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Summary. Let o/ be a real or complex commutative ordered algebra with
identity and involution. Let I' denote the set of positive multiplicative
linear functionals p on /. Equip I' with the topology of simple conver-
gence. For a fixed non-negative probability measure p on I' the set &, of
linear functionals f on o/ which admit an integral representation of the

form f(x)={| p(x) F(p)du(p) with FeL (1) (1=<p< o) is biuniquely iden-

r

tified with L () via the map f—F. The norm on .#, under which this map
becomes an isometry is characterized and a formula for approximating F is
derived. The linear functionals which admit representation of the form
jp(x) dv(p) with vy are also characterized and appropriately normed. The
r

theory is applied to solve abstract versions of trigonometric and n-dimen-
sional moment problems as well as provide an alternate point of view to
the theory of L ,-spaces. New proofs of classical theorems are offered.

0. Introduction

This work may be regarded as a sequel to [14]. Therein, those linear function-
als f admitting an integral representation of the form f(x)=| p(x) dp,(p) (with
r

1, not necessarily non-negative) were described. Here we can further describe f
when the natural restrictions on u, mentioned in the summary above are
imposed. Not only do our results offer new proofs of classical theorems on
trigonometric and n-dimensional moment problems, but also the abstract al-
gebraic setting used enables us to unify the two here-to-fore only analogous
theories, allowing new theorems from the one area to be carried over from
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known theorems in the other. This unification is made explicit in §4 where we
solve what we call, the abstract moment problem, in broad generality. Mo-
tivating applications to Lebesgue spaces and to the field of classical moment
problems are indicated by three examples given in §2. The set up of each of
these differs from the subsumming set up of §4. The more recent results of Alo-
Korvin [1] and Leader [9] are also easily attained by the theory presented
here. In fact, these particular works were strong motivating influences on the
present. For example, the proof of Theorem A, although more technical, is an
upgrading of Leader’s proof of Theorem 1 in [9]. To appreciate this the reader
should refer to [16] where both the works of Leader and Alo-Korvin are
generalized more in the flavor of the present. To maintain continuity, the main
theorems are precisely stated in §1 but their proofs, which tend to be technical,
are deferred until §3. The appropriate cross references are included parantheti-
cally following the theorem numbers in the next section.

1. Notation and Statements of Main Theorems

Throughout the sequel, we will let .o/ denote the algebra referred to in the
summary above and assume the set up given in [14]. Explicitly, the identity and
involution will be denote by 1 and * respectively, and we assume the existence
of a subset 7 of o7 satisfying

(i) x*=x for each xer.
(i) {1} —reAlg*span(r), i.e. 1—x is a positive linear sum of products of
members of 7 for each xex.
(i) of = Alg span (1), i.e. every xes/ is a linear sum of products of members
of 7.

The cone P, defined by Alg™ span(z), orders &/ in the usual way. If the dual
space &/’ of linear functionals on &7 is given the o(</’, &f)-topology, then the
set I' of non-negative, non-trivial, multiplicative linear functionals is compact.
A finite, possibly repetitious, subset (x;); of P will be called a partition of
unity provided X;x;=1. If (x;); and (y;); are two partitions of unity then their
product (x;y;); ; is again a partition of unity. Let Q be a subsemigroup of the
semigroup of all partitions of unity such that xer is a member of some AsQ.
Recall [14], fes/' is said to be of bounded variation (BV) if sup Y |f(x)|

Aef2 xeq

= f{l<oo. Then | f| is independent of the choice of Q. Moreover, f admits g,
necessarily unique, complex-valued, regular representing measure u,, if and
only if f is BV; u, being non-negative if and only if f is non-negative. Let ge.o/
be fixed, non-negative, and normalized by the condition g(1)=1. Then p, is a
probability measure. Define fe.of’ to be g-continuous if given £>0, there exist
6>0 such that ) |f(x)|<e whenever ) g(x)<6 and A4, is a semipartition of

xeAdg xeAg
A. The natural corresponding definition for a BV-functional to be g-singular

will be defined later in § 3.

Theorem A (3.1). Every g-continuous functional is BV.
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The set Z;(g) of all g-continuous functionals is then a normed lincar space
with variation norm |- [, =|||. For 1<p<oo, A€Q and feo/, define | /], 4

= Y (f()PP/[g(x)]P~ 1) where 0/0=0, and set HfoSljllp 1f Iy, 4)- Denote

xed
the set of all f with ||f], <o by Z,(g). A Lipschitz type norm is also available
to define £, (g). Moreover, Z,(g) = %, (g) for 1<p=co.

