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Summary. Since the class of extended decreasing failure rate (EDFR) life 
distributions (i.e., distributions with support in [0, oe]) is compact and 
convex, it follows from Choquet's Theorem that every E D F R  life distribu- 
tion can be represented as a mixture of extreme points of the E D F R  class. 
We identify the extreme points of this class and of the standard class of 
decresing failure rate (DFR) life distributions. Further, we show that even 
though the convex class of DFR life distributions is not compact, every 
DF R  life distribution can be represented as a mixture of extreme points of 
the DFR class. 

1. Introduction and Summary 

The class of decreasing failure rate (DFR) distributions plays an important role 
in the theory and application of reliability, biometry, and other fields of 
statistics (see, e.g., Barlow and Proschan, 1975, Chaps. 3 and 4, and Proschan, 
1963). 

Such distributions govern the lifelengths of systems which do not age 
adversely over time in the sense that the conditional survival probability given 
the age of the system is an increasing function of the age. For example, D F R 
distributions govern the lifelengths (i) of metals subject to "work-hardening", 
(ii) of many solid state components, (iii) of businesses, (iv) of mixtures of 
exponential distributions, etc. 

The DF R  class is convex, as is the class of extended decreasing failure rate 
distributions (EDFR) which contains distributions placing mass at oe. This 
latter class is also compact in the topology of weak convergence of probability 
measures (see Sect. 2). 
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F rom the Krein-Milman Theorem and Choquet 's  Theorem, we know that 
the basic building blocks of convex compact  sets are their extreme points. In 
particular, it follows from Choquet 's  Theorem, stated in Sect. 2, that the set of 
extreme points is the smallest set of E D F R  distributions with the property that 
every E D F R  distribution may be represented as a mixture of its elements. 

The main purpose of this paper is to identify the extreme points of the 
E D F R  class (Sect. 3). They are those E D F R  distributions having failure rate 
functions whose derivatives are close to zero in an appropriate sense. More 
specifically, an E D F R  distribution F is not an extreme point of the E D F R  
class if and only if (i) 0 < F ( 0 ) < I ,  (ii) 0 < F ( o o ) < l ,  or (iii) the derivative of the 
failure rate function is a.e. uniformly bounded away from 0 in some interval 
(see Theorem 3.1). 

Since the D F R  class is an extremal subset of the E D F R  class, it follows 
that a distribution F is an extreme point of the D F R  class if and only if F is 
an extreme point of the E D F R  class and it places no mass at c~. Thus the 
extreme points of the D F R  class are also identified (see Corollary 4.2). 

In Theorem 4.5 we show that even though the convex class of D F R  
distributions is not compact,  the set of extreme points of this class is the 
smallest set of D F R  distributions with the property that every D F R  distribu- 
tion may be represented as a mixture of its elements. 

2. Preliminaries 

Let F be an extended life distribution; i.e., F is a distribution function possibly 
placing mass at os such that F ( 0 - ) = 0 .  When an extended life distribution 
places no mass at 0% it is simply called a life distribution. The function F---1 
- F  is called the survival probability, and R I = - l n F  is called the hazard 

function. If  R e is absolutely continuous on every closed interval contained in 
(0, oo), then any measurable function r F almost everywhere (a.e.) equal to R}, 
the derivative of RF, is called a failure rate function. (Throughout, measurable 
means Borel measurable and all measures are Borel measures.) When F has a 
density f, the failure rate function rF=f/F a.e. When the distribution F is 
clearly understood, the subscript f will be suppressed. 

Definition 2.1. Let F be an extended life distribution. Then F is said to be an 
extended decreasing failure rate (EDFR) distribution if R is concave on (0, oo). 
If an E D F R  distribution is a life distribution, it is simply called a decreasing 
failure rate (DFR) distribution. 

The set of E D F R  distributions will be denoted by ~ .  An E D F R  distribu- 
tion F can have no jump on (0, oo) since R is concave on (0, oo), but can have a 
jump at 0. Also, notice that we consider C5o, the distribution degenerate at 0, to 
be an E D F R  distribution. The hazard function of an E D F R  distribution other 
than ~5 o is finite and concave on (0, oo). Consequently it is absolutely con- 
tinuous on every closed interval of (0, oo) and has a right derivative which 
exists everywhere on (0, oo). In the remainder of this paper the failure rate 
function of an E D F R  distribution other than 5 o is always taken to be this 
right derivative and is, therefore, a decreasing function on (0, oo) with de- 
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rivative a.e. less than or equal to zero. For convenience we shall define r to be 
identically zero when F = 3 0. 

