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Let {X,, n> 1} be a sequence of independent and identically distributed positive 

random variables and S,= ~ X~ m) and S,= ~ 2}m)where X} m) is the m-th order 
j~m j=m 

statistic of (X1, ..., Xj) and 2J ") is the ( j - m +  1)-th order statistic of (3(1, ..., Xj) 
for some fixed integer m > 1. Asymptotic behaviour of S, and S, are studied. If 

m= 1, then S,= ~ rain (X1, ..., Xj) and S,= ~ max (X1, ..., Xj). Results obtained 
j = l  j ~ l  

here generalize those of Deheuvels, Grenander, HSglund, and Ghosh et al. for 
sums of minima and maxima of positive independent random variables. 

1. Introduction 

Let {X,, n> 1} be a sequence of independent and identically distributed positive 

random variables. Let t/k= Inf(X1, ..., Xk), k> 1 and S,= ~ qk. Grenander (1965) 
proved that, if F(t)  is the c. d.f. of X l, then k= 1 

S. _ ~  F (1.1) 
log n 

where F=l im t /F(t).  HSglund (1972) proved that S, is asymptotically normal 
t~0  

under some conditions. Ghosh et al. (1975) studied the almost sure behaviour ofS~. 
They proved that 

S,, ~ F a.s. (1.2) 
log n 

where F is a defined above. Recently Deheuvels (1974) studied this problem in 
detail and he proved almost sure convergence and asymptotic normality of S n 
after suitable normalization. 

* AMS (1970) Subject Classification: Primary 60F99, 62G30; Secondary 62E20. 
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Our aim in this paper is to generalize the above results for sums of order 

statistics. Let X) ") be the m-th order statistic of (X1, ..., Xj) and Sn= ~ X) m). 
j=m 

We shall study the asymptotic behaviour of S,. In case m = 1, our results reduce to 
the ones obtained by Deheuvels (1974), Htiglund (1972), Ghosh et al. (1975) and 
Grenander (1965) for sums of minima of positive random variables. The problem 
stated above was first considered by Feder (1967). He proved that 

S, q% F (1.3) 
m log n 

where F = l i m  t/F(t). We shall show that S, is asymptotically normal and for 
t- ,  0 

some function H related to F(t), 

S, ~ 1 a.s. 
roll(log n) 

under some conditions. The method used by us is that of Deheuvels (1974) and 
is of independent interest. Since proofs here are similar to those of Deheuvels (1974), 
details are given at those places where they are necessary in this general context. 

Section 2 contains results for Uniform Distribution. Results in the general 
case are discussed in Section 3. Some examples are given in Section 4. Section 5 

contains some results for sums of the form S ,=  ~ ~}m) where ~)m) is the 
j=m 

( j - m  + 1)-th order statistic of (X1, ..., Xj). When m = 1, 2}m)= max (Xi, 1 <i<<_j). 

2. Uniform Distribution 

We shall first study the problem for uniform distribution. Let {X,, n > l }  be a 
sequence of independent random variables uniformly distributed on [0, 1] and 
{e,, n >  1} be a sequence of real numbers decreasing to zero. Define 

z~=Inf {n>mlX(.m)<e} (2.1) 

and 

S.= ~ X~ m) (2.2) 
j=ra 

where X) m) is the m-th order statistic of (X 1, ..., Xj). Assume WLOG that z~ 
is well defined for all e > 0. It is easy to see that {r~., n > 1} is an increasing sequence 
of positive integer valued random variables. In fact 

r - 1  P[z~=r]= (m_l  ) sin(l-g) r-m, r>=m (e.3) 
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and it can be shown, after some tedious calculations, that 

p l?c.--c,,,--r~ I z~- - rd  
m E2 

= - -  if r l = 0  ?n gl 

= ~' ~*g~, t , -e2)m(1-82)n-"  {7 ~1o (n)(q-lj \ m - j  - 1,1 ~ 

(2.4) 

21 - -  '~2 / '  . J  

if r l > l .  

Since the expression for conditional probability is independent of the conditioning 
event, it follows that z~2 - % is independent of %. By similar arguments, it follows 
that 

z ~ -  z~._1, ..., z~ 2 -  z~ 1 , %~ (2.5) 

are independent for every n > 1 (define ~o = 0, Co-=0) and 

P D~ . -  v . . . .  = r3 
m 

e, if r = 0  
m (2.6) 

' ~n -  Jt 

, -a Lj=o J m - j - 1  \ e ,_ l - e , /  ) 
if r > l  

for every n > 2. Let Z be a nonnegative integer valued random variable with the 
distribution 

P(Z=r)= e, if r = 0  
e"-i (2.7) 

