iv) is denoted resp. ~(S), ~/'(S), Jg(S), 
d(S).  These four sets of functions are all closed convex cones and in each case 
there exists a uniquely determined integral representation (see [2]) which will 
be important for the proofs of our results. 

Let us agree in saying that a given function g: S~IR+ fulfills Hoeffding's 
inequality of order n iff for every sequence X 1 . . . . .  X, of n independent simple 
S-valued random variables the inequality 

~ ,  ..... ~o[g(x, + . . .  + x , ) ]  > e~[g(Xl  + . . .  + x , ) ]  

holds, where on the lefthandside X j  has distribution #y for all j =  1 .. . .  , n, while 
on the righthandside each Xj has the same (average) distribution 

1 #=- F,&. 
n j = l  

Remark. The condition g > 0  can of course be replaced by in fg ( s )> -oo .  
sES 

Without that assumption we could not hope for good results, because there 
exist unbounded positive definite functions on certain semigroups which are 
not moment functions, cf. [1]. 

The first connection between the different classes of functions defined above 
is given by 

Theorem 1. Let the function g: S-+IR+ be given. Then the following conditions 
are equivalent: 

(i) g is negative definite 
(ii) g fulfills Hoeffding's inequality of order 2. 

Proof. (i)~(ii): Let g be negative definite. Then g has the following L6vy- 
type representation (cf. [2], Theorem 3.7): 

g(s)=e+h(s)+ ~ (1-p(s))dv(p) Vs~S 
\ { i }  

where ce[0, oo[, h: S~[0 ,  oo[ is additive and v is a nonnegative Radon mea- 
sure on the locally compact space S'~{1}. Here f denotes the "dual" semigroup 
of S consisting of all multiplicative functions p: S ~ [ - 1 , 1 ]  normalized such 
that p(0)= 1, endowed with the topology of pointwise convergence; in this way 

is always a compact abelian topological semigroup with neutral element 
p - 1 .  From the above representation of g it is immediately seen to be sufficient 
to verify the inequality in (ii) separately for the two cases g = h  and g(s)=l  
-p(s) for some p~S. 

If g is additive then 

e.,,.2 [g(Xl + x2)] = E.1 [g(X0] + e~ [g(X2)] = Sg d~l + ~g d~2 

= 2 5 g d # = E~ [g (x~)] + e a [g (x  2)] = e~ [g (x~ + x 9],  
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and if g= 1 - p  for some p s S  we obtain 

E~ [g(Xl +X2)]  = E,a [-1 - p ( X t )  p(X2)] = 1 - (~p dN) 2 

< 1 - (~p d#~)(~p d#2) = ~ [ 1  - p(s~ + s2) ] d#l  (s~) d#2(Sz) 

= ~,~,,,~2 [ g ( x l  + x 2 ) ]  

where we used the obv'ous  i  quality 2 

(ii)~(i): Let k>2,  some k-tuple (Sl, . . . ,Sk)eS k and (c 1 . . . . .  Ck)elR k be given 
such that CI+. . .+ck=O. Of course we may assume that c o = ~ c f = ~ c  j is 
strictly positive. Let pj = c~: /c o and qj = c S/c o, j = 1 .... , k. Then 

k k 

#1= ~,pjesj and #2 = ~,qjesj 
j = l  j = l  

define two probability distributions on S. By Hoeffding's inequality we obtain 

k ( ) 
O> ~ g(si+sj) Pi+qi Pj+qj 

-~,j=~ 2 " 2 -P~qJ 

1 ~ cicjg(si+sj). =1 ~ g(s i +sj)(p i -  q,)(pj_qj)=4c~ i,j= 
4 i , j = 1  1 

Hence g is negative definite. [] 

Corollary. For any positive definite function g on S the reverse inequality 

E,,,,,,2 [g (x,~ + x 2)3 _-< E,~ [g ( x ,  + x 2)] 

holds. I f  on the other hand this reverse inequality holds and g is bounded, then g 
=c + f  for some c~IR and positive definite f 

The proof follows from Proposition 3.10 in [21. 