Theorem B (3.12, 3.14, 3.16). A4 linear functional f on o admits a disintegration
of the form f(x)={ p(x) du (p) where:

() dty=1"(p) dpy(p) with f'€L, (1., T) if and only if fe,(g) (1 Sp< o),
(1) p, is pg-singular if and only if f is g-singular.

Moreover the spaces & (g) and L (u,, I') are linearly isometric via f—f" as also
are the spaces of g-singular functionals and y,-singular measures via f— ..

For each fes’ and AeQ, define a scalar-valued function /" on I" by f;(p)
=Y (f(x)/g(x)) p(x). If the natural ordering AA’'= A on Q is imposed, then the

xed
following approximation theorem holds.

Theorem C (3.13). If feZ,(g) (1<p <o) then the representing measure i, for f
is of the form f'du, where | f'—f4ll, — 0.

We conclude the theory by describing the dual £,(g)*, of %,(g) intrinsi-
cally.

Theorem D (3.15). If 1=p<cw, 1<q=0 and (1/p)+(1/g)=1, then £, (g)* is
. h

linearly isometric to £, (g) via the pairing { f, h)=Lim Z L(—;C—)(# (feZ,(g),
A4 xea

he Z,(g)).

Remarks. Theorem A, which is used to prove Theorem B, also implies a decom-
position of BV-functionals into singular and non-singular parts. This special-
izes to a theorem of Darst [5], c.f also [16]. Theorem B implies solvability
conditions for both moment problems on convex bodies as well a trigonomet-
ric moment problems; both with respect to measures which are either of L -
density or singular. Hausdorff’s solution to the “little” moment problem with
measures of L -density, c.f. [20], is an example of the former. More generally,
Theorem B extends to all of the examples of disintegration of functions on
semigroups discussed in [14], so that necessary and sufficient conditions for the
representing measures either to be of L -density or singular can be formulated.
The algebra ./ to which Theorem B is applied is the linear span of the
translation operators on the semigroup. Theorem C can be viewed as an
inversion theorem for recovery of y, since f; and du, are known. For the case
where the semigroup operation is idempotent, these considerations recover and
generalize the theory of V?-spaces introduced by Bochner [3]. We refer the
reader to [16] where a direct approach, devoid of the above algebraic setting is
offered.
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2. Applications to Classical Settings
2.1. Moment Problems and Convex Bodies in n-space with L ,-density Functions

For notational convenience set n=2 and let K be a closed bounded convex set
with non-void interior in IR% The classical problem of classifying those doubly
indexed sequences F(m,, m,) which admit disintegrations of the form F(m,, m,)

= [ %2 du,, where yup satisfies select properties, can be solved by appeal-
K

ing to Theorem B. Let o be the real algebra of all polynomials in two vari-
ables. There exists a subset t of appropriately scaled polynomials in two
variables of degree less than 2 such that K= {t: p(t)=0}, [14,§3]. Let E,

pet

and E, be the two unit coordinate shift operators defined by E,(F(m,, m,))
=F(m,+1,m,) and E,(F(m,, m,))=F(m,, m,+1). The dual &/’ admits a na-
tural identification with the doubly indexed sequences; P’ being identified with
those F satisfying (p%...p™(E,, E,)) F(0,0)=0, with p,, ..., p,et. Let G be such
an F normalized by the condition G(0, 0)=1. For definiteness assume K is the
simplex {t:¢,20, 1,20, 1—¢,—¢,=0}. Then 7 can be taken to be {p,(t)
=t,,p(t)=t,, ps(t)=1—t;—t,}. For 1<p<oo, the p-norm of F takes the
form:

iFl,=Lim (3 (

Part (i) of Theorem B asserts that ||F|,<oo if and only if dup=F'du, with
F'eL (K, pg).

