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Summary. Let d be a real or complex commutative ordered algebra with 
identity and involution. Let F denote the set of positive multiplicative 
linear functionals p on d .  Equip F with the topology of simple conver- 
gence. For a fixed non-negative probability measure # on F the set Lfp of 
linear functionals f on d which admit an integral representation of the 
form f ( x ) = ~  p(x)F(p)d#(p) with F~Lp(#) ( l < p < o v )  is biuniquely iden- 

F 

tiffed with Lp(#) via the map f--,F. The norm on 57p under which this map 
becomes an isometry is characterized and a formula for approximating F is 
derived. The linear functionals which admit representation of the form 

p(x) dr(p) with v•  are also characterized and appropriately normed. The 
r 
theory is applied to solve abstract versions of trigonometric and n-dimen- 
sional moment problems as well as provide an alternate point of view to 
the theory of Lp-spaces. New proofs of classical theorems are offered. 

O. Introduction 

This work may be regarded as a sequel to [14J. Therein, those linear function- 
als f admitting an integral representation of the form f(x)= ~ p(x) d#y(p) (with 

F 

#j. not necessarily non-negative) were described. Here we can further describe f 
when the natural restrictions on #I  mentioned in the summary above are 
imposed. Not  only do our results offer new proofs of classical theorems on 
trigonometric and n-dimensional moment problems, but also the abstract al- 
gebraic setting used enables us to unify the two here-to-fore only analogous 
theories, allowing new theorems from the one area to be carried over from 
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known theorems in the other. This unification is made explicit in w where we 
solve what we call, the abstract moment problem, in broad generality. Mo- 
tivating applications to Lebesgue spaces and to the field of classical moment 
problems are indicated by three examples given in w The set up of each of 
these differs from the subsumming set up of w The more recent results of Alo- 
Korvin [-1] and Leader [-9] are also easily attained by the theory presented 
here. In fact, these particular works were strong motivating influences on the 
present. For example, the proof of Theorem A, although more technical, is an 
upgrading of Leader's proof of Theorem 1 in [9]. To appreciate this the reader 
should refer to [16] where both the works of Leader and Alo-Korvin are 
generalized more in the flavor of the present. To maintain continuity, the main 
theorems are precisely stated in w but their proofs, which tend to be technical, 
are deferred until w 3. The appropriate cross references are included parantheti- 
cally following the theorem numbers in the next section. 

1. Notation and Statements of Main Theorems 

Throughout the sequel, we will let d denote the algebra referred to in the 
summary above and assume the set up given in [14]. Explicitly, the identity and 
involution will be denote by 1 and * respectively, and we assume the existence 
of a subset z of d satisfying 

(i) x* = x  for each x~z. 
(ii) {1}-z~Alg+span(z),  i.e. 1 - x  is a positive linear sum of products of 

members of z for each x~z. 
(iii) d =  Alg span(z), i.e. every x ~ d  is a linear sum of products of members 

ofz.  

The cone P, defined by Alg § span(z), orders d in the usual way. If the dual 
space d '  of linear functionals on d is given the ~(d ' ,  d)-topology, then the 
set F of non-negative, non-trivial, multiplicative linear functionals is compact. 
A finite, possibly repetitious, subset (xl) i of P will be called a partition of  
unity provided Xixi=l .  If (x~) i and (Y)s are two partitions of unity then their 
product (x~y)i,s is again a partition of unity. Let f2 be a subsemigroup of the 
semigroup of all partitions of unity such that x~z is a member of some A~2. 
Recall [14], f~sr  is said to be of bounded variation (BV) if sup ~ [f(x)[ 

A ~  xEA 

= ]1 f [[ < ~-  Then [I f [] is independent of the choice of g2. Moreover, f admits a, 
necessarily unique, complex-valued, regular representing measure #f, if and 
only i f f  is BV; #f being non-negative if and only i f f  is non-negative. Let g ~ d  
be fixed, non-negative, and normalized by the condition g(1)= 1. Then #5 is a 
probability measure. Define f E ~ '  to be g-continuous if given ~>0, there exist 
8 > 0  such that ~ If(x)l <~ whenever ~ g(x)<b and A o is a semipartition of 

x~Ao xEAo 

A. The natural corresponding definition for a BV-functional to be g-singular 
will be defined later in w 3. 

Theorem A (3.1). Every g-continuous functional is BV. 
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The set ~l(g) of all g-continuous functionals is then a normed linear space 
with variation n o r m  [1"111 = [I"N. For 1 < p <  o% Ae~2 and f e d ' ,  define ][fll(p,a) 
= ~' ([f(x)lP/[g(x)]P-1) lip where 0/0=0, and set 1If lip=SUp IIf[l~p,A~. Denote 

x ~ A  A 

the set of all f with lifiqe< oo by 2~p(g). A Lipschitz type norm is also available 
to define ~o(g). Moreover, ~q~ c ~L,~ ) for 1 __<p__< oo. 