In [21, Theorem 4.2 it was shown, that the set of all completely alternating 
functions on S is an extreme subcone of the set of all negative definite 
functions and that the two cones coincide in case the semigroup is 2-divisible 
(i.e. for all seS there is some teS  with s= t+t ) .  Therefore on a 2-divisible 
semigroup the completely alternating functions are already characterised by 
Theorem 1. The situation is however different for non 2-divisible semigroups. If 
f. ex. S = N  0 ( = N w  {0}) with usual addition then g =  I~I,3,5,.. .~dV(S)\d(S ). 

Hence g fulfills Hoeffding's inequality of order 2, but not that of order 3, as 
the following example shows. 

Let X 1, X2, X 3 be independent Bernoulli random variables with parame- 
ters Pl =0,  p2=�88 and P3 =�88 Then/~=�89 and 

E~ [g(X 1 + X  z +X3) ] = 3.0(1 _fi)2 +/73 =�89 



Probabilistic Characterisation of Alternating Functions 411 

whereas 
Ep, p2,,3 Eg(X  + x2 + x3)] 

=Pl (  l -P2)(  1 -P3)  + ( 1 - P 0 P 2 (  1 -P3)  

+ (1 -p~)(1 -p2)  P3 + Pl P2 P3 
3 

- - 8 '  

In the proof of Theorem 2 we shall need the following 

Lemma. I f  g satisfies Hoeffding's inequality of order 3, then 

S g d(v �9 #2) _ 2 yg d(v 2 �9 #) + yg d(v 3) __< 0 

for all probability measures #, v with finite support. (The powers here denote 
convolution powers.) 

Proof We apply Hoeffding's inequality to the measures #1 =#2 =v, # 3 = P V + (  1 
-p )# ,  where 0 < p < l .  Then 

_ 1 - p  . 2+Pv  
# = - 5 - #  + - - U  , 

/23-#1 *#2*#3 

and 

j=O 

= # 3 + ( 2 + p )  v *#  - ~ ( p + 5 ) ( 1 - p ) 2  vZ*# 

1 3. 

Dividing out ( l - p ) 2  and letting then p tend to 1 we get the wanted result. [] 

Theorem2. Let a function g: S~IR+ be given. Then the following three con- 
ditions are equivalent: 

(i) g is completely alternating, 

(ii) g fulfills Hoeffding's inequality of any order, 
(iii) g fulfills Hoeffding's inequality of order 3. 

Proof (i) ~ (ii): From Theorem 4.4 in [2] we get the representation 

g(s)=c+h(s)+ S (1-p(s))dv(p) 
s+ \H} 

where c>0,  h is additive and v is some nonnegative Radon measure on 
S+\{1}. Again it is sufficient to prove Hoeffding's inequality separately for g 
=h  and g = l - p  for some p~S+. We omit the additive case. For g = l - p ,  
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peS+, we obtain 

Er 1 + ... +X,) ]  =Er 1 - I ]  p(Xj)] 
j= l  

j= l  

= ~  ... ~[1 - -p ( s  I +...-bSn)'] d # l  ($1)... d#n(Sn) 

= E  u ...... , , [ g ( X l + - "  + Xn)] 

where we used the well known inequality between the geometrical and the 
arithmetical mean of nonnegative numbers. 

(iii) ~ (i): Our proof consists of three steps. First we show that g also fulfills 
Hoeffding's inequality of order 2. Let /~ and v be two probability measures of 
finite support and denote by eo the one-point measure in 0sS. Hoeffding's 
inequality of order 3 is now applied to the measures 

# 1 = P e o + ( 1 - P ) ~ 2  v, #2=P~.o+( l - p ) # ,  

k t3=Peo+(1-p)v  

implying fi=/z 1 and therefore 

f i3-~1 *#2 * #3 =/~1 * ( ~ - # 2  *#3) 

= [p~o +(1-p)l~2V-l * [ ( 1 - p ) ~ - ]  2 

so that, again dividing out (1 _p)2 and letting p tend to 1, we may conclude 

~gd [ ( # -  v) 2] <0  

for all # and v, and this of course is only another formulation for Hoeffding's 
inequality of order 2. 