The case where n=1, K=[0,1], 1<p<o and G=1/(k+1) is the well
known “little” moment problem discussed by Hausdorff, cf. [21, p. 109]. Here
U 1s Lebesgue measure. Theorem B can be applied to yield new proofs in
more generality. It is interesting to note that P’ is identified with the com-
pletely monotonic sequences, and the classical Lebesgue space L, [0, 1] with the
subset .#,(G) of BV-sequences (BV-in the sense of Hausdorf).

n ) (I —E, —E,) F(m,, m,)|? )W
m; m, n—my—m,[(I-E,—E,)G(m,m,)]"*

2.2. Lebesgue Spaces as Subspaces of Absolutely Continuous Functions

Let o/ be the real algebra spanned by the characteristic functions 1y, , of
closed subintervals of the form [0, b] of [0, 1]. Then ./ contains the character-
istic functions of the left-open and right-closed intervals. Let t={1, i}, 1,0
0=t<1}. Each fes/ can be biuniquely identified with functions F on [0, 1]
by F(t)=f(1}, ;) and the map f—F is an isomorphism. The positive linear
functionals P’ correspond to the non-decreasing functions on [0, 17; [0, 17 itself
is the continuous image of I. Moreover the BV-norm carries over to the classi-
cal real-variable BV-norm for functions on [0, 1]. If we choose the linear func-
tional g defined by g(1,, ;) =1, as the control function, then it corresponds to the
monotonic function G(f)=r so that .#,(g) corresponds to the space %, (G) of all
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absolutely continuous functions F on [0, 17, such that F(0)=0. For 1<p< oo,
the p-norm of Fe % ,(g) takes the form

Lim (2 M)up

N ORI L

where the limit is taken over all refinements of subpartitions of the form
0<t,<...<t,<1. The space .Z,(G) is just those functions satisfying the Lip-
schitz condition with the Lipschitz norm. Each Fe.%,(G) is differentiable
almost everywhere, and even though the map F—F' is not ordinary differen-
tiation, it follows that the map F—(dF/dt) is a linear isometry of Z,(G) onto
L,[0, 1] for all p, [16].

2.3. The Trigonometric Moment Problem:
Functions on Discrete Groups Whose Fourier Transforms are L ,-functions

Let S be an additive discrete abelian group and .« the complex convolution
algebra of all functions on S with finite support. Set 'cz{; (1(0}4—% 1

+% 1{4}): seS, o*=1;. Then the t-positive linear functionals can be identified
with the positive definite functions on S and I' with the character group S
[13]. If we choose the positive definite function 1, as the control function,
then Theorem B gives an explicit description, in terms of iterated differences, of
those functions whose Fourier transforms are L ,-functions with respect to Haar
measure on 5. From duality, we have therefore described the transforms of
those measures on S which have L,-density. The theme of characterizing
measures on locally compact abelian groups by their Fourier Transforms was
initiated by Schoenberg [19] and extended by both Eberlein [cf 18] and
Stewart [20].

3. Proofs of Main Theorems

Theorem 3.1 (A). Every g-continuous linear functional is BV.

Proof. For each xe, let E_ denote the shift operator on & defined by E, f(y)
=f(xy), (yeod, feod'). Assume f is a g-continuous linear functional which is
real-valued on P. If AeQ then the triangle inequality for |-, implies
Y IE Izl Suppose ||f|=co. Let M=2+|f(1)] and a*=Max(=£a,0).

xed

There exist A4; such that

ZA (fGPT+(F Nz M. (3.1.1)
Moreover, - ,
2 (FENT=(fENT)=,). (3.12)

xedq
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Then x,; can be found in 4, such that [|[E, f|=co. Without loss of generality,
assume f(x,)<0. Averaging (3.1.1) and (3.1.2) gives) |f(y)=(M +f(1))/2=1,

(yie4,\{*,}). This argument can be repeated witﬁ)1 f replaced by E_ f to
produce A, with x,ed, satisfying both [|E, . fll=c0 and Z [f(y,x,)|21,
(yoe4,\{x,}). Continuing by induction we obtain a sequence {A,}, of mem-
bers of @, such that each 4, contains a select x, satisfying

IEg. fl=c (=12 ...,k (3.1.3)
LGz =1, k=15 pee AN {x). (3.14)

If j=1,...,k—1 and peA\{x} then X g I;x)=g(Z, y) I, x)=
g((1—xy) I;x)=g(l;x)—g(x.Il;x;). Thus we can “telescope” the series

1231 2, g I x) to obtain, (g(1)—g(x,))+(glx)—g(x; X))+ ... +(g(x1-..x,_ 1)
—g(x;...x,)) <g(1). Therefore,