= (/3n_1 -- 8n ) 8n ( 1 -  8,) "-1 if r > l .  
8n- I 

The probability generating function Gz(z) of Z is given by 

Gz(z)= ~ P(Z=r)z" 
,= o (2.8) 

~ n  [ 1 4  (en- l - -gn)  z }  
~ . - 1  1 - z ( 1 - e . )  " 

It can be checked that G~(z) is the probability generating function of z ~ - z  . . . .  
by expanding G'~(z) as a power series in z and comparing the coefficients of the 
power series with probabilities given by (2.6). Hence z~.-  v~._, has the same distri- 
bution as the sum ofm independent random variables Z i each distributed as Z with 
probability distribution given by (2.7). By simple calculations, it can be seen that 

1 1 
E(Z) -- (2.9) 

8n 8n- 1 

8n - 1 8n - 1 
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and for any p > 1 

E(ZP)~ (e._l -e .]  P. p!. (2.11) 
\ ~._i ! ~.~ 

Hence 

E(z~ -%,,_,)=m (!, e,,-ll ), , (2.12) 

Var(%-z~. 1)=m(~. ~1_) ( 1 +  1 - l e . _ ~  ), (2.13) 

and for any p > 1 

e ( ~ . -  -c~._ y = e (z~ + . . .  + z , ,?  
p! 

= Z k~, k.~ e ( z ' t ' )  e(z~) 
k i>O . . . . .  
~k~=p (2.14) 

Zk i  
p !  [ e n _ l - - e n  kl ! ... kin! 

~ k l l  k.,V I - -  k~>O . . . . .  \ e . - 1  , ~ 
Zki=p 

~ m P  �9 - - .  
_ , g,P 

In particular, it follows that for any p > 1 

El(z~.- z .... ) - E {(z~.- %._ 1)}1' < 2 E(~. - r~_l) v 
e ._ l - e  , p! (2.15) 

~n-1 8n p " 
Lemma 2.1. For every n> 1, 

(i) S~ +1-S~ <(z~.+~-L.)e., 

n - 1  n - 1  

(iii) - 2 +  ~(%+I-L~)~j+I<S, -S~ <= ~,(%+1-%)~ and 
j = l  j = l  

(iv) for allj6[z~., z .... ], 
n - - 1  n 

- 2 +  ~ (z~j+~-z~j)~j+l <=Sj-S~ < ~ (z~j+i-%)ej. 
j = l  j = l  

Proof. Follows from observing that the random variables X~ are non-negative, 

X~")<_e.~X (m) .<e. for any j > 0  

and 

X~")>e.+l for any j<z~.+l- I. 

Here after, we shall suppose that ~.= n -~ for some ~ >0. Let 
n 

U,= ~" (%,+1-%) ~J (2.16) 
j = l  
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and 

v ' =  ~ (%+1-%) ~+~. j=l 

In view of (2,12), (2.13) and (2.14), one can prove the following lemma. 

Lemma 2.2. 
(i) E(U,)=mct log n+0(1), 

(ii) E(U/,)=m~ log n+0(1), 
(iii) Var (U,) = 2 m ~ log n + 0(1), 
(iv) Va r (U ' )=2m~ log n+0(1), and 
(v) for every p > 1, 

~, E{('c~j+~--'cej) p ~ } ~  ~ E{(v~j+l-z~y eP+~}~p[ logn. 
j = l  j = l  

(2.17) 

Lemma 2.3. U, - U~ converges almost surely to a finite limit having moments of 
order 2. 

Proof Observe that 
n 

On-- Un= 2 ('cej+,--T'ei)(~J--SJ+I)" (2.18) j=l 

It is sufficient to prove that the series 

(%+, - ~ )  (sj - ~j +1) 
j=l 

converges almost surely to a random variable with finite second moment. Since 
z~j+ 1 -z~j, j > l  are independent random variables with finite second moment, it 
is sufficient to show that 

E{(Lj+I-  z~j)(ej-ej+a) } < oe (2.19) 
j=l 

and 

Var {(%+~ - %) (~ j -  e~+l)} < oe. (2.20) 
j=l 

Since ej=j -~, ~>0,  (2.19) and (2.20) hold in view of (2.12) and (2.13). 

Theorem 2.1. 

S% n 

m log n 

converges to ct almost surely and in quadratic mean. 