In the second step we shall prove the wanted result for the special semi- 
group S = N  o with usual addition. By Theorem 1 we know that g is negative 
definite and the integral representation of g used already in the proof of 
Theorem 1 takes the form 

g(k)=c+~zk+ ~ (1--tk)dv(t) 
[ 1,1[ 

where c>0,  ~>0  and v is a nonnegative Radon measure on [ - 1 ,  1[ such that 
~ ( 1 - ? ) d v ( t ) <  ov for all keN. Here we used the fact that N O is isomorphic to 
the multiplicative semigroup [ - 1 ,  1]. Without loss of generality we assume c 
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We define two probabi l i ty  measures  a, z on N o by 

so that  

and 

a = 2 1 - "  ~ (~)e~=2-"[(eO+el)"-(eO-el)" ] 
i=O 
i odd 

i=O 
ieveri 

(z - a) 2 = 22-  2,,(8 ~ - g l )  2n  

O" * (/" - -  0-) 2 = 2 2  - 3n [ ( 8 0  __ 8 1 )  2n * (80  "4- 8 1 )  n - -  (80  - -  8 1 ) 3 n ]  �9 

Observing  now that  for any signed measure  tc with finite suppor t  on ]N o we 
have  

j'gd =y y y E ( o)- 3dv 
INo k [ - - 1 , 1 [  [ - - 1 , 1 [  

where ~ ( t ) = ~ ( { k } ) t  k is the generat ing function of  ~c, we apply  the L e m m a  
k 

and get 

f gd[(,~O--g.1)2n *(PsO + 81)n] = .[ - - ( 1  - -  t ) 2 n ( 1  + t)ndv(t) 
No [ -  1, I [  

=< l - - ( 1 - t ) 3 n d v ( t )  = ~gd[(8o-81)3q 
i.e. [ - t , a  ~o 

i (1-t)3"dv(t) <= ~ (1-t)2"(l+t)"dv(t). 
[ - 1 , 1 [  [ - 1 , 1 [  

I f  v' is the measure  having density 1 - t  with respect to v, then v' is a finite 
R a d o n  measure  on [ - - 1 ,  1[ and 

.[ (1-t)3"-ldv'(t)<= ~ (1-t)2"-l( l+t)"dv'( t )  
[ -  1 , i [  [ -  1 , t [  

= ~ (1-t2)"(1-t)"-ldv'(t)<= ~ (1-t)"-ldv'(t) .  
[ - 1 , 1 [  [ - 1 , 1 [  

N o w  we use the welt known fact tha t  on a finite measure  space the LP-norms 
converge to the L~-no rm if p tends to infinity. Le t  

a = e s s s u p ( 1 - t )  with respect to v'. 
t~[--  1 , 1 [  

Then  
1 

a = l i m [  .[ (1-t)3n- l dv'(t)] 3~-1 
n-*cr [-- t , 1 [  

i n - - 1  

< I i m [  ~ ( i - t )"- tdv ' ( t )]  "-1 3 . - 1  

~--~ co [ - 1 , 1 [  
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so that a < l  and therefore v ' ( [ -1 ,O[)=O and finally also v ( [ - 1 , 0 D = 0 .  By 
Theorem 4.4 of [21 g is completely alternating. 