Z)kg(ykﬂ x;)) < 0. (3.1.5)

Tr[\/‘g

Let A,=A,...4, and A;={y,I1,x}; Then A;>A; and (3.1.5) implies lim }
k xedy

g(x)=0, so that g-continuity of f contradicts (3.1.4). Hence f is BV whenever
fis real on P. If f is not real on P then we can write f=f; +if,, where [, (x)
is the conjugate of f(x*), f,=(f+f)/2 and f,=(f—f,)/2i. It follows that f;
and f, are each g-continuous, BV-functionals which are real on P. Thus f is
BV,

The existence of a representing u, for each g-continuous functional f
follows from [14], and we are now in a position to prove

Theorem 3.2. A functional f is g-continuous if and only if p, is absolutely
continuous with respect to fi,.

Proof. Suppose p, is absolutely continuous with respect to y, and let f* denote
the Radon-Nikodym derivative of u,. Let ¢>0 be given, and x(p) denote the
evaluation function p— p(x). Observe that > %(p)=1 for each AeQ. Since the

xed

continuous functions, C(I'), are dense in L, (I, u,), there exists Fe C(I') such
that ||[F—f"|i, <&/2. For any semipartition A, of a partition A€, we have

YIS Z Ixifldug Z fRIf —Fldu,+ Z f2IF|du,

xedg xeAg x&dg

=IS"=Fli+IFl, 3 &), (HFHm=SI;p|F(P)I)-

xedg

If Y gx)<e/2||F]), then Y |f(x)| <e; proving that f is g-continuous.
xed x& A
Coonversely, assume f is g-cogtinuous. Then, as in the proof of the previous

theorem, we may assume that f is real-valued on P. Since y, is regular, we
need only prove u.(D)=0 whenever D is compact and x,(D)=0. Let ¢>0 be



Disintegration with Respect to L -density Functions 317

given and J be as in the definition of g-continuity. By regularity, there exists an
open set G such that D<= G, u,(G)<é and

I (G\D) <e. (3.2.1H)

By Lemma 2.2.1 of [14] (note the misprint in the statement therein), for each
natural number n, there exists a semipartition A, of a partition in Q such that

Y p() —1/m  for peD
Nyl P < 1/n for pel\G.
Then,

1
S 6W=] % S G+ uT\G) <o+

xed;,

Since f is g-continuous, we have

> 3 |f( X)|>|f2xduf

xedy,
2|{...|=| { ...I=| [ ...| for sufficiently large n.
D G\D ne
Applying Lemma 2.2.2 of [14] and (3.2.1) above gives, 2&>|(1 —4/n)|u (D)|
—(4/n)lu (I'\G)|. Letting n— oo, shows that 2e>|p (D) and the assertion fol-
lows.

Corollary 3.3. Z,(g) is linearly isometric to L,(u,) via Radon-Nikodym dlﬁ’eren—
tiation (f—f").

Proof. Theorem 2.2 of [14] implies BV(s/) is linearly isometric to the space
M(I') of Radon measures on I'. The assertion follows from the above Theorem
along with standard measure theory since we have imposed the BV-norm on
()

Later, we will replace #,(g) by Z,(g) in the above to establish (i) of
Theorem B. The inequalities established in (3.4) through (3.8) are instrumental
in setting up this replacement.

Proposition 34. If A, A'€Q and 1 <p<oo then || fll¢, 4402 1 f | 5.y

Proof. Let {0}, 4 5 4 {Bi}ic1, ... x be finite sets of real numbers such that
Zo,=1, X, p,=1 with §,>0 and g=p/(p—1). Keeping in mind our convention
that 0/0=0, Holder’s inequality implies:

11 p 1/p
1=z, () s (550 8) g

hence
LS Zjof7/pr 1. (3.4.1)
Since

Y fexPlglex) Pt =3 ¥ |f(ex)P/g(xx)1P~",

xx'edAd’ xed x'ed’
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we need only show

Y LX)/ LgCex )Pt 2 | f ()17 (g ()17~

x'ed’
However, this follows from (3.4.1) upon setting f,=g(xx)/g(x) and o,
= f(xx)/f (x).
Remark 3.5.| f||,=Lim | f, o, where Q is directed by the natural semigroup
4
ordering of divisibility as explained in §1.