Theorem B (3.12, 3.14, 3.16). A linear functional f on d admits a disintegration 
of the form f(x)=~ p(x) d#/(p) where: 

(i) d#f=f'(p)d#g(p) with f'eLp(#g, F) if and only if f ~ v ( g  ) (1 =<p=< ~),  
(ii) # / i s  #vsingular if and only if f is g-singular. 

Moreover the spaces 2'v(g ) and Lv(ug, F) are linearly isometric via f ~ f '  as also 
are the spaces of g-singular functionals and #singular measures via f ~ #z. 

For each f e d '  and Aef2, define a scalar-valued function f '  on F by fA(p) 
= ~ (f(x)/g(x))p(x). If the natural ordering AA'> A on f2 is imposed, then the 

x ~ A  

following approximation theorem holds. 

Theorem C (3.13). If  f ~LPp(g) (1 __<p <oo) then the representing measure #/for f 
t t ) 0 .  is of the form f'd#g where [If -f~[[p 

We conclude the theory by describing the dual ~v(g)*, of ~fv(g) intrinsi- 
cally. 

TheoremD (3.15). I f  l = < p < ~ ,  l<q__<oo and (1/p)+(1/q)=l, then ~q~p(g)* is 

linearly isometric to ~q(g) via the pairing ( f, h ) = Lim ~A f (x) h(X)g(x) ( f e a r ( g ) '  

Remarks. Theorem A, which is used to prove Theorem B, also implies a decom- 
position of BV-functionals into singular and non-singular parts. This special- 
izes to a theorem of Darst [5], c.f. also [16]. Theorem B implies solvability 
conditions for both moment problems on convex bodies as well a trigonomet- 
ric moment problems; both with respect to measures which are either of Lp- 
density or singular. Hausdorfl's solution to the "little" moment problem with 
measures of Lp-density, c.f. [20-], is an example of the former. More generally, 
TheoremB extends to all of the examples of disintegration of functions on 
semigroups discussed in [14], so that necessary and sufficient conditions for the 
representing measures either to be of Lp-density or singular can be formulated. 
The algebra d to which Theorem B is applied is the linear span of the 
translation operators on the semigroup. Theorem C can be viewed as an 
inversion theorem for recovery of #/s ince f~ and d#g a r e  known. For the case 
where the semigroup operation is idempotent, these considerations recover and 
generalize the theory of VP-spaces introduced by Bochner [3]. We refer the 
reader to [16] where a direct approach, devoid of the above algebraic setting is 
offered. 
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2. Applications to Classical Settings 

2.1. Moment Problems and Convex Bodies in n-space with Lv-density Functions 

For notational convenience set n = 2 and let K be a closed bounded convex set 
with non-void interior in 11{ 2 . The classical problem of classifying those doubly 
indexed sequences F(m~, m2) which admit disintegrations of the form F(m~, m2) 

m2 = S ( '  t2 d#v, where #v satisfies select properties, can be solved by appeal- 
K 

ing to Theorem B. Let ~r be the real algebra of all polynomials in two vari- 
ables. There exists a subset z of appropriately scaled polynomials in two 
variables of degree less than 2 such that K =  (~ {t: p(t)>0}, [14, w Let E a 

pEz 

and E 2 be the two unit coordinate shift operators defined by E~(F(ml,m2) ) 
=F(ml+l,  m2) and E2(F(ml, m2))=F(ml,m2+l). The dual d '  admits a na- 
tural identification with the doubly indexed sequences; P' being identified with 
those F satisfying (p]~...p~(E1, E2))F(0 , 0)>0, with Pl .... , pk~z. Let G be such 
an F normalized by the condition G(0, 0)= 1. For definiteness assume K is the 
simplex {t: t~_>_0, t2>0, 1 - t l - t 2 > 0  }. Then z can be taken to be {pl(t) 
=t~,p2(t)=t2, p3( t )=l - t l - t2} .  For l < p < o o ,  the p-norm of F takes the 
form: 

IIFllv =Li~ m (~  (m 1 m z ,n -ml-m2)  [(/-Ell(I-E1-E2)F(mI'm2)lP-E 2) G(ml, m2)] p-1 )/t/p" 

Part (i) of Theorem B asserts that IIFllp<oQ if and only if d#v=F'd#G with 
F' eLp(K, #G). 

The case where n = l ,  K = [ 0 , 1 ] ,  l<p__<oQ and G=l/(k+l) is the well 
known "little" moment problem discussed by Hausdorff, cf. [21, p. 109]. Here 
#G is Lebesgue measure. Theorem B can be applied to yield new proofs in 
more generality. It is interesting to note that P' is identified with the com- 
pletely monotonic sequences, and the classical Lebesgue space Lp[O, 1-] with the 
subset s ) of BV-sequences (BV-in the sense of Hausdorf0. 