In the last step let again S be arbitrary. For  a fixed seS  consider g~: 
No-+N + defined by g~(n)=g(ns). Then g~ fulfills Hoeffding's inequality of order 
3 and is therefore completely alternating. The ffmction g is negative definite by 
Theorem 1 and has the representation 

g(s )=c+h(s )+  ~ [1 -p ( s ) ]dv (p )  
g \{i) 

already mentioned above where again we may and do assume c = 0  and h =0. 
Now 

g~(n)=g(ns)= ~ [ t - p ( n s ) ] d v ( p )  
\{i} 

= S [l.-(p(s))gd~(p)= ~ (1-,)d~(t) 
\{i) [- i, 11 

where (0,: S - - , [ - 1 ,  1] is the continuous function q)s(p)=p(s), and where v ~ is 
the image of v under q),. Of course v ~'* need not be a Radon measure, but the 
restriction of v ~ to [ -  1, 1 [ certainly is. Hence 

0 = v ~ ( [  - 1, 0D = v({p e &  0 (s) < 0}) 

and finally, v being a Radon measure, we get 

v (S\S+) = v ( ~  {p:p(s) < 0}) = 0 
sES 

thus finishing the proof of Theorem 2. []  

Corollary. For any completely monotone function g on S the reverse Hoeffding 
inequality 

G ,  ..... ~ [ g ( X l + . . . + X o ) ] < G [ g ( X ~ + . . . + X 0 ]  

holds ./'or every order n. I f  on the other hand this reverse inequality holds for n 
=3  and g is bounded, then g = c + f  .[or some eelR and completely monotone J~ 

2. Extension to Non-Discrete Semigroups 

Whereas for the characterisation of negative definite and completely alternat- 
ing functions it is sufficient to consider only probability measures of finite 
support, one would of course like to have Hoeffding's inequality also in a non- 
discrete situation. 

Let (S, +,  0) denote an abelian topological semigroup with neutral element 
0, and let M~ (S) be the set of all -c-smooth probability measures on S. From 
[7], Theorem 1 it follows easily that the convolution of two elements of M~ (S) 
is a well defined new element of MJ(S), and furthermore that (M~(S), *,~:o) 
again is an abetian topological semigroup (in the usual topology of weak 
convergence) with neutral element co. 
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Theorem 3. Let S be an abelian topological semigroup and let g denote a 
continuous, negative definite function on S. Then g fulfills Hoeffding's inequality 
of  order 2, and if g is furthermore completely alternating, it satisfies Hoeffding's 
inequality of  any order (with respect to r-smooth probability distributions). 

Proof Let F.={g<n}  and let two z-smooth probability measures #1, #2 on S 
be given. First we assume that there is some n~N such that #z and ]22 both are 
concentrated on F.. There exist two nets {#i,~} and {]22,~} of probability 
measures with finite support contained in F. such that 

]21,~(B)--,#~(B) and ]22,~(B)---,]22(B) 

for every Borel subset B~_S; then certainly #~,~--'#1 and #2,~--'#2 weakly 
implying /7~=�89 and furthermore, by continuity of 
convolution, ]21,~ * ]22,~-~#z *#2 as well as #~ �9 ] 2 ~ #  *#. 

The subadditivity of negative definite functions - cf. [23, Proposition 3.5 - 
shows that g is bounded on F. +F., too, and hence bounded on the support of 
#1 * ]2> Now we can apply Theorem 1 to obtain 

~ g d(fi . fi) = lim ~ g d(fi~ * fi~) 
cl 

< lim~gd(#1,~ * ]22,~)=~gd(]21 * ]22). 
cr 

The general result will now be deduced by using the conditional probability 
measures 

]21,.(B)=]21(Bc~Fn)/]21(F.) and ]22,.(B)=#2(BmFn)/#2(F.) 

which are certainly well defined if n is large enough. It is almost immediate 
that the measures ]2~,. and ]22,. are also z-smooth; consequently we have 

~gd(fi.*fi.)<~gd(]21,.*]22,.) for all n, 

- 1 where of course #. =y(]2~,. +]22..). Letting h(s, t)=g(s + t) we observe that 

~gd(fi. �9 fin)= �88 d(&,. | ]2i,.)+ 2~hd(#l,.  | ]22,.) 

+~hd(]22.|188 [i 1 , ]2~(-Fn))2 S hd(]2~| 
F~ x F~ 

-~ ~ hd(]2z | ..!F hd(#2| 
]21 (fn) # 2 ( s  ~,,• ~. (]22(Fn)) 2 F. . 