Lemma 3.6. (i) Z,(g)=%,(g) (1<p<c0)
(i) [f1,=1f"l, whenever feZ,(g).

Proof. Let g=p/(p—1) and A, = Aef. Then Holder’s inequality implies,

Y 1fels ¥ (L5 o)

xedp xedg (g(x))l/q
<( ZA | £GP/ Lg ()P~ H)H7 - ( ZA: glx)'e

which establishes (i). To prove (ii) we again apply Holder’s inequality to obtain,

if(X)|=|£ ﬁf’dug|§(£ If’l‘”%dug)”"(lj; 195 dp)'.

Therefore
S/~ T I/ IP 2 dp,
so that ’
LIS CFgel =< X [ 1S 2dug={ 117 ¥ Sdu= 1117 d.

Hence, | f],=1 /"],
In the proof of Theorem 3.1 we defined the shift operator E |/’ — .o/ by
(E.[)(y)=f(xy) for each xe/. For each AeQ, and fe./’, we now introduce

the notation f, to denote Y —— f(x)
f(x) . ven 8(X)
SR

:xeA g(x)
Lemma 3.7. If feBV () then || fullp, an S 1 f o4y (L Sp<0) for all A, A€

Proof. The proof is again a consequence of Holder’s inequality. Indeed,

HfApr,A')z Z [ fa) p/[g(J’)]pil

E.g. Then the map f—f, is linear and f

ﬂl ’ p~1
——yeA xed g( g( Y l / y):'
= (( g(x g( y) 2. g(xy) "/")/[g(y)]l"1
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Remark 3.8. | f4ll, SIS . 0SS, by the above 3.5. In particular, the linear
map f—f, is norm decreasing and hence continuous.

Let x, yeo/ and « be any scalar. Then E . E =E_, E.+E,=E_, and oF,
=FE .. Thus if p(¢,,...,t) 1s a scalar valued polynomlal in "k variables and
Xys...n X €7, then p(E, ,...,E,)g is a well defined member of «’. Such a
linear functional will be called a polygonal functional and the set of all such
linear functionals (in any number of variables) will be denoted by #.

Proposition 3.9. If f=p(E

(1) f Ep{xi xk)g
(i) f'=p where p=p(%1, -, %) (1(0)=p(x,))

E_)g then

FTERERE

(iii) f"=p.
Moreover, 7 ={{':fe®} is uniformly dense in C(I').
Proof. (i) Let yeo/ and p(ty, ..., )= o, ..t} Then

fO)=Ya, . ;B Ekg)= gyZ i XA X
=gp(xy, s k)y):Ep(xl,...,xk)g(y)‘
(i1) f’(P):(Ep(x, ,,,,,, xk)g), (P)=ppxy, ..oy xk)):P@%p o %) (P).

(iil) Since p(x)=p(x) for all xer we have
T'y=Xa, ;. pCl...x})
=p( %, f 6t ) =p((plxy, ... xV¥) =P (p).

For the last assertion, suppose p,, p,€I” with p;+p,. There exists xes/ with
p,(x)=£p,(x). Since T generates .o/, we have, x=p(x,...,x,) for some
Xy, ..., %,€7 and polynomial p. Thus #' is a point separating subalgebra of
C(I") by (i), which is closed under complex conjugation by (iii), so that the
Stone-Weierstrass Theorem applies to complete the proof.

The following technical lemma is crucial to the proof of the % -isometry
(Theorem B(i)) and & -inversion (Theorem C) Theorems. The proof appeals to
the theory of Bernstein polynomials. The reader will recall that if p(s,¢,...) is a
function of several variables s,t,... then the Bernstein polynomial B, . is
defined by

B m___p(s,t,...):_"f (Y:’) (;’)...p(i,i,...)sfzf...(1—s)m—f(1--t)"-f

i, j=1 m n

(391
cf [11]. ( )

Lemma 3.10. Let p be a polynomial in several variables; x, v, ... belong to ©; f
be the polygonal functional, p(E., E,, ...)g and A, A, ... be partitions in Q
which contain X, y, ... respectively. Then,

(1) Lim .Y lﬁd’dﬁiAg‘,‘me,nmp(ﬁ) yA’ )fdau’g:
[ T

for each Aef2.