2.2. Lebesgue Spaces as Subspaces of Absolutely Continuous Functions 

Let d be the real algebra spanned by the characteristic functions lro, b j of 
closed subintervals of the form [0, b] of [0, 1]. Then d contains the character- 
istic functions of the left-open and right-closed intervals. Let z--{l(t, 1 ~, lt0,tl: 
0<_t_<l}. Each f ~ r  can be biuniquely identified with functions F on [0, 1] 
by F(t)=f(1E0,t~) and the map f---~F is an isomorphism. The positive linear 
functionals P, correspond to the non-decreasing functions on [0, 1]; [0, 1] itself 
is the continuous image of F. Moreover the BV-norm carries over to the classi- 
cal real-variable BV-norm for functions on [0, 1]. If we choose the linear func- 
tional g defined by g(lro, tl)= t, as the control function, then it corresponds to the 
monotonic function G(t)--t so that •l(g) corresponds to the space SI(G) of all 
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absolutely continuous functions F on [0, 1], such that F(0)=0.  For l < p < o o ,  
the p-norm of Fe2'p(g) takes the form 

Lim [V ]F(ti)-F(ti- OIP~ */p 

t~ ( t  i - -  t i _ 1) p-1 ] 

where the limit is taken over all refinements of subpartitions of the form 
0 < t o < . . . < t , < l .  The space og, a~(G) is just those functions satisfying the Lip- 
schitz condition with the Lipschitz norm. Each FeSe(G ) is differentiable 
almost everywhere, and even though the map F--+F' is not ordinary differen- 
tiation, it follows that the map F--+(dF/dt) is a linear isometry of s onto 
Lp[O, 1] for all p, [16]. 

2.3. The Trigonometric Moment Problem: 
Functions on Discrete Groups Whose Fourier Transforms are Lp-fUnctions 

Let S be an additive discrete abelian group and sg the complex convolution 

{1(1 0,+2 algebra of all functions on S with finite support. Set z= .  l{s ) 

' t  } +~ l{_s) �9 seS, o -4= 1 . Then the z-positive linear functionals can be identified 

with the positive definite functions on S and F with the character group 
[13]. If we choose the positive definite function 1{0 } as the control function, 
then Theorem B gives an explicit description, in terms of iterated differences, of 
those functions whose Fourier transforms are Lp-fUnctions with respect to Haar 
measure on ;~. From duality, we have therefore described the transforms of 
those measures on S which have Lp-density. The theme of characterizing 
measures on locally compact abelian groups by their Fourier Transforms was 
initiated by Schoenberg [19] and extended by both Eberlein [cf. 18] and 
Stewart [20]. 

3. Proofs of Main Theorems 

Theorem 3.1 (A). Every g-continuous linear functional is BV. 

Proof. For each x ~ d ,  let E x denote the shift operator on d '  defined by Exf(y)  
=f(xy), (y~d,  f e d ' ) .  Assume f is a g-continuous linear functional which is 
real-valued on P. If A~f2 then the triangle inequality for ]['N, implies 

][Exfl[>llfl[. Suppose Ilfl[--oo. Let M > 2 + l f ( 1 ) [  and a-+=Max(_+a,O). 
x e A  

There exist A, such that 

Moreover, 

((f(x)) + + (f(x))-) >= M. (3.1.1) 
x ~ A i  

((f (x)) + - ( f  (x))- )= f (1). (3.1.2) 
xEAI 
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Then x 1 can be found in A 1 such that IlEx~f[ I =Go. Without loss of generality, 
assume f(xl)<O. Averaging (3.1.1) and (3.1.2) gives~ [f(yl)l>(M+f(1))/2>l, 

Y~ 
(ylEAl\{x~}). This argument can  be repeated with f replaced by E ~ f  to 
produce A 2 with x2sA 2 satisfying both lIE . . . .  f l [=oo  and Y,y=lf(y2xl)]>l, 
(y2eAz\{x2}). Continuing by induction we obtain a sequence {Ak} k of mem- 
bers of t2, such that each A k contains a select x k satisfying 

llEn,~f[l=oe (i= 1, 2, ..., k) (3.1.3) 

Zy~lf(yk IIjxj)] > 1 (j = 1 .. . .  , k -  1; yk~Ak\{xk}). (3.1.4) 

If j = l , . . . , k - 1  and ykEAk\{Xk} then Zy~g(Ykl~jXj)=g(('~ykyk)/7jXj)= 
g((1--xk)Fljxi)-=g(Hjx))--g(xk/7jxj). Thus we can "telescope" the series 

Sy~g(yk/7jxj) to obtain, (g(1)-g(x~))+(g(xO-g(xl x2))+... +(g(xl...X,_ l) 
k = l  

- g (x 1... x,)) < g (1). Therefore, 

(S,,~ g(Yk 172 Xj)) < o0. (3.1.5) 
k = l  

Let A'k=A1...A ~ and A'k'={YkHsXs} s. Then A'k~A' k' and (3.1.5) implies lim 
k x~A k 

g(x)=0, so that g-continuity of f contradicts (3.1.4). Hence f is BV whenever 
f is real on P. If f is not real on P then we can write f--f~ + if2, where f ,(x) 
is the conjugate of f (x*) ,  f1=(f+f , ) /2  and f2=( f - f , ) /2 i .  It tbllows that f l  
and f2 are each g-continuous, BV-functionals which are real on P. Thus f is 
BV. 