Proof Lemrna 2.1 shows that 

-2+U/ , - I  <S~ - S ~  <U.-~. (2.21) 
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(2.21) and Lemma 2.3 imply that theorem is true if 

u. 

m log n 

converges to e almost surely and in quadratic mean. Since 

E m U. 2=m2(12gn) 2 -  logn ~ < [Var(Un)+{E(U")-ml~ 

2 
<m2(log n) 2 [-2mct log n+0(1)] 

by Lemma 2.2 and the last term tends to zero, it follows that 

U. ~ . , . .  
m log n 

(2.22) 

Since 

E(v.) 
+ ~ (2.23) 

m log n 

it is sufficient to prove that 

U, ~ 1 a.s. (2.24) 
E(cr0 

Let ~j = (% ~ - %) ~j. It is known from earlier remarks that ~j,j > 1 are independent 
with E(~) > 0 and Var (~j) < 0o. Further more 

E(~j)=m ~ [ ( j+  1 ) ~ - j ~ ] j - ~  _ =  +0o 
j=l j=l j= l J  

and 

Var (~j) ~ 1 
, z ~ j L = l ~ < + ~ "  

Hence by R6nyi (1970), p. 435 (Exercise 17), 

j = l  

E(G) 
j = l  

+ 1 a.s. (2.25) 

But U, = ~ ~j. Hence (2.24) holds. 
j= l  
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Theorem 2.2. 

S ~ , -  m ~ log n 

(2m~ logn) ~ 
e, N(0,1) (2.26) 

where N(0, 1) is the standard normal distribution. 
Proof Lemma 2.1 implies that 

/U~-mc~ log n \ /S~, -m~  log n 
~imoP t(2melogn)=~ < u ) < ~ P  ~ 2 m e l o g n )  ~ <u ]  

[U"-mel~ ) 
<,-oolimP \(2m~ log n) *= = u  

for every real u. But 

U~ - m ~  log n 
(2m~logn)  } Ze~N(0, 1) 

(2.27) 

(2.28) 

since { U~} satisfies Liapunov's condition viz 

[ Y,/~ I(%+~-%) ~j+l -E{(%+~-%) ~j+l} 13 
L j =  1 

~0 
Iv �9 ,-" Var { ( % §  ej+l} 
t - j = l  

as n-+ oo as the numerator is of the order (log n) r and denominator is of the 
order (log n) ~ by Lemma 2.2. Similarly one can show that 

U,,-m~ logn ZPN(0 ' 1). (2.29) 
(2 m ~ log n) ~ 

(2.28) and (2.29) prove (2.26) in the presence of (2.27). 

Theorem 2.3. 

S, 
,1 a.s. (2.30) 

m log n 

Proof We shall first prove that 

~ -  1 <l im log %, <1-~ log %~ <~. (2.31) 
log n - log n 

Let t > ~. Then 

P[~>[l~ t]=p[z~ >nt] 

j= o n~ ] " 

(2.32) 
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1).~ . 
Since 1 - ~  ~ e-~, there exists an integer no such that  for n_~ no, 

- ~ )  < a < l .  1 1 "~ 

Hence, for n > no, 

,~lj=o nt 1 (1-nl~-) -j" (2.33) [-log z~ t] _ a "~- ~ 

It is easy to see that 

1 ( 1 - 1 ) -  J = 0 (n(m- 1)('-"). (2.34) 

Therefore there exists a constant C such that for n > n~ > no, 

r l o g ~  ? • .~_ 
~ P / - - > t / < _ C  ~ a "n ("-~"-~). (2.35) 

. . . .  [_ log n J - ,=., 

Since 0 < a < 1 and t > e, the series on the right hand side converges. Borel-Cantelli 
lemma now proves that 

lim log %,_<~ a.s. (2.36) 
log n - 

On the other hand, for any t < ~ -  1, 

[log %, __<t] 
P [ log n 

.3 

1 1 - - -  (2.37) \jr n- T n~,} 
j=O 

< 1 _  ( 1 _ 1 ]  "~ 
=- t/~ ] 

and the last term is of the order n t-~. But S, nt-~< ~ since t - c t <  - 1 .  Hence 

_ _  %, _ (2.38) lim '~gg n > e -  1 

by Borel-Cantelli Lemma. (2.36) and (2.38) prove (2.31) which implies that 

e - l < l i  m logz~___m_, <l i  m l o g L ,  < :~ (2.39) 
- - -  l o g  z . . . .  ~ l o g  z . . . .  = ~ - 1 

for  a n y  ~ > 1. S i n c e  

S 
z g  n 

---~ 0~ a . s .  
m l o g  n 

b y  T h e o r e m  2.1,  it  f o l l o w s  t h a t  

1 _< l ira  " - _  l i m  
- - -  m l o g  % . -  

0~ 
< - -  (2.40) 

m log z,,+, = ~ - 1  
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for every ~ >  1. B u t ,  for a n y j  such that  

r~ <=j<--__'G,+ 1 

one has 

STy. < Sj < S.r . . . .  

m log L,+~ - m  l o g j  = m  log r~" 

Hence  

a - l < l i m  S .  _<lim S .  
- - -  m log n -  m log n 

for every e >  1. Tak ing  limit as e ~ 0% we obta in  (2.30). 