Let 5O denote the class of extended life distributions, and a(so) denote the 
smallest a-field of subsets of 5O such that the map F ~ F ( t )  from 5 ~ into [0, 1] 
is a(so)-measurable for all te l0 ,  oo]. 

Definition 2.2. An extended life distribution F is a mixture of elements in a set 
Seso if Sea(so) and there is a probability measure #v defined on a(so) such 
that 

#u(S) = 1 (2.1) 

and 
F(t)=~ G(t) #v(dG) for all re[0, oo]. 

When (3.1) holds, # is said to have support S. 

Remark 2.3. It can be shown that a(so) is the Borel a-field of 5O, when 5O is 
given the topology of weak convergence of probability measures. In particular, 
#u is a Borel measure. 

We recall that an element x of a convex set K is an extreme point of K if 
x = p y + ( 1 - p )  z with y, z, EK and pc(0, 1) implies that y = z = x .  

We need Choquet's Theorem, stated below, to show that every E D F R  life 
distribution can be represented as a mixture of extreme points of the E D F R  
class. 

Choquet's Theorem (Phelps, 1966, pp. 19-20). Let K be a metrizable, compact, 
convex subset of a locally convex space X. Let xoeK.  Then there is a probability 
measure #xo supported by the extreme points of K such that 

L(xo) = ~ L(x) #xo(dx) 

for all continuous linear functionaIs L defined on X. 

In this paper we take X to be M[0, oo], the space of finite signed measures 
on [0, oo], with the topology of weak convergence, and K to be @. 

It is well known that with the above topology, M[0, oo] is locally convex 
and @ is metrizable, a convenient metric being the L6vy metric. An argument 
using Helly's Compactness Theorem and the fact that pointwise limits of 
concave functions are concave shows that ~ is compact. The convexity of 
follows since the family of positive log-convex functions is closed under ad- 
dition and multiplication (see Roberts and Varberg, 1973, Sect. 13). 

To see that every E D F R  can be represented as a mixture of extreme points 
of ~,  we notice that L: M[0, oo]-~R defined by L(v)=-~f(x)v(dx) is a con- 
tinuous linear functional on M[0, oo] for each f e C [ 0 ,  oo]. Hence the con- 
clusion of Choquet's Theorem implies that for every E D F R  distribution F 
there exists a probability measure, #F, supported by the extreme points of 
such that ~ f ( x ) F ( d x ) = ~ [ ~ f ( x ) G ( d x ) ] # v ( d G ) f o r  all f e C [ 0 ,  oo]. Since 
C[0, oo] is a separating class of functions (see Breiman, 1968, p. 165) we have 
that F(t)=~G(t)#F(dG ) for all te[0, oo]. Equivalently, by Remark 2.3, every 
E D F R  distribution is a mixture of extreme points of ~.  Further, by the 
definition of extreme point, we see that the set of extreme points of ~ is the 
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smallest set of E D F R  distributions with the property that every E D F R  may be 
represented as a mixture of its elements. 

We identify the extreme points of ~ in the next section. 

3. The Extreme Points of  the E D F R  Class 

In this section we identify 6 ~, the set of extreme points of @. In essence, we 
show that an E D F R  distribution F is not an extreme point of ~ if and only if 
either (i) 0 < F ( 0 ) <  1, (ii) 0 <F (oo )<  1, or (iii) r', the derivative of the failure rate 
function, is a.e. uniformly bounded away from 0 in some interval. More 
precisely, we show the following theorem. 

Theorem 3.1. The E D F R  distribution F is an extreme point o f  the set o f  E D F R  
distributions i f  and only if  either (i) F is degenerate at O, or at ~ ,  or (ii) F(0)= 0, 
F ( c ~ - ) = l ,  and {t: r'(t) exists, a N t < b ,  and r ' ( t ) > - 3 }  has nonzero Lebesgue 
measure for  all 0 < a < b and 6 > O. 

Let 60o denote the distribution degenerate at oo. 

