A Note on *PM* Spaces Determined by Measure Preserving Transformations

H. Sherwood

Florida Technological University, Dept. of Math. Sciences Box 25000, Orlando, Fla. 32816, USA

In [1] Schweizer and Sklar introduced a very interesting class of probabilistic metric spaces. The most important results in that paper are found in the next paragraph.

Let (S, d) be a separable metric space. Let S be the carrier of a probability measure P defined on a σ -field that contains the Borel sets of S. Let M be a mapping from S into S which is measure preserving with respect to P. Let P^2 denote the product measure on $S \times S$ induced by P. For each real number x, let $D(x) = \{(p, q): d(p, q) < x\}$. For any subset A of $S \times S$ let χ_A denote the indicator function of A. Then there exists a subset W_0 of $S \times S$, with $P^2(W_0) = 1$, such that for every pair (p, q) in W_0 there exists a left-continuous distribution function F_{pq} such that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{m=0}^{n-1}\chi_{D(x)}(M^m p, M^m q) = F_{pq}(x),$$

at every continuity point x of F_{pq} . Furthermore, if \mathscr{F} is the function defined by $\mathscr{F}(p,q) = F_{pq}$ for each (p,q) in W_0 , then (W_0,\mathscr{F}) is a probabilistic pseudo-metric space, more specifically, a Menger Space under the *t*-norm T_m . Finally, if $(p,q) \in W_0$ then $\mathscr{F}(Mp, Mq) = \mathscr{F}(p,q)$.

The domain W_0 of \mathscr{F} need not be a Cartesian product. Thus \mathscr{F} is not a probabilistic pseudo-metric in the usual sense. Notice that (p, r) could fail to belong to W_0 even though both (p, q) and (q, r) do belong. This deficiency could significantly reduce the usefulness of the triangle inequality. The following theorem removes this difficulty.

Theorem. The mapping \mathscr{F} has an extention \mathscr{F}^* whose domain is all of $S \times S$ such that (S, \mathscr{F}^*) is a probabilistic pseudo-metric space satisfying Menger's triangle inequality under the t-norm T_m . Moreover, for every p, q in $S, \mathscr{F}^*(Mp, Mq) = \mathscr{F}^*(p, q)$.

Proof. To construct the mapping \mathcal{F}^* we first let

$$G_{pq}(x) = \liminf_{n \to \infty} F_{pq}^{(n)}(x)$$

where

$$F_{pq}^{(n)}(x) = \frac{1}{n} \sum_{m=0}^{n-1} \chi_{D(x)}(M^m p, M^m q).$$

We now define \mathscr{F}^* on $S \times S$ via $\mathscr{F}^*(p,q) = F_{pq}^*$ where F_{pq}^* is the left-continuous function which agrees with G_{pq} at each continuity point of G_{pq} .

It is obvious that \mathscr{F}^* extends \mathscr{F} to all of $S \times S$. In showing that (S, \mathscr{F}^*) is a Menger space, it is only the triangle inequality which is not immediate. To verify the triangle inequality we use the fact that T_m is nondecreasing in each place and the inequality

$$F_{pr}^{(n)}(x+y) \ge T_m(F_{pq}^{(n)}(x), F_{qr}^{(n)}(y))$$

which is proved in [1]. It follows that for each $j \ge n$,

$$F_{pr}^{(j)}(x+y) \ge T_m(F_{pq}^{(j)}(x), F_{qr}^{(j)}(y))$$

$$\ge T_m(\inf\{F_{pq}^{(k)}(x): k \ge n\}, \inf\{F_{qr}^{(k)}(y): k \ge n\}).$$

Thus

$$\inf\{F_{pq}^{(k)}(x+y): k \ge n\} \ge T_m (\inf\{F_{pq}^{(k)}(x): k \ge n\}, \inf\{F_{qr}^{(k)}(y): k \ge n\}).$$

Taking the limit and utilizing the continuity of T_m we obtain

 $G_{pr}(x+y) \ge T_m(G_{pq}(x), G_{qr}(y)).$

Since G_{pr} is a nondecreasing function there exists a nondecreasing sequence x_n converging to x with the property that $x_n + y$ is a continuity point of G_{pr} for each n. Thus

$$F_{pr}^{*}(x_{n}+y) = G_{pr}(x_{n}+y) \ge T_{m}(G_{pq}(x_{n}), G_{qr}(y)) \ge T_{m}(F_{pq}^{*}(x_{n}), F_{qr}^{*}(y)).$$

Using the left-continuity of F_{pr}^* and F_{pq}^* and the continuity of T_m and taking the limit as $n \to \infty$ we obtain

 $F_{pr}^{*}(x+y) \ge T_{m}(F_{pq}^{*}(x), F_{qr}^{*}(y)).$

Finally it will be shown that for each p, q in $S \mathscr{F}^*(Mp, Mq) = \mathscr{F}^*(p, q)$. To this end, let p, q be in S and let x be real. Then,

$$G_{MpMq}(x) = \liminf_{n \to \infty} F_{MpMq}^{(n)} = \liminf_{n \to \infty} \frac{1}{n} \sum_{m=0}^{n-1} \chi_{D(x)}(M^m Mp, M^m Mq)$$

=
$$\liminf_{n \to \infty} \frac{1}{n} \left[\sum_{k=0}^{n-1} \chi_{D(x)}(M^k p, M^k q) + \chi_{D(x)}(M^n p, M^n q) - \chi_{D(x)}(p, q) \right]$$

= $G_{pq}(x).$

This implies that $\mathscr{F}^*(Mp, Mq) = \mathscr{F}^*(p, q)$.

Reference

 Schweizer, B., Sklar, A.: Probabilistic Metric Spaces Determined by Measure Preserving Transformations. Z. Wahrscheinlichkeitstheorie verw. Gebiete 26, 235-239 (1973)

Received June 18, 1975

354