Remark. It  can be seen f rom the previous  p roo f  that  

log %. 
- -  -~, c~ a .s .  ( 2 . 4 1 )  
log n 

and 
S. 

- - - ~  1 a.s. (2.42) 
E(s.) 

since E(S,) = m log n + 0(1). 
Let  logv n denote  log (logp_ ~ n) for any p > 2 where log2 n = log log n. 

L e m m a  2.4. For any p > 2, 

l im (L,+, -z~,) -mn~(log2 n+ ... + logv_ 1 n ) _  1 a.s. (2.43) 
. m n ~ l o g p  n 

Proof F r o m  our  earlier remarks ,  it is known  that  

r~,.~-r~ = Z , I  + . . . + Z ,  m 

where Z,j,  1 < j < m  are independent  and identically dis tr ibuted with 

P(Z,1 = r )  = e " + l  if r = 0  
gn 

= ( e , -  e , + 0  ~"+l- (1 - e ,+0  r - t  if r > l .  
H e n c e  ~n 

lim (z . . . .  - r~,) - m n~(log2 n + - - .  + logp_ i n) 
. m n" l o g p  n 

~ { Z . j -  n '(log2 n + . . .  + log v_ 1 n)} 

= l i ra  J=a 
n m n ~ l o g p  n 

(2.44) 
<= 1 ~ ~ Z,j--n~z(log 2 n+. . .  +logp_  1 n) 

m j=l  , n ~logpn 

< ~ 1  . m = l  a.s. 
m 
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by Proposition 11 of Deheuvels (1974). On the other hand, by the same result of 
Deheuvels (1974), 

Z , i -  n~(logz n+ ... +log~_ 1 n)> 1 - e  a.s. 
n" logv n 

for infinitely many n and for every 1 <j  < m. Hence 

~{Z, j -n ' ( logz  n +log 3 n +..- +logp_~ n)} m(1 -e)  
j = l  ,-- = l - e  a.s. 

m n" log v n m 

for infinitely many n which implies that 

li-m (z~"+l -%")-mn~(I~ n+ ... + logv_ 1 n)~ 1 - e  a.s. 
n m n ~ l o g p  n 

for every e > 0. This fact, together with (2.44), prove (2.43). 

L e m m a  2.5. For all p > 3, 

m {  (1)  ( 1 ) }  
z u - -  log +-.. + logv_ 1 

lira u 

- -  logv 
U 

Proof. Since % = ZI ~ + ' "  + Z,~, where 
identically distributed with 

P(Zlu =r) =u(1 - u )  r-l ,  r>= 1 

lim 
u ~ 0  

=<1 a.s. (2.45) 

Zi,,, l<i<_m are independent and 

Zu----  log 2 + "..-I- 1ogp_ 1 
U 

~ (;-I - -  logp 
U 

1 
=<limJ=l[ J u { l ~ 1 7 6  

u~O m (1)  
~- logp 

Z 1 

=<1__ ~ lim 
mi=1"- '~ --ul l~ 1--) 

< l . m = l  a.s. 
m 

(2.46) 

by Theorem 3 of Deheuvels (1974). 
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Remark. Choosing u = en = n - ' ,  e > 0, it follows that for all A > 0, 

z~<mn~(logz n +log3 n +  -.. +log,_1 n+(1 +A) logv n) a.s. (2.46) 

for large n. 

Lemma 2.6. 

lira u % = 1 a.s. (2.47) 

, - o  mlog2 u 

Proof Since ~ >  z~. -z  . . . .  for every n, the result follows from Lemmas 2.4 
and 2.5. 

Lemma 2.7. For every A > 0 and for every p >= 2 

l i r a ,  ~. log iogz ... log,_ 1 logp = oo a.s. (2.48) 

Proof Since %= ZI ,+- -"  +Z , , ,  where Ziu are as defined in Lemma 2.5 and 
% > Z1 u, it follows that 

~m u~.,og (~)~og~ (1)~og~ (1)(~og, (~)t ~+~ 

(1) (5t (~t( (11)1~ ~lim 0 gZlulOg log 2 ... log,_ 1 log, = + oo a.s. 

by Theorem 4 of Deheuvels (1974). 

Theorem 2.4. For all A > 0, 

l~ (1 )  - (1 +A) l~ ( 1 )  =<l~ (~-) (2.49) 

~o~ (1t§ (~ t as 
for sufficiently small u. 

Proof This result follows from Lemmas 2.6 and 2.7. 