320 P.H. Maserick

and
(i) [f =111,

Proof. For notational convenience assume the number of variables is two. Let
Ag={x1, %5, ... }; A,={y1, ¥, ...} with x=x, and y=y,. The Muitmommal
Theorem and the remark preceding Lemma 3.7 imply

Lo m N NS

m n . . .
where ( ) and ( j ) are multinominal coefficients;
11 e 1 .-

P it
w=w(z, i, J=zx1 X7y P

and the summation is over all choices of ze A, i, i5, ... and jy, j,, ...
Moreover an application of the multinominal theorem to (3.9.1) gives:

B, .p(%, )= Z( " ) (Jln )p (i—‘,@«) W, (3.102)

m n

But since, f(w)={p(%, ) Wdu, we have:

(roovgom)=p (2.2)

]

gw) r

5

bdu,. (3.10.3)

e (B ]y
p(x, ) p(m,n)

Applying (3.10.3) to the integral of the absolute value of the difference between
{(3.10.1) and (3.10.2) gives:

;[ Ifa AwAg(p U B, . p(%, §) ()] dﬂg(ﬁ V)

=iz (")) l(f(W))/g(W)—p (221 wto) duyto)
L)) ) s
=p (5 25) 9002 disp ) dno)
) o i
(7 s (oo

HPA=2 A9 du,. (3104
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The last term tends to 0 as m — co and n— co, since the integrand converges to
zero by the theory of Bernstein polynomials. This completes the proof of (i). To
prove (ii), we first take the limit of the second expression in (3 10.4) as m— o0

and n-—s oo to see
20 ) G

Set f(w)/gw)=a and p (1 ! ‘) b. Since a=(] #f du)/( ¥ d) Ssup /(o)

and b<sup {pls, t)|s, tef0, 1]}, then there exists a constant M =1 independent
of iy,...,j;-.- and z such that 4,b<M. But if g is a positive integer then
replacing « and § by a/M and b/M in the identity,

el =119 = erd = Bl (e ek~ 2Bl + .. + B,

2(w) 0. (3.10.5)

shows:
[lal*— b4 =g M~ Y|a| —|bl}.

Differentiation shows the function g—{|a/?—|b}9| to be non-decreasing, so that

el

Using (3.10.6) in conjunction with (3.10.5) and the triangle inequality gives:
I1 J1
() 6 el e G

In conclusion, we return to the theory of Bernstein po]ynomlals to observe that

(3.10.6)

g(w) —0. (3.10.7)

g(W)

1 18= 01 Pty [ Byl 190 = | (lm) Q") ‘p (zn;;%) "o,
X)) Gl
or
e () () () e 6109
However,

A= |f|m<‘ufu )Q }(’”1 o(w)

q

(2 b

Wll’l

g( )L (@, A4 47) ||f”g

g()

But (3.10.8), (3.10.7) and Remark 3.5 imply each of three terms on the right of
this inequality can be made arbitrarily small. Assertion (ii) follows.
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The following, which is needed to establish the £ -isometry, will also imply
the # -approximation (Theorem C) once the isometry has been proven in
Theorem 3.12 below.

Lemma 3.11. If f'eL,, then | f'—f]|, —0.

Proof. We first prove the assertion for f polygonal. Thus assume £>0 is given
and f=p(E,, E,, ...) g, where x, y, ...et and p(s, ¢, ...} is a polynomial in several
variables. By the theory of Bernstein polynomials and Lemma 3.10(i), there
exists a Bernstein polynomial B, ,  such that both

5 Ip(&': j}’ ‘“)_Bm,n...p(ﬁs JA')a )I dﬂg<8/2
r
and [|B, , f'—fildu,<ée/2 (for sufficiently large AeQ).
r

Since f'=p(%, 7, ...), the triangle inequality implies, || f'—f;| »<e for the case,
p=1. Forp: 1<p<oo,

{1/ du,
r

I{)%dug

msy Ml g

Ssup|f'(p)l,
ven 8(x) r

so that {fs}, is uniformly bounded. But, || f'— 1|, —0 implies f;—f" in p,-

measure and the Dominated Convergence Theorem [6, p.125] implies the
assertion for the case where f is polygonal. To complete the proof for general
f'eL,, let ¢>0 be given. Since C(I') is norm dense in L,, Proposition 3.9
implies the existence of pe# such that | f'—p'||,<&/3. Applying the first part
of the above proof, we obtain p"—pill,<e/3. Remark 3.8 gives, [[(p"~f")ll,
<|lp"—f"ll,<e/3 so that the triangle inequality implies the assertion.

