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C.P. 6128, Montréal H3C3J7, Canada

Let {X,,n=1} be a sequence of independent and identically distributed positive
random variables and S,= Z X{™ and §,= Z X where X{™ is the m-th order

statistic of (X, ..., X;) and X("‘) is the (j— m—l—l) th order statistic of (X, ..., X))
for some fixed 1nteger m=1. Asymptotlc behav1our of S, and S, are studled If

m=1, then S, = Zmin (X, ..., X)) and §,= Zmax (X1, ..., X;). Results obtained
-1
here generalize those of Deheuvels, Grenander Hoglund, and Ghosh et al. for

sums of minima and maxima of positive independent random variables.

1. Introduction

Let {X,,n=1} be a sequence of independent and identically distributed positive
random variables. Let ,=1Inf(X|, ..., X}), k=1 and S,= Z #,- Grenander (1965)
proved that, if F(¢) is the c.d.f. of X, then k=1

S o, F (1.1)
logn

where F =1in(')1 t/F(t). Hoglund (1972) proved that S, is asymptotically normal
t—

under some conditions. Ghosh et al. (1975) studied the almost sure behaviour of S,,.
They proved that
S

— —F as. .

Togn — a.s (1.2)
where F is a defined above. Recently Deheuvels (1974) studied this problem in
detail and he proved almost sure convergence and asymptotic normality of S,
after suitable normalization.

*  AMS (1970) Subject Classification: Primary 60F 99, 62 G 30; Secondary 62E 20.
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Our aim in this paper is to generalize the above results for sums of order

statistics. Let X{™ be the m-th order statistic of (X;,..., X)) and S,= ) X™.
j=m

We shall study the asymptotic behaviour of S,. In case m=1, our results reduce to

the ones obtained by Deheuvels (1974), Hoglund (1972), Ghosh et al. (1975) and

Grenander (1965) for sums of minima of positive random variables. The problem

stated above was first considered by Feder (1967). He proved that

S
mlogn

am (1.3)

where F :}i_ng t/F(t). We shall show that S, is asymptotically normal and for

some function H related to F(¢),

S, |
mH (log n) - as
under some conditions. The method used by us is that of Deheuvels (1974) and
is of independent interest. Since proofs here are similar to those of Deheuvels (1974),
details are given at those places where they are necessary in this general context.
Section 2 contains results for Uniform Distribution. Results in the general
case are discussed in Section 3. Some examples are given in Section 4. Section 5

contains some results for sums of the form §,= Y X{™ where X™ is the

j=m
(j —m+1)-th order statistic of (X, ..., X;. When m=1, X{™ =max (X;, 1 Zi<)).

2. Uniform Distribution

We shall first study the problem for uniform distribution. Let {X,,n=1} be a
sequence of independent random variables uniformly distributed on [0, 1] and
{&,,n=1} be a sequence of real numbers decreasing to zero. Define

7,=Inf {(nZm| XM <e} .1
and
S,= Y, X 22)
j=m

where X{™ is the m-th order statistic of (Xi,..., X;). Assume WLOG that <,
is well defined for all £>0. It is easy to see that {7, , n=1} is an increasing sequence
of positive integer valued random variables. In fact

Plr.=r]= (;111) el—egf™™ rzm (2.3)



Limit Theorems for Sums of Order Statistics 287

and it can be shown, after some tedious calculations, that

P[Tez —Té‘l =r1|’C.‘,‘1 =r0]
&
g (24)

~geara-a= {5 0) (50) G220

Since the expression for conditional probability is independent of the conditioning
event, it follows that 7,,—t,, is independent of . By similar arguments, it follows
that

T

if n=1.

3 Te,—Tes T (2.5

-1 3 PER

£ £po1% *""

are independent for every n=1 (define 1,=0, £,=0) and

Pz, =%, =7]

3

& o

=8:,"_1 if r=0 2.6)
P mol p—1 1—g, \/

=T (g,_y—&)"(1—¢) " ()( . )( ")}
'931—1( ! A : {jgo jl \m—j—1] \e,_;—¢,

if r=1

for every n22. Let Z be a nonnegative integer valued random variable with the
distribution

P(Z=n=—"" if r=0
-t 2.7)
(o, —8)— (1—gy~t if r21.

En—1
The probability generating function G,(z) of Z is given by
Gz(z2)= Y P(Z=r)7 _
r=0 (2.8)

_ &y 1+ (871—1 "'Sn)Z

_gn—l 1‘2(1_8n) .
It can be checked that G7'(z) is the probability generating function of 7, —7, |
by expanding GJ'(z) as a power series in z and comparing the coefficients of the
power series with probabilities given by (2.6). Hence 7,, —7,, | has the same distri-

bution as the sum of m independent random variables Z; each distributed as Z with
probability distribution given by (2.7). By simple calculations, it can be seen that

Mm:%—%i (29)
mezy=(é“—%f1)(ér+%fl—1) (2.10)
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and for any p=1

—a\P pl
E(Z7)~ (L—* 2
Ep—1 85
Hence
1 1
E(‘csn Tan 1)—m(m_ );
8n 8,,_1,
1 1 1 1
Var(r, —7, )= m(—— )<—+ ~1)
&y ‘gn—l &y En—1 4

and for any p=1
E(Tan“TSn_l)p:E(zl_*_.”+Zm)p
p! i .
= —*———E(Z“) . E(Zkm)
kiZz:O kil k!

Zki=p

» p! (a,,_l—s,,)z"i k' k!
o kil k! \ gy

Tki=p

—&\P pl
Nmp(fg_fﬂ) P

34
Ep—1 én

&

In particular, it follows that for any p=1

Elz,— ., ) - E{(t,— 7., MW S2E(x,, — 7, )