The existence of a representing #f for each g-continuous functional f 
follows from [14], and we are now in a position to prove 

Theorem 3.2. A functional f is g-continuous if and only i f  #f is absolutely 
continuous with respect to #g. 

Proof Suppose gr is absolutely continuous with respect to #g and let f '  denote 
the Radon-Nikodym derivative of # ~. Let e > 0 be given, and 2(p) denote the 
evaluation function p-.p(x).  Observe that ~ 2(p)=1 for each A~f2. Since the 

x~A 

continuous functions, C(F), are dense in LI(F,#g ), there exists F~C(F) such 
that [EF-f'lh <e/2. For any semipartition A o of a partition A~f2, we have 

If(x)]< Z ~ 21f']d#g< Z ~2clf'-F]d#g+ Z [2c]F[d#~ 
xeAo xcAo F x~A x~Ao 

=Itf ' -F[II  +HFIIm ~ g(x), (llF[t~=suplF(p)[). 
x~Ao F 

tf  ~ g(x)<e/(21]FII)~ o then ~ ] f (x) l<G proving that f is g-continuous. 
xeAo x~Ao 

Conversely, assume f is g-continuous. Then, as in the proof of the previous 
theorem, we may assume that f is real-valued on P. Since #f is regular, we 
need only prove #r whenever D is compact and #g(D)-0. Let e > 0  be 
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given and 6 be as in the definition of g-continuity. By regularity, there exists an 
open set G such that D c G, #~(G)< 6 and 

I~fl (G\D) < ~. (3.2.1) 

By Lemma 2.2.1 of [14] (note the misprint in the statement therein), for each 
natural number n, there exists a semipartition A, of a partition in O such that 

{ > l - 1 / n  for p~D 
p(x) 1/n for p~F\G. xEAn 

Then, 
1 

g(x)=S~d~g__<~g(G)+ ~ ( F \ G )  __< 6 + - .  
x~A~ x n 

Since f is g-continuous, we have 

e> ~ If(x)[>l~)~dl@ 
x~An F x 

>_-If.. .I-I S . . . I - I  i ...I for sufficiently large n. 
D G\D riG 

Applying Lemma2.2.2 of [14] and (3.2.1) above gives, 2~>l(1-4/n)l#s(D)l 
-(4/n)I#s(F\G)I. Letting n ~  oo, shows that 2e>l/ls(D)l and the assertion fol- 
lows. 

Corollary 3.3. ~?l(g) is linearly isometric to Ll(pg ) via Radon-Nikodym differen- 
tiation ( f  -* f'). 

Proof. Theorem 2.2 of [14] implies BV(d )  is linearly isometric to the space 
M(F) of Radon measures on F. The assertion follows from the above Theorem 
along with standard measure theory since we have imposed the BV-norm on 

"~1 (g)" 
Later, we will replace 2,e~(g) by Yp(g) in the above to establish (i) of 

Theorem B. The inequalities established in (3.4) through (3.8) are instrumental 
in setting up this replacement. 

P r o p o s i t i o n  3.4. If A, A' ef2 and 1 < p <  oo then IIf lI(p, AA,)> II f H(p,A)" 

Proof. Let {c~i}i=1, 2 ..... k, {fli}i-l,2 ..... k be finite sets of real numbers such that 
Zf cq = 1, S~ fi~ = 1 with fl~ >0  and q =p/(p-1). Keeping in mind our convention 
that 0/0 = 0, Holder's inequality implies: 

hence 

Since 

- ~ ~/~f P~) �9 (~ i  lq"  ~i) l/q, 

2 If(xx')[P/[g(xx')] p- l= ~ ~ If(xx')f/[g(xx')] p-l, 
xx'eAA" x~A x'eA" 

1 < S i I c~i IV/fir- ~ (3.4.1) 
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we need only show 

I f (x x')lP/[g(x x')]P- i > i f (x)lp/[g(x)],- 1 
x'eA' 

However, this follows from (3.4.1) upon setting fix,=g(xx')/g(x) and c% 
= f(xx')/f(x). 

Remark3.5.NfHp=Lim Hfll(p,m, where ~2 is directed by the natural semigroup 
A 

ordering of divisibility as explained in w 1. 