Theorem 2.5. For any v > O, 

P ( u % > v ) - - ~ r ~ ! x " - I  e-~dx as u---~O. 

m 

Proof Since u% = ~ uZj, where Zj,, 1 <=j<=m are independent and identically 
distributed with j= 1 

P ( Z l , = r ) = u ( l - u )  r-l, r>=l 

and 

P ( u Z 1 , > v ) ~ e  -~ as u - ~ 0  
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it follows that u ~, converges in law to the m-fold convolution of exponential with 
mean one which is the Gamma Distribution as given in the theorem. 

Theorem 2.6. 

S . -  m log n Le N(0, 1). 
(2m log n) ~ 

1 1 be shown that Proof By choosing u = - -  and e. = , it can 
n n 

Z e < Into - 1 (log2 n) - (1 + .4)] ~--- y / ~  "Ce[n m - 1 (log n) 1 + a ]  
a . s .  

for large n by Theorem 2.4 and the fact that 

(2.50) 

log z,. * 1 a.s. 
log n 

It is sufficient to prove that 

S, 1 - m  log n 
el.m- ao~2.)-" +~q ~ N(0, 1) (2.51) 

(2 m log n) { 

and 

S, 1 1+-4 - m  log n 
e[nm- (log n) ] 

(2m log n) ~- zo N(0, 1). 

But (2.51) and (2.52) follow from Theorem 2.2 since e = 1. 
Remark. By some tedious computations, it can be shown that 

Vat (S.) = 2 m log n + 0(1). 

(2.52) 

(2.53) 

3. General Case 

Let {Y,, n>  1} be independent, positive random variables with the same distri- 
bution function F. Further suppose that for all ~>0, P(Y~<e)>0. Let G(t)-- 
Inf {x>OlF(x)>t}. G is a monotone non decreasing function. Let {X,, n>  1} 
be a sequence of independent random variables uniformly distributed on [0, 1]. 
Then {G(X,), n >  1} is identical in law with {I1,, n__> 1}. The study of the behaviour 
of 

S ,=  ~ Yj(") (3.1) 
j=m 

is equivalent to that of 

S,-- ~ [m-th order statistic of {G(X0, ..., G(Xj)}] 
j=m 
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which is again equivalent to that of 

S,= ~ G(X} m') (3.2) 
j = m  

since G is monotone non-decreasing. Let e, = n - 1. Define 
n 

V, = 2 ( ~ j + l -  %) G(ei+x), (3.3) 
j = l  

n 

V,' = Z (%+1-  %) G(@ (3.4) 
j = l  

where z~ is as defined in the previous section. The following lemmas can be proved 
by methods similar to those in Section 2. 

Lemma 3.1. For all n > 1 

- 2 +  v._l =<s~~ _< v.'_l (3.5) 

and for all j~ [%., r~.+,], 

- 2 +  V,_I <Sj-S~,  <V,'. (3.6) 

Lernma 3.2. 

; 2 G 
j = l  j = l  

D~=Var(V,)=2mj~=jG 2 1 D,2=Var(V , )=2m~jG2 
j = l  

Lemma 3.3. V 2 - V, converges almost surely to a finite limit. 

Let 

h(u) = G(e-") . e" 

and 
u 

H(u) = S h(u) du. 
0 

Lemma 3.2 shows that 

M,  = mH(log n) + 0(1) 

and 

m', = mH(log n) + 0(1). 

Lemma 3.4. Suppose li_m H(n)= oo. In order that 

S ~ ~n 
1 a.s. (in probability) 

it is necessary and sufficient that 
v. 

- - - *  1 a.s. (in probability) 
E(V,) 

(3.7) 

(3.8) 

(3.9) 
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o r  

1/~' -~ 1 a.s. (in probability). 
E(Vg) 

More over 

E(S~) -  mH(log n) = 0(1). (3.10) 

Proof. The above lemma follows from Lemmas 3.1 and 3.3 and relations (3.8) 
and (3.9). 

Theorem 3.1. (i) Ifli_mH(n)< o~, then S, tends almost surely to a finite limit 
with finite expectation. 

(ii) If  li_m H(n)= o% then 

(a) /f 

Y jG 2 
lim j=l = 0  (3.11) 

n 

then 

S~. P, 1 ; (3.12) 
roll(log n) 

(b) /f 

lim ~ 2 < oo (3.13) 

then 

S~n * 1 a.s. (3.14) 
roll(log n) 

Proof. (i) If H(n) is bounded, then E(S,) is bounded in n. Hence sup S,(co) < oo 
n 

a.s. But S,(e)) is monotone  non-decreasing for each co. Hence S, tends to a finite 
limit almost surely. It is easily seen that  this limit has a finite expectation. 