The theorem below establishes Theorem B(i) for 1 <p < oo.

Theorem 3.12. If fe %, (g) then || f1,= | /'],

Proof. From Lemma 3.11 as well as Corollary 3.3 it follows that | f—f,Il,
=|f"—fali—0. Thus f;—f" in p,-measure. Consequently, there
exists a subsequence f; such that f; —f" (u,-a.e). Hence,

L =0 1f"Pdu,

r
<Lim ||f; |Pdu, (Fatou’s Lemma)
n r

=Lim | f4, |15 {Lemma 3.10(i1))
SIflp (Remark 3.8)
=113 (Lemma 3.6)

and the proof is complete. v
The following ,-approximation formula is a direct consequence of Theo-
rem 3.12 and Lemma 3.11. Moreover, it and the Theorem imply Theorem C.
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Corollary 3.13. If feZ, then | f—f,|,— 0.
The only unproved assertion of Theorem B(i) concerns the space ¥ _ . For

each few’ we define | f|  =Sup If(( ))I (0/0=0) and set L (g)={feL"|{f],

< }. The following proposition completes the proof of Theorem B (i).
Corollary 3.14. Z is linearly isometric to L, via the differentiation map f—f".
Proof. Let feo/' and 1<p<oo, then Y |f(x)?/(g(x)"""<|fI% Zg so that

xed

If1,21/] .. Moreover if xetr and feZ,(g) then, If(x)|<j |f'|%du,

S, § Xdp, =111, g(x),s0that | f]| =] /] »- Applying the famlllar relation
I

1, — 1f Il (even if | /7], = o0), we see that for feZ,(g),

S Moo Z L =17 = 1 o 2 N

Thus the map f—f" is an isometry, as required.

Standard measure theory now implies that the dual £¥(g) of Z,(g) is
linearly isometric to Z,(g) for 1<p<oo, 1<g=co and (1/p)+(1/g)=1. To give
an explicit description of the pairing, recall from §1,

Theorem 3.15. If 1<p< 0, 1 <q=< o0 and (1/p)+(1/q)=1, then L} (g) is linearly
isometric to Z,(g) via the pairing { f, h) with fe%,(g) and he Z (g).

(0/0=0).

Proof. The assertion follows from Corollary 3.13, since:

oy i A A L)
[ fH o 1 dug 5(2 >>h L7

xEA

In order to finish the proof of Theorem B we define a BV-functional f to be
g-singular if given £>0 there exists AeQ and A,cA such that both Y
If(x)l<eand Y glx)<e xedo

xeA\Ag

Theorem 3.16. A BV-functional f is g-singular if and only if its representing
measure f, is pi,-singular.

Proof. Suppose i, is singular with respect to u, and £>0 is given. Without loss
of generality, we will assume |u ||=1. There exists a Borel set A<T" such that
lng| (A)=0 and p (I'\4)=0. By regularity, one finds compact subsets K, and
K, with K, =4 and K, =I'\4 such that quI(K2)>l—8/2 and p,(K)=1—¢/2.
Then, :

i) (INK ) <é/2 (3.16.1)
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and
,ug(F\Kl) <g/2. (3.16.2)

By Lemma 2.2.1 of [14], there exists AeQ with A,<= A such that

. =z1—¢/2 for pek,
.16.
x;mx(p){cs/Z for pek,. (3.16.3)
Thus,
<g/2 for pekK,
% 164
m§mf“”{gl—w2 for pek,. (3.16.4)
Therefore,
X s Y [ 2diyl
xedg xedo I'
= | YRdlwl+ [ Y fdlul Il (N\NK,) +(6/2) || (K ;) <.
'Kz Ao K> 4p
Similarly,
2 g)=[ Y Xxdp,
xed\Ao I A\do
= | % %du+ [ T kdp=uTNK )+ ) (K, <e
K; A\4o K1 A\Ag

thus f is g-singular.