Lemma 3.6. (i) ~q~ ) (1 < p <  oo) 
(ii) Ilfllp__< IIf'll, whenever f~qPl(g)- 

Proof. Let q=p/(p-1) and AocAeg?. Then Holder's inequality implies, 

]f(x)]< ~ [If(x)] ) 
xeAo xEAo \ ( g ( x ) )  Uq (g (x ) ) l / q  

<( ~ ]f(x)lP/[g(x)J"-l) i/p'( ~ g(x)) 1/q 
xEAo x~Ao 

which establishes (i). To prove (ii) we again apply Holder's inequality to obtain, 

I f (x ) l  = IS 27f' diSgl < (S I f ' l "  27 dl, tg) 11" (S 1~ 27 dl,tg) llq. 
F F F 

Therefore 

so that  

I f  (x ) l . / [g (x) ] ,  " -  ~ N S I f ' l "  27 d#~ 
F 

[f(x)lP/[g(x)JP-l<= ~ S ]f']P 27d#g=5 [f'l p ~ 27d~tg-= S If'lPd#g. 
xeA xeA F F xeA F 

Hence, ]if lip__< [If'lip. 
In the proof of Theorem 3.1 we defined the shift operator E x [ d ' - ~ d '  by 

(Exf) (y)=f(xy) for each x e d .  For each A~f2, and f e d ' ,  we now introduce 

the notation fa to denote S" f(x)  Ext. Then the map f---~fA is linear and f j  
J(x) = Y, g 27. 

x~A 

Lemma 3.7. If  f ~BV(d)  then IIIAII(.,A,) < II71[(.,1) (1 < p <  oo) for all A, A' e~2. 

Proof. The proof is again a consequence of Holder's inequality. Indeed, 

IITAII(~,A') = ~ INA(Y)IP/[g(Y)] "-1 
yeA' 

yeA' 

f(x) " /[g(y)j,_~ 

f (x) " , , r, f (x) p 
= 2 2  x gtxye=L x g(x) 2g( y) = f l i t;A) 
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Remark 3.8. EFfAEIp< ilflE(;.m< I!fllp, by the above 3.5. In particular, the linear 
map f ~ f A  is norm decreasing and hence continuous. 

Let x, y~sd and a be any scalar. Then ExEy=Exy, E~+Ey=E~+y and aE x 
= E ~ .  Thus if p(tt, ..., tk) is a scalar valued polynomial in k variables and 
x 1 . . . .  , XkeZ , then P(Ex,, ..., Ex~)g is a well defined member of .;d'. Such a 
linear functional will be called a polygonal functional and the set of all such 
linear functionals (in any number of variables) will be denoted by ~ .  

Proposition 3.9. t f  f =p(E~ . . . .  , E~) g then 

(i) f = Ep(~ ....... ) g 
(ii) f ' = /3  where/3=p(21, ..., 2k)(21(p)=p(xl) ) 

(iii) f '  =/3. 

Moreover, ~ ' =  { f ' : f e ~ }  is uniformly dense in C(F). 

Proof (i) Let y e d  and p(tl, tk)= ~ :~. t J~ t~ ~ Then 
" ' ' ~  ] t , , . . , J k  1 . . . .  

f (y) = V c~. E ~' E ~ J1, -,-, Jk x : t ' "  J l  . . . . .  Jk 1 " ' '  

= g(p(x  . . . . .  xk) y ) = G (  . . . . . . . .  g(Y)- 

(ii) i f(p) =(Ev( .......... )g)' (p)=p(p(x , , . . . ,  xk))=p(2,, ..., ~k)(P). 

(iii) Since p(x)=p(x) for all x e ,  we have 

= G . . . . .  = p((p(x  . . . . .  =F(p).  

For the last assertion, suppose p~, p2~F with p~ +P2. There exists x e d  with 
p~(x)#=pz(X ). Since z generates ~r we have, x=p(x  1 . . . . .  xk) for some 
xa . . . .  , Xk~Z and polynomial p. Thus ~ '  is a point separating subalgebra of 
C(F) by (ii), which is closed under complex conjugation by (iii), so that the 
Stone-Weierstrass Theorem applies to complete the proof. 

The following technical lemma is crucial to the proof of the 5r 
(Theorem B(i)) and 2,r (Theorem C) Theorems. The proof appeals to 
the theory of Bernstein polynomials. The reader will recall that if p(s, t . . . .  ) is a 
function of several variables s, t . . . .  then the Bernstein polynomial B ....... is 
defined by 

B ....... p(s , t , . . . )= ~ ""P m ' n ' " "  s l t J " ' ( 1 - s ) " - i ( 1 - t ) " - J " "  
i , j =  1 (3.9.1) 

c.f. [11]. 

Lemma 3.10. Let p be a polynomial in several variables; x, y . . . .  belong to -c; f 
be the polygonal functional, p(E x,Ey . . . .  )g and Ax, Ay . . . .  be partitions in f2 
which contain x, y, ... respectively. Then, 

(i) Lim ~ If~A~,A~...--Bin ..... P(P~, Y . . . .  )i d#g =0  

for each Aef2. 
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and 
(ii) Ii f '  ]tq = 1[ f l[q. 