(ii) (a) follows from Lemmas  3.2, 3.4 and Cebygev's inequality. 
(ii) (b) follows from Lemmas 3.2, 3.4, R6nyi (1970), p. 435 (Exercise 17) and 

the fact that  z~j + 1 - z,j, j > 1 are independent. 
Remark. Let 

u 

I-I,(u) = S hp(u) du 
o 

for any p >= 2. It can be shown that  

(3.11),*~H2(u)/H2(u)--~O as u --~ oo (3.15) 
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and 
1 ,~ ~ h2(u) 

(3. 3) ! H2(u ) d u < ~ .  

Theorem 3.2. I f  there exists p > 2 such that 

l i m  [ J ~ = / p - I G p ~ I ) ]  l ip  

- ~ 0  

n-,  oo 2 

then 

S ~ . -  roll(log n) 
N(0, 11. 

{2mHz(log n)} ~ 

(3.16) 

(3.17) 

(3.18) 

(3.25) 

Sz  ~ n 

roll(log n)" 

Suppose that 

k! Hk(u ) 
lira Hk(u ) -- Ak < 0% k= 1, 2, ... 
u-, oo 

and Ak > 0 for all k. Let 

Bp= ~ r v P! ri!S(rt, ri) A~ ... A~ r l + . . . + r i = p  1 . . . . . . .  

(3.24) 

Proof It is easy to see from Lemma 3.2 and the definition of H 2 (u) that 

Var (V,)= 2mH2 (log n) +0(1) (3.19) 

and 

Var (V,') = 2 mH2 (log n) + 0(1). (3.20) 

The result now follows from Lemmas 3.1 and 3.3 and relations (3.8), (3.9) by using 
methods similar to those used in Theorem 2.2. 

Remark. 

(3 .17)~for  some p > 2 ,  lira Hp(u)-~O-" (3.21) 
. _ , ~  H P ( u )  " 

Theorem 3.3. 

E ( S , J  = mH(log n) + 0(1) (3.22) 

and 

Var(S~)=2mH2(logn)+O Q.=~G 2 (~ ) ) .  (3.23) 

Proof (3.22) and (3.23) follow from Lemmas 3.1 and 3.2. 
We shall now state a result regarding the asymptotic behaviour of S~/E(S,~)  

or equivalently that of 
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for every p > 1, where S(rl , . . .  , ri) denotes the number  of permutat ions leaving 
rl, ..., ri invariant. 

Theorem 3.4. I f  (3.24) holds, then there exists a distribution L with moments Bp 
defined by (3.25) and 

S~. s~, L. (3.26) 
rnH(log n) 

Proof of this theorem is the same as that of Theorem 9 of Deheuvels (1974) in 
view of the estimate (2.14). 

Theorem 3.5. I f  li_m H(n)= o% then 

Var (S~)  
li_mm, [E(S~n)]2. log n >2.m (3.27) 

Proof This result follows from Theorem 3.3 since 

He(log n) 
H2(log n)" log n>__ 1 

by Schwartz inequality. 

Theorem 3.6. I f  jG(1/j) is an increasing sequence, then, for all A > O, 

{(log n) (log2 n). . .  (logv_ 1 n) (logv n) 1 + ̀ 4} - 1 

< S%n 

=< (log n) (log an) . . .  (logp_ 1 n) (logp n) 1 +A a.s. 

for large n. 
Proof Let A > 0 and define 

a, =riG (log n)(log e n)...  (logv_ 1 n)(log v n) ~ +`4. (3.29) 

Then a, is a positive increasing sequence and 

V" 1 " 
- ~ ( % + ~ - % ) G ( 0  

an an .= j=l 

(~ G(O < ~J +~ - %) 
j= a aj 

Therefore 

E(V~] " 1  ~j) 
\an/ <=mj~=l ~fj G 

= " (3.30) 
t l  

---- m )-~ . 1 
j=~ J logj ( log2j ) . . .  (logv_aJ)(logvj) 1 +.4. 
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Since the series 

1 

i__Z,1 j logj(log2j) ... (logp_ lj)1 +A 
< oo 

if follows that l/~/a n is bounded above almost surely. On the other hand 

, ,  

Lemma 3.1 and Lemma 2.7 give the desired result. 
Remark. It can be shown that (3.28) holds if there exists a constant K > 0 such 

that for every to and t>to ,  

F(t) > K F(t~ (3.31) 
t - -  t o 

T h e o r e m  3 . 7 .  (i) I f  

H(u +log  u) o~ h2(u) d 
lira H(u) =1 and j ~  u<oo  (3.32) 
u,oo 0 

then 

S, * 1 a.s.; (3.33) 
roll(log n) 

(ii) if there exists a sequence u, T co such that 

lim H(log n + u,) _ 1 (3.34) 
.-,oo H(log n) 

and if 

. Ha(u) 
lm ~21.~- = 0 (3.35) 

then 

S. P, 1. (3.36) 
roll(log n) 

Proof (3.33) follows from Theorems 3.1 and 2.4 since S, lies between 

S~:en/m(logz n)l + A a n d  Sz enm l(logn)l+A 

for any A > 0  almost surely for large n. Similar arguments give (3.36) since %n u.---, oo 

and z~,, u 2 ~ ~ 0.  