To prove the converse, we first show that the variation, |f], of f is g-
singular. Recall that |v|(E)<4|v(E)|, for all bounded measures v and all Borel
sets E. Since the variation of £du, is Xd|u,| for each xez, we have |f|(x)
=| Xdip|=4|f £dp,|=4|f(x)|. But given ¢>0, there exists A€Q and Ao A

r r

such that )" [f(x)|<e/4 and ) g(x)<e/4 from which it follows that |f] is
xeAg xeA\ A0

also singular. But since | |-singularity implies p -singularity, we need only

show singularity of |u,|. By the Lebesgue decomposition theorem, there exist

T-positive linear functionals f, and f, such that |u|=u, +u,,, with u,, singular

and u,, continuous. Then f, is g-continuous by Theorem 3.2. If f,(1) were zero

then 0% f,(x)={ £du,, < f,(1) would imply f,=0 or |ul=p,, so that |u

r
would be singular. Thus we will assume f,(1)>0. Choose §(<¢) corresponding
to ¢=1,(1)/2 in the definition of g-continuity of f,. By singularity of | f|, there
exists A€ with A, such that both

| INACEDNICE AN (3.16.5)
and redo oo
Y. gx)<d. (3.16.6)
xeA\Adg
But (3.16.6) and the choice of 4, imply
Y L0< f(1))2. (3.16.7)

xed\Ag



Disintegration with Respect to L,-density Functions 325
Using (3.16.5) and (3.16.7), we get:
L)=) L)+ Y Lx<f0).

xedo xeA\Ado

This contradiction shows that f, =0 and there by completes the proof.

4. Applications to the Abstract Moment Problem

The three examples included in §2, can be subsumed under what we call the

abstract moment problem. That is, given a locally compact subset I of semi-

characters on a commutative semigroup S with identity and given a subcol-

lection M(I") of regular Borel measures on I, what conditions on a function

F:S— € will insure the existence of a ueM(I") such that F(s)= [ p(s)du(p)?
E2

To accomplish this, let of be the linear span of the shift operators, {E,: seS};
where E_ acts on the complex-valued functions F on S by E F(t)=F(s+1).
When S admits an involution *, the involution on & is defined by (E)*=E.
The dual .o’ is identified with the functions F on S by F(E,)=F(s). The set of
multiplicative linear functionals is homeomorphic to the semicharacters when
the topology of simple convergence is imposed on the latter. Various choices of
7 are available. For example, if S is taken to be the additive semigroup of pairs
of non-negative integers then the algebra of polynomials in two variables is
isomorphic to the algebraic span of the shift operators and the simplex exam-
ple of §2 is recovered upon setting t={Ey o), E¢o 1) I = E(1 0y~ E(0,1)}- When
S is the additive semigroup of non-negative integers and t={E,,I—E,} then
the abstract moment problem reduces to the “little” moment problem dis-
cussed in §2.1. More generally if § is an arbitrary commutative semigroup with
identity, X is a subset which spans S and t={E_,I—E,: x€X}; then it is
proved in [14] that the positive linear functionals on &7 can be identified with
the completely monotonic functions discussed in [2,4, 7,10 and 12] and the
BV-functionals with the BV-functions on S which were induced in [12]. For
1<p<oo and completely monotonic control function G, the p-norm takes the
form

)., (1) LBy s

F|,=Lim ( i ' '
H Hp %) Z [HjEEj(I_Exj)n_lj G(O)]p—l

Iy 17
The special case where the semigroup operation of S is idempotent (i.e. S is a
semilattice) has been considered in [1, 8, 16 and 17]. For the special case where
S is the semilattice [0, 1] with operation s A t=min [s, ¢], the theory reduces to
the classical theory of BV-functions of a real variable mentioned above in §2.2.
Note that the algebra used in §2.2 is isomorphic to the algebra of shift
operators on ([0, 17, A).

The trigonometric moment problem referred to in §2.3 can be generalized
to arbitrary semigroups with involution. For this purpose we set

1 ) G
T= 7I+—ES+Z

2 E..: seS§, o*= 1}.
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The functions on S which correspond to the BV-functionals on of are dis-

cussed in [13 and 14]. The p-norms can easily be computed as in the above

examples. The positive linear functionals on o/ can be realized as those

F:§— € such that all finite products [ [T(F)](0) are non-negative [14]. It is
Tet

shown in [13] that the latter agrees with those functions which are bounded

and positive definite in the sense of [10], i.c. all quadratic forms )  ¢,&,F(s;+s¥)
are nonnegative. ij
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