Proof For notational convenience assume the number of variables is two. Let 
A x = {Xx, x 2, ... }; A~,= {Yl, Y2, .*-} with x = x  1 and y =y~. The Multinominal 
Theorem and the remark preceding Lemma 3.7 imply 

( m ) ~.n ) f(w(z,i,j)) ~(z,i,j), (3.10.1) fAA~A~=2 i 1 " ' "  l " "  g(w(z, i,j)) 

are muttinominal coefficients; where i~... ~... 

and the summation is over all choices of z~A, il, i~ .... and Jl,J2, .... 
Moreover an application of the multinominal theorem to (3.9.1) gives: 

Bm,,P())I))) =_E i,... ,... p \m n/ 

But since, f(w)=~p(~, ~)r we have: 

p(2, < I (il, jl t ~'d#e," (3.10.3) 
=g(w) ! Y)-P xTn T/I 

Applying (3.10.3) to the integral of the absolute value of the difference between 
(3.10.1) and (3.10.2) gives: 

If~ A~a~(P i)-- B,,,,P( :~, Y)(Pl)l d#g(Pl) 
F 

=< ~ Z ~... p(~, 3)(09 
F 1" '"  

( il, JJ ] r d#g(p2) d#g(p~) -P ~ -2: 
A 

m tl 

__: ~. (m) ~) lp(2 ' f:)_p (i, ~) I~eS(l_2)m_~(l_fi),_ :d#g. (3.10.4) 
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The last term tends to 0 as m--* co and n ~ oo, since the integrand converges to 
zero by the theory of Bernstein polynomials. This completes the proof of (i). To 
prove (ii), we first take the limit of the second expression in (3.10.4) as m-~ oo 
and n ~ oo to see 

7~-p (-), (3.10.5) 

,m')} Set f(w)/g(w)=a and p (~,  =b. Since a=(S r ~d/~g)<sup lf'(P)l 
F r F 

and b < sup {p(s, t) ts, t~[0, 1]}, then there exists a constant M > 1 independent 
of i 1 . . . .  ,Jl--- and z such that a,b<M. But if q is a positive integer then 
replacing ~ and/7 by a/M and b/M in the identity, 

Hcqq-l~[ql  = [ l~l- [ /~N (Ic~l q -  i + [c~l ~ z 1/71 + . . .  + i~lq-  1), 

shows: 

I l a l a -  lblql <-_ q M q -  tl lal - Ib l l. 

Differentiation shows the function q--, tl at q -  I bl~ to  be non-decreasing, so that 

f(w)a--g(w) P (-~ '@)q =<(q + 1)Mq ~f(W)-P ,,m(i---t'Jlt', II (3.10.6) 

Using (3.10.6) in conjunction with (3.10.5) and the triangle inequality gives: 

2 i~... 1... g(w) , g(w) .... ,0. (3.10.7) 

In conclusion, we return to the theory of Bernstein polynomials to observe that 

m I n  " " 

:z (,,m.) 0,7..), \-~- -~ i I g(w) 
o r  

(2..) 
However, 

m n il Jl q 

(3.10.8) 

But (3.10.8), (3.10.7) and Remark 3.5 imply each of three terms on the right of 
this inequality can be made arbitrarily small. Assertion (ii) follows. 
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The following, which is needed to establish the ~ap-isometry, will also imply 
the 5~v-approximation (Theorem C) once the isometry has been proven in 
Theorem 3.12 below. 

z ! ) 0 ,  Lemma 3.11. I f  f 'eLy, then [If -f~llp a 

Proof We first prove the assertion for f polygonal. Thus assume e > 0 is given 
and f=p(E~,  Ey, ...)g, where x, y, ...ez and p(s, t . . . .  ) is a polynomial in several 
variables. By the theory of Bernstein polynomials and Lemma 3.10(i), there 
exists a Bernstein polynomial B ....... such that both 

Ip(~c, ~ ... .  ) -  B ...... p(2, )3, ..-)I d#~ < e/2 
F 

and ~ IB ....... f ' - fJ~t  d#g<e/2 (for sufficiently large A~f2). 
F 

since f'=p()2, Y, ...), the triangle inequality implies, II f ' - f] l lp<e for the case, 
p = l .  Forp:  l < p < o %  

[f(x)l ~ < ~  ! 2~f'l d#g 
' <sup[ f  '(p)[, II l<-_ 2 - A  

x~A S 2 d#g = r 
F 

so that {f]}A is uniformly bounded. But, !If'-f~Iti A ' 0 implies f~ --,f '  in #g- 

measure and the Dominated Convergence Theorem [6, p. 125] implies the 
assertion for the case where f is polygonal. To complete the proof for general 
f '~Lv,  let e>0  be given. Since C(F) is norm dense in Lp, Proposition3.9 
implies the existence of p ~  such that l l f '-p'llv<e/3. Applying the first part 
of the above proof, we obtain ]]P'-P'al[p<e./3. Remark 3.8 gives, H(P'-f')A][p 
< []p'-f'l[p < e/3 so that the triangle inequality implies the assertion. 

The theorem below establishes Theorem B(i) for 1 __<p < oo. 

Theorem 3.12. I f f ~ p ( g )  then Ilfl[p= IIf'l[p. 