T h e o r e m  3.8. I f  u, T oo such that 

lira H2(l~ n + u . ) _  1, 
.-,oo H2(logn) 

lira H(u. + log n ) -  H(log n) 
n , oo (H 2 ( l o g  n))  �89 = 0 ,  

(3.37) 

(3.38) 
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and if for some p > 2 

. np(u) ,, 
lm ~ = u  

then 

Sn - m H(log n) 
{2m H2(log n)} ~ 

B. L. S. Prakasa Rao 

(3.39) 

(3.40) 

Proof Proof is similar to that of Theorem 2.6 in view of Theorems 3.2 and 2.4. 

Finally, we have the following theorem which gives bounds on S,. 

Theorem 3.9. I f  there exists a constant K > 0 such that for all t o and t > to, 

F(t) > K F(to) (3.41) 
t t o 

then, for all A > O, 

m n G ( ~ )  

log n. . .  logp_ 1 n(logp n) 1 +A 
(3.42) 

<S~ 

< m n G  (!) logn. . . logp_ln( logpn)  I+A a.s. 

for large n. 
Proof This result follows from Theorem 3.6 and Lemmas 2.5 and 2.7. 

4. Examples 

Example I. Suppose F(t) ~fo ta, a > 0. Then 
(i) if a <  1,S, tends a.s. to a finite limit; 

S n 1 
(ii) if a =  1, mlogn  ~foo a.s. and 

m 

S n - f ~  l~  "~*N(O, 1); 

(~j2m \~ 
log n) 

(iii) if a > 1, there is a distribution L such that 

S~. ~ L 

m 
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and for sufficiently large n, for every A >0, 

mrt  1 - 1/a(Iog H)-  1 . . .  ( Iogp H)-(1 + A ) f o  1/a 

<Sn 

<ran 1-1/a(log n) (log 2 n)... (logp n) 1 +Afol/~ a.s. 

Example 2. If 

0 < A  _<lira F(t) <_g-ff-m F(t) N B< co 
t - -  t 

then 

Sn § 1 a.s. 
mHOog n) 

and 

S, -mH(log  n) J ~  N(O, 1). 
(2m H2(log n)} ~- 

(i) if a < - I, S~ tends a.s. to a finite limit; 
(ii) if a_> - 1, 

S~ 
* 1 a.s.; 

roll(log n) 

(iii) if a > - z 2 

S.-m/-/(log n) z N(0, 1). 
{2m H2 (log n)} ~ 

These examples were discussed in Deheuvels (1974) for the case m=  1. 

5. Some Further Results 

Suppose {X,, n >  1} are independent uniformly distributed random variables on 
[0, 1]. Let X}'~) be the ( j - m +  1)-th order statistic of (X1, ..., Xj). Define 

(5.1) 
i=m 

One can obtain the limiting behaviour of S. from that of S. derived in Section 2. 

Theorem 5.1. 

~"~ 1 a.s. (5.2) 
n 

Proof. Observe that 

~n=(n-m+l)-S~ 
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where S, is the sum of the m-th order statistics of (1 -X1,  ..., 1 -Xj).  But 

{ 1 - X , ,  n > l }  

are independent uniformly distributed on [0, 1]. Hence 

S.  ~ 1 a.s. 
m log n 

by Theorem 2.6. Hence 

S, ( n - m + l ) - S  n n - m + l  S, mlogn  

n n n m log n n 

converges to 1 almost surely as n ~ oo. 
Remark. In particular, if m = 1, one obtains that 

1 
~ max(X1, .., Xj)--+ 1 a.s. 

n j = l  
(5.3) 

T h e o r e m  5.2. 

S n - n - m l o g n  ~ N ( 0 ,  1). 
(2 m log n) ~ 

Proof. This theorem follows from Theorem 2.6 by noting that 

S , = ( n - m + l ) - S , ,  

E(S,) = (n - m + 1) - E(S,), 

and 

Vat (S,) = Var (S,). 