Remark  3.2. The degree of smoothness of r for F~o ~ characterizes certain types 
of extreme points. For example, let F s 6 ~ \  {6o, 6~}. Then (i) r' is continuous if 
and only if F is an exponential distribution, and (ii) r' has a countable number 
of isolated discontinuities if and only if F is piecewise exponential, that is, R is 
piecewise linear. We remark that the E D F R  piecewise exponentials are dense 
in @. This example therefore shows that g is a dense subset of ~.  

Two other types of interesting life distributions which are extreme points of 
are given below. These life distributions are extreme points of N since their 

failure rates are decreasing functions with derivatives almost everywhere equal 
to 0. Notice that the failure rate function in (iii) below is discontinuous in a 
countable dense subset of [0, oo) while the failure rate function in (iv) below is 
continuous everywhere on [0, c~). 

(iii) Let {aj}7_ 1 be a countable dense subset of [-0, oo) and {b j}7_ 1 be a 
sequence of positive numbers such that Z b j <  oo and Z a j b j =  oo. For t>0 ,  let 

r(t)-~bjI~aj>=t P Then F ( t ) - l - e  -!r(u)d~ is an extreme point of @ since r ' = 0  
a.e. on [0, oo), F(0)=0,  and F ( o o - ) =  1. 

(iv) Let r(t) be positive, decreasing, continuous, and singular (with respect to 
oo 

Lebesgue measure). Further assume that ~ r ( u ) d u = ~ .  Then r ' = 0  a.e. on 
o - I  r(u) du . 

[0, OO), F(0)= 0, and F ( o o - ) =  1. Consequently, F( t )=  1 - e  ~ is an extreme 
point of ~.  

In proving Theorem 3.1, we use the following notation. For  each F e ~  let 
E F={t :  r;~ exists at t}. Denote the Lebesgue measure by m. Let 
0 = { F ~ ' - . { 6 o , 6 o o } :  m(t~EF: a<-t<-b and / ( 0 > - 6 ) > 0  for all 0 < a < b  and 
all 3>0}.  Let ~ = { F e ~ :  F (0 )=0  and F ( o o - ) = l } ,  i.e., ~ is the class of life 
distributions which place no mass at 0. 

In this notation, Theorem 3.1 is equivalent to 

S =((9 c~ cg) u {6o, 6~}. (3.1) 
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We prove (3.i) by showing (i) f c  (9 w {6o, 6~} (Lemma 3.3), (ii) g c  cgw {c50, 6o~ } 
(Lemma 3.4), and (iii) 8 = ((9 c~ ,Z) w {6o, 8~} (Lemma 3.5). 

Lemma 3.3. C c  (gu {6o, 6o~ } 

Proof It is enough to show that  if g e ~  and F~(gU{6o,6~} ,  then Fq~C. To  
prove F~g,  it suffices to show that there exist F 1 and F 2 e ~  such that (F~ 
+ F~)/2 = F. 

Let  F e ~  and F4(9 w {6o, 6~}. Then there exists an interval [a, b], (0 < a <b), 
and a value 8 > 0  such that r ' ( t ) < -  6 a.e. on [a, b]. Wi thout  loss of  generality, 
we may assume that  r is cont inuous at a and b. For  each positive integer n, iet 

1 
I,(x) be = - ( x - a )  3 ( b - x )  3 for a<_x<_b and 0 otherwise. 

gf 

Choose n so that  sup I , < I n 2 .  Let  , R I = R - I ,  and let ~R2=--R+c(lu), where 
c ( x ) = - l n ( 2 - e  *) for x < In  2. We show that for n sufficiently large, say n = no, 
F / - 1 - e x p { , o R i }  ( I=1 ,2)  are two different well-defined E D F R  distributions 
such that  (F 1 + F2)/2 = F. 

Since R is concave on (0, oo), it follows that r and r' exist a.e. on I-0, c~). 
Fur ther  a.e. on [0, oo), we have that 

.Ri  = r -  r., 

,R'2 = r + c'(lO" I'., 

.R'~ =r ' -1 ; ,  
and 

.R~ = r' + c'(l .) .  I" + c"(1.) ~. 