Proof From Lemma 3.11 as well as Corollary 3.3 it follows that llf-fAtll 
= [I f '  - f j  II 1 ~ 0. Thus f~ ~ f '  in #g-measure. Consequently, there 
exists a subsequence fj~ such that f~i~ ~ f '  (#g-a.e.). Hence, 

Iif'll~= [ lf 'Vd#~ 
F 

/ p <Lim ~ lf~l d#g (Fatou's Lemma) 
n F 

=Lim IIfA~ll~ (Lemma 3.10(ii)) 
n 

< [lfll~ (Remark 3.8) 

< l[f lip, (Lemma 3.6) 

and the proof is complete. 
The following ~~ formula is a direct consequence of Theo- 

rem 3.12 and Lemma 3.tl. Moreover, it aIid the Theorem imply Theorem C. 
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Corollary 3.13. I f  f e ~ p  then Hf-fAIIp A ,0. 

The only unproved assertion of Theorem B(i) concerns the space 5e~. For 

If(x)l (0/0=0) and set A~ - { f ~ d ' l  IIfll~ each f e s r  we define I[fllco =Sup~ g ~  

< oo}. The following proposition completes the proof of Theore m B(i). 

Corollary 3.14. s is linearly isometric to Loo via the differentiation map f--+f'. 

Proof Let f~s r  and 1 < p <  0% then ~ If(x)lP/(g(x)) p-1 < Hf[l~ ~ g(x) so that 
x ~ A  x 

Ilfllp<l[fl[oo. Moreover if xe r  and f e ~ l ( g )  then, ]f(x)l<j'lf '12d#g 
F 

_-< II f '  tl co j' 2 d&__< II f '  I1 ~ g(x), so that II f II ~ --< II f '  II co. Applying the familiar relation 
F 

]lf'l]~ ~ I[f ' l[~ (even  if [If']l ~ = oo), we  see that for f s ~ l ( g  ), 

Ilfl] oo > [If lip-- [If'lip ~ [If'll oo > II/l[ ~. 

Thus the map f - ~ f '  is an isometry, as required. 
Standard measure theory now implies that the dual ~p*(g) of ~p(g) is 

linearly isometric to ~Oq(g) for 1 < p < o% 1 < q <_- oo and ( l / p ) +  ( i / q ) =  1. To give 
an explicit description of the pairing, recall from w 1, 

f(x) h(x) 
( f ,  h) =LiAm ~A g(x) (0/0=0). 

Theorem 3.15. I f  1 < p < oo, 1 < q < oo and (l/p) + (l/q) = 1, then •* (g) is linearly 
isometric to Yq(g) via the pairing ~f, h) with fes176 and he2'q(g). 

Proof The assertion follows from Corollary 3.13, since: 

S f 'h'd#g'~2- ~fAh'd#g:!  ( L  f(x) 2~ h'd#g: 
f(x) h(x) 

~ g(x) ! ~ A  g(x)  " > ( f '  h>. 

In order to finish the proof of Theorem B we define a BV-functional f to be 

g-singular if given e>O there exists A e ~  and A o c A  such that both ~, 

I f (x ) l<eand  ~ g(x)<e, x~Ao 
x ~ A k A o  

Theorem 3.16. A BV-functional f is g-singular if and only if its representing 
measure #I is #singular. 

Proof Suppose #s is singular with respect to #g and a > 0 is given. Without loss 
of generality, we will assume II&ll = 1. There exists a Borel set A c F  such that 
I#II(A)=0 and #g(F\A)=O. By regularity, one finds compact subsets K 1 and 
K 2 with K 1 ~ A  and K 2 c F \ A  such that [#iI (K2)> 1 -a /2  and #g(Ki)~ l - e / 2 .  
Then, 

l&l (I'\K2)<e12 (3.16.1) 
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and 
#g(r\K1) < ~/2. 

By Lemma 2.2.1 of [14], there exists A~fl with A o c A  such that 

Thus, 
{~1 -e /2  

x(P) e/2 
x~Ao 

Therefore, 

< e/2 
Z x(P) [ > 1 -~;/2 

x~A\Ao 

for p~K 1 
for p~K 2 . 

for peK 1 
for p~K 2. 

~, If(x)l~ ~ S~dl&l 
xeAo xEAo F 

= [. ~,2dl#fl+ ~ ~2dl#f l<l#f l (F\gz)+(e/2)l#f l (Kz)<e.  
F\K2 Ao K2 Ao 

Similarly, 

x~A\Ao F A\Ao 

= ~ Z 2d#g+ i ~ xd#g=#g(C\KO+(e/2)#~(KO<E 
F\K1 A\Ao K1 A\Ao 

(3.16.2) 

(3.16.3) 

(3.16.4) 

thus f is g-singular. 
To prove the converse, we first show that the variation, If I, of f is g- 

singular. Recall that Ivl (E)<41v(E)], for all bounded measures v and all Borel 
sets E. Since the variation of 2d# I is 2dl#fl for each xsz, we have Ifl(x) 
=S 2dl#fl<41j' 2d#fl=4lf(x)]. But given e>0, there exists AeO and A o c A  