Remark. In particular, if m = 1, we obtain that 

~ m a x  (X1, ..., Xj) - n -  log n 

j=l ~ N(0, 1). 
(2 log n) ~ 

(5.4) 

(5.5) 

Theorem 5.3. Let {Y,, n > 1} be a sequence of positive, independent and identi- 
cally distributed random variables bounded by a constant b > 0 i.e., 

b=Inf{a:  P(0= Y~ < a ) =  1}. 

Then 

S, ~ b a.s. (5.6) 
n 

where 3 , =  ~ ~ " ) a n d  ~(")is the (] - m + l )-th order statistic of ( Yt, ..., Yj). 
j = m  

Proof. Let {Xn, n>_-l} be independent uniformly distributed on E0, 1] and 
ff~') be the ( i - m +  1)-th order statistic of (X 1, ..., Xj). Since Yi<b a.s., it can be 
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shown that 

~")--~b a.s. as j---~ oe 

and 

ff}")---~ 1 a.s. as j - . o o .  

Hence 

rt = -j ~ j---' j -  2~,, ) b a.s. as Go. 
J 

But 

~. _ 1 A ~ ( ~  = - -  V . .  2 !  m) 
F/ F/ j= 1 j = l  

Hence 

~;" *b. l=b  a.s. as n ~  
n 

by (5.9) and Theorem 5.1. 
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(5.7) 

(5.8) 

(5.9) 

(i) f(x)_->e>O for all O<_x<_b, 

(ii) [f'(x)[<fl<oe fora l l  O<_x<_b, 

(iii) b = I n f { a :  P(O-<Y<_a)=I}. 

(i) and (ii) imply that 

X 2 
G(1 - x) = G(1) - x G'(1) + ~ -  0(1) 

and 

(5.11) 

(5.12) 

Remark. Theorem 5.3 reduces to Theorem 1 of Ghosh et al. (1975) when m = 1 
and the proof uses the same technique as in their paper. 

Let { Y,, n > 1} be a sequence of positive, independent random variables with a 
common distribution function F and G(t) = Inf {x > 0IF(x) > t}. Let {X,, n > 1 } 
be a sequence of independent exponential random variables with mean one. It is 
easy to see that {Y,, n >  1} is identical in law with {G(1-e-X"),  n> 1}. Hence the 
asymptotic behaviour of 

j=ra 

is the same as the asymptotic behaviour of 

S , =  ~ 6 ( 1 - e - 2 ~  m') (5.10) 
j=m 

where X}") is the ( j -  m + 1)-th order statistic of (X1, ..., X~). Suppose F is absolutely 
continuous with density f which is continuously differentiable and there exists 
0 < b < oe such that 
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in any neighbourhood of zero. But G(1)=b. Hence 

S .=  ~ G ( 1 - e - ~  ' ' )  
j=m 

t r --X(m) --X(m) 2 = ( n - m + l ) b - G ( 1 )  e ~ + ~ 0(1) a.s. (e j ) �9 (5.13) 
l j = m  ) j=m 

= ( n - m + l ) b - G ' ( 1  a.s. 
~.J = m . 3  j = m 

Since e -x has a uniform distribution on I-0, 1], 

m ( m + l )  
E[(e-X)jm)]2 ( j+  1)(j+2) 

oo 1 
Since the series j_~ ~ - <  o o , _ , , . _ _  it follows that 

[(e-X)jm)] 2 = 0p(1). (5.14) 
j = m  

Hence 

~S =(n -m  + l ) b - f ~  {j~=m(e- X)~")} +Ot,(1 ). (5.15) 

Let 
/ I  

S.= Y, (e-X)} m). (5.16) 
j=m 

Since e -x is uniformly distributed on [-0, 1], Theorem 2.6 implies that 

S,-rnlogn so ,N(O, 1). (5.17) 
(2m log n) } 

But 
- f ( 1 )  { S , -  (n - m + 1) b} - m log n + 0p(1) = S. 

and hence 

- f ( 1 )  { S . -  (n - m + 1) b} - m log n + 0p(1) so, N(0, 1) 
(2 m log n) ~ 

i.e., 

f ( 1 ) { ~ . - n b } - m l o g n  so 
(2m log n) } ~ N(0, 1). 

Hence we have the following theorem. 

Theorem $.4. Under the conditions of Theorem 5.3 and relations (5.11) and (5.12), 

~ m 
S, - n b - f ~  log n 

{2mlog n/f2(1)} *= so~N(0, 1). (5.18) 
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Remark. We were unable to study the behaviour of S, for unbounded random 
variables by the methods described above. We conjecture that 

, c = lim (5.19) 
n log n t~oo - l og (1  -F( t ) )  

almost surely. Ghosh et al. (1975) have proved that (5.19) holds for m= 1. 
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