Since r ' ( t )< b a.e. on [a, b], from the continuity of c' and c", it follows that 
for n sufficiently large, say n=no, ,oRi ( t )<-6 /2  a.e. on [a,b] ( i=  1,2). Thus, 
writing Ri for ,oR~(i=1,2), we have that  R~ is strictly concave on [a,b]. We 
notice that  R and R~ and also their derivatives agree off (a, b). Thus R~ is an 
increasing function on [0, oo), is concave on (0, or), and satisfies R i ( ~ - )  = - Go. 
It follows that  F~_= 1 - e - R ~ ( i =  1, 2) are two different well-defined E D F R  distri- 
butions. 

We show that  (F 1 +F2)/2=F. By the definitions of c, R~, and R2, we see 
that 

R2 = R -  l n ( 2 -  e (R-R1)). 
Hence 

Thus 
e-R~=e-R(2--e(R ~ l ) ) = 2 e - R _ e - R , .  

if--- e R = (e-  R~ + e -  R ~)/2 = (Iv 1 + ff2)/2. 17 

Lemma 3.4. ~ = c g u  {30, 6 , } .  

Proof Let F~Cgw {60, 3~}. Then either (i) F (0 )=e ,  where 0 <  ~ <  1, or (ii) F(c~3) 

=fi, where 0 < f i < l .  Assume (i) holds. Then F = c ~ c S 0 + ( l - e  ) I F - F ( 0 ) ~  \ 1 - F(0) ]" Since 
- F ( 0 )  

F 1 - 8  o and F2~- are bo th  D F R  distributions, Fq~S. A similar argu- 
1 - F ( 0 )  

ment  shows F ~ 8  when case (ii) holds. [3 
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Lemma 3.5. ((9 c~ cg)w {60, 6~} ~ E .  

Proof. Let  F~((gc~cg)U{6o,6oo}. We show that  F e E .  If F = 6  o or 6~, then 
clearly F o g .  Assume then that  F~(gc~cg. Since ~ is convex, it suffices to prove 
that 

F = ( F I  + F2)/2 with F I , F 2 ~  (3.2) 

implies that  
F 1 = F  2 = F .  (3.3) 

Thus assume (3.2) holds. We show (3.3) follows. 
For  the distr ibution F~(i = 1, 2), let r i be the failure rate function and Ri be 

the hazard function. Let  t~M=-{ t :  r' 1 and r~ exist at t}. Since m(MC)=0 and 
F~(9, it follows from the definition of (9 that  for each positive integer n, 

m ( [ t , t + n - 1 ] c ~ M n { t :  r '> --n-i})>0. 

Hence we may  choose a sequence { t , } c M  such that t , ~ t  and r ' ( t , )~0  as 
n ~ o o .  By a subsequence argument  we may also assume that the sequences 
{r~(t,)} and {r;(t,)} both  have limits (possibly infinite). Now reversing the steps 
in the last paragraph of the p roof  of L e m m a  3.3 we can show that  ( R 2 - R )  (tn) 
= c((R - R1) (tn)), where c(x) - - ln(2 - e x) for x < in 2. Differentiating twice and 
taking limits, we get 

lim r~ (t,) = - c'((R - R 1) (t)). (lim r; (t~) 

+ c"((R - R  0 (0)" (r(t) - rl (t)) 2, (3.4) 

since r'(t,)---,O and t , ~ t  as n ~ o o  and R, R~, r, and r~ are cont inuous at t. 
Now for x < l n 2 ,  c ' (x )=eX/ (2 -ex )>O and c"(x)=2eX/(2-eX)2>O. Hence,  

using the fact that  l imr~( t , )<0,  we see that  the expression on the right of (3.4) 
is nonnegative.  Since the term on the left of (3.4) is nonpositive,  it follows that  
the expression on the right of  (3.4) is equal to 0. We conclude that  r(t)=rl(t)  
for t~M.  Reversing the roles of R 1 and R 2 above, we get r(t)=r2(t ) for t e M .  
Thus 

r = r  1 = r  2 a.e. on [0, ~ ) .  (3.5) 

N ow F ( 0 ) = 0  implies that  Fa(O)=Fz(O)=F(O) and, consequently,  that  R(0) 
=R~(0 )=R2(0  ). It follows by (3.5) that  R = R  1 = R  2 or, equivalently, that  F = F t  
= F  2 . [~ 

4. Convex Extremal Subsets of 

In this section we identify the extreme points of two convex subclasses of ~ ,  
namely, (i) @p, the class of (proper) D F R  distributions (Corol lary 4.2), and (ii) 
~ c = { F ~ :  r F is cont inuous on (0, oo)} (Corol lary 4.3). In addit ion in Theorem 
4.5, we show that  every D F R  life distr ibution can be represented as a mixture  
of the extreme points of ~p. 
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T o  identify the ext reme points  of  ~p  and 9 c we need L e m m a  3.1 below 
concerning extremal  subsets. Recall  that  a subset  K '  of  a convex set K is an 
extremal subset of K if x = p y + ( t - p )  z with y, z s K  and pc(0,  1) implies that  y 
and z are in K'. 