F F 

such that ~, If(x)l<e/4 and ~ g(x)<e/4 from which it follows that If[ is 
xeAo xeA\Ao 

also singular. But since ]#fl-singularity implies #y-singularity, we need only 
show singularity of I~1. By the Lebesgue decomposition theorem, there exist 
z-positive linear functionals fl  and f2 such that I#fl =#jl +#f2, with #yl singular 
and #~2 continuous. Then f2 is g-continuous by Theorem 3.2. If f2(1 ) were zero 
then O~f2(x)=j'fcd#f2~f2(1 ) would imply f2=O or i#/n=#/1, so that I~fl 

F 

would be singular. Thus we will assume f2(1)2> 0. Choose 3(< e) corresponding 
to ~ =f2(1)/2 in the definition of g-continuity of f2. By singularity of ff], there 
exists Ae~  with AoeA such that both 

(3.16.5) fz(X)= < ~ l f l(x)<6<f2(1)/2 
x~Ao x~Ao 

g(x)<6.  (3.16.6) 
x~A\Ao 

and 

But (3.16.6) and the choice of 6, imply 

f2(x)< f2(1)/2. (3.16.7) 
xeA\Ao 
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Using (3.16.5) and (3.16.7), we get: 

f2(1) =- 2 fz(X) + E fz(x)<f2(1)" 
xeAo xEA\Ao 

This contradiction shows that f2 = 0 and there by completes the proof. 
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4. Applications to the Abstract Moment Problem 

The three examples included in w can be subsumed under what we call the 
abstract moment problem. That is, given a locally compact subset F' of semi- 
characters on a commutative semigroup S with identity and given a subcol- 
lection M(U) of regular Borel measures on F', what conditions on a function 
F: S ~ 0 2  will insure the existence of a #eM(F') such that F(s)= ~ p(s)d#(p)? 

F' 

To accomplish this, let d be the linear span of the shift operators, {Es: seS}; 
where Es acts on the complex-valued functions F on S by EsF(t)=F(s+t ). 
When S admits an involution *, the involution on d is defined by (E~)* =E~,. 
The dual d '  is identified with the functions F on S by F(Es)=F(s). The set of 
multiplicative linear functionals is homeomorphic to the semicharacters when 
the topology of simple convergence is imposed on the latter. Various choices of 
z are available. For example, if S is taken to be the additive semigroup of pairs 
of non-negative integers then the algebra of polynomials in two variables is 
isomorphic to the algebraic span of the shift operators and the simplex exam- 
ple of w is recovered upon setting z = {E(1,0 ), E(o ' 1), I-E(1,o)-E(o, 1)}. When 
S is the additive semigroup of non-negative integers and z={E  1, I-E1} then 
the abstract moment problem reduces to the "little" moment problem dis- 
cussed in w 2.1. More generally if S is an arbitrary commutative semigroup with 
identity, X is a subset which spans S and z={Ex, I -Ex:  xeX}; then it is 
proved in [,,143 that the positive linear functionals on d can be identified with 
the completely monotonic functions discussed in [-2, 4, 7, 10 and 12] and the 
BV-functionals with the BV-functions on S which were induced in [-12]. For 
1 <p < oo and completely monotonic control function G, the p-norm takes the 
form 

i lFl[p=Lim~(n). . . (n) IH.E2(I-E~)"-Z'F(O)f~ ~ j 
(~,x) il ik [HjEi~(I-E ~n-iJG(O)]P-l" xj,,- x v 

The special case where the semigroup operation of S is idempotent (i.e. S is a 
semilattice) has been considered in [,1, 8, 16 and 17]. For the special case where 
S is the semilattice [0, 1] with operation s/x t =min  [s, t], the theory reduces to 
the classical theory of BV-functions of a real variable mentioned above in w 2.2. 
Note that the algebra used in w is isomorphic to the algebra of shift 
operators on ([-0, 1], a). 

The trigonometric moment problem referred to in w can be generalized 
to arbitrary semigroups with involution. For this purpose we set 

1 O" ~ 1]" z={g I +~ E~+~ E~,: seS, a ~= 
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T h e  func t ions  on  S w h i c h  c o r r e s p o n d  to the  B V - f u n c t i o n a l s  on  ~4 are  dis- 

cussed  in [13 a n d  141. T h e  p - n o r m s  can  easi ly  be  c o m p u t e d  as in the  a b o v e  

examples .  T h e  pos i t i ve  l inea r  func t iona l s  on  d can  be  r ea l i zed  as those  

F :  S---, I13 such  tha t  all  f ini te  p r o d u c t s  I ~  I T ( F ) ]  (0) a re  n o n - n e g a t i v e  [141. I t  is 
T E r  

s h o w n  in [13]  t ha t  the  l a t t e r  agrees  wi th  those  func t ions  wh ich  a re  b o u n d e d  

a n d  pos i t i ve  def in i te  in the  sense  o f  [10],  i.e. all q u a d r a t i c  fo rms  ~ c~gjF(si+s* ) 
are  n o n n e g a t i v e .  ~, J 
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