-~�88 | #~) + 2Shd(#~ | #2) + j'h d(#2 | ]22)] 

and 
1 

~g d(#1,n * ]22,.) =]21 (Fn) ]22(Fn ) Fn ! F~, hd(]21 @ ]22) 

-~Shd(]21 |  Sgd(]21 * ]22). 
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This proves the first assertion and we omit the similar argument for 
completely alternating functions. [] 

Example 1. Let S be the "classical" additive semigroup IRk+. Every probability 
measure on S is T-smooth (even a Radon measure), S being a separable metric 
space. S is 2-divisible so that negative definite and completely alternating 
actually mean the same. If now g~Y(lRk+) and X 1 . . . . .  X n are independent IRk+ - 
valued random variables with distributions #1 . . . . .  #n, then under the restriction 
of a given average distribution f i= #o, the expectation 

E ..... .o [g (X 1 + . . .  + X.) ]  

is minimized for #1 =#2 - - . . .  = # ,  (=go). 
In dimension k = 1, standard examples of negative definite functions are 

g ( s ) = l - e  ~, 

g(s) = log(1 + s), 

g(s)=s ~, where 0<a_<l ,  

g(s)=arcosh(eS)=s+log(1 +] /1  - e -  2s). 

The fact, that in this special situation the composition of two negative definite 
functions has again this property, allows to derive a lot more examples. 

Remark. It is easily seen that the dual semigroup of IRk+ is topologically 
isomorphic to [0, oo] ~, also considered as an additive semigroup. Hence there 
exist discontinuous negative definite functions on IRk+, but (contrary to the case 
of the group IR k) every negative definite function is Borel measurable. We have 
a proof, based on Fubinis Theorem, that on the semigroup IRk+ the continuity 
of g actually is not needed for the validity of Hoeffding's inequalities. The 
proof works if S\{1} is o--compact and (p,s)~-~p(s) is Borel measurable on 
xS.  

Example 2. Let S be N o under usual addition. Here S can be identified with the 
multiplicative topological semigroup [ - 1 ,  1] and continuity problems do not 
arise. N O is not 2-divisible and we already mentioned that g = 1~1,3 ' 5,...~ belongs 
to JV(N0) but not to d (No) .  Let X and Y be independent No-valued random 
variables with distributions # resp. v. Then we have from Theorem 3 the rather 
curious result that P(X+ Y is odd) among all #, v with a given average, gets 
minimal for # = v. 

If the semigroup S is "finite dimensional", there is a more or less "natural" 
topology, under which S becomes a topological semigroup. In the infinite 
dimensional case, however, it may be reasonable to consider different topo- 
logies on S, as the following examples shows. 

Example 3. Let X be a completely regular Hausdorff space and let S =  C+(X), 
the cone of all bounded continuous nonnegative functions on X. With usual 
addition S is a 2-divisible semigroup. Consider on C(X) the Ll-topology 3-~, 
generated by all seminorms q~(f)=S]f[d#, # being any totally finite non- 
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negative R a d o n  measure  on X, and the socalled strict topology 4 ,  generated 
by the seminorms 

p~(f) = sup {[c~(x) f (x)l : xeX}, 

where ~ runs through all bounded  measurable  functions on X vanishing at 
infinity, i.e. {1~1>~} is relatively compact  for all e>0 .  Of course in both  
topologies S becomes a topological  semigroup. Positive and negative definite 
functions on S have been studied in [6]. If g~JU(S) satisfies a rather  weak 
cont inui ty  property - the restriction of g to the "uni t  ball"  {f6S: 
f(x)< 1 Vx6X} should be 3-~2-continuous in 0 - then by Theorem 4.2 in [6] the 
funct ion g is G - c o n t i n u o u s  everywhere and  therefore fulfills Hoeffding's in- 
equalities for all probabi l i ty  measures which are z-smooth with respect to ~-~, 
i.g. a larger class of measures than those being r -smooth  w.r. to ~ .  
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