Let  ext K denote  the set of  extreme points  of  K. 

L e m m a  4.1. Let  K '  be a convex extremal subset o f  a convex set K.  Then 

ext K '  = K '  c~ ext K. 

We omit  the e lementary  p roo f  of  this lemma.  
F r o m  L e m m a  4.1 it tbllows that  to identify the extreme points  of @ and 

9 c is is only necessary to show that  these classes are convex ext remal  subsets 
of  9 .  

Since it is immedia te  that  9 v is a convex ext remal  subset  of  9 ,  we have  the 
following corol lary of  L e m m a  4.1. 

Corollary 4.2. The D F R  distribution F is an extreme point of  the D F R  class i f  
and only ~ either (i) F is degenerate at O, or (ii) F(0)---0 and {t: r'(t) exists, 
a <- t <_ b, and r'(t) > - 8} has nonzero Lebesgue measure for  all 0 < a < b and 
~5>0. 

To  show tha t  9 c is an ext remal  subset of  9 we need the following lemma.  
Let  r, rl ,  and r 2 be the failure rates of  F, t:1, and F 2. 

L e m m a  4.3. Let  F = p F I  + ( 1 - p ) F  2 for  some p~(0,1) and F 1, F2~@. Let  r be 
continuous at t. Then r 1 and r 2 are continuous. 

Proof. Assume that  either rl or  t~ is not  cont inuous at  t. We  show tha t  this 
contradicts  the cont inui ty of  r at t. 

Since r~ and r 2 are decreasing and F 1 and F 2 are cont inuous on (0, oo), then 

r(t + )  = IF(t)] - 1 [p rl(t + ) -fl (t) + ( 1 -  p) r2(t + )  F2(t)3 

< [-F(t)]- t [ p r t ( t _  ) Fl(t) +(1 _ p )  r2 ( t_ )  F2(t)] = r ( t - ) ,  

which contradicts  the cont inui ty of  r at t. 

It  is clear f rom L e m m a  4.3 that  o~ c is an extremal  subset of 9 .  Also a 
s t ra ightforward a rgument  similar to that  in the p roo f  of  L e m m a  4.3 shows that  
9 c is convex. Hence  we obtain  the following corol lary of  L e m m a  4.1. 

Corollary 4.4. The set o f  extreme points o f  9 s is ~ c~ 9 s. 

Remark 4.5. Let 9 A - - { F ~ 9 :  r F is absolutely cont inuous  on every closed in- 
terval contained in (0, c~)}. It can be shown that  9 A is also a convex extremal  
subset  of 9 ,  and consequent ly  that  ext 9 A = g c~ 9 a. 

We  conclude this section with the following representa t ion  theorem for the 
D F R  class. 

Theorem 4.5. The life distribution F is D F R  if  and only if F may be represented 
as a mixture o f  distributions in ext ~p.  Further ext 9 v is the smallest set with the 
property that every D F R  may be represented as a mixture o f  its elements. 
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Proof Let F ~ p .  Then F~@ and, therefore, by the result stated in the next to 
the last paragraph of Sect. 2, we have that F( t )=~ G(t)#F(dG) for all re[0,  oo], 
where #r  is a probabili ty measure such that #F(g)= 1. Since F ( o o - ) =  1 by the 
Bounded Convergence Theorem, l=~G(oo-)#F(dG ). Hence #F(gc~o@p) 
=#F{GeE:  G ( o o - ) = 1 } = 1 .  Since e x t @ = ~ g c ~ @  by Corollary 4.2, the con- 
clusion of the first part  of Theorem 4.5 follows. The second part  of Theorem 
4.5 is an immediate consequence of the definition of an extreme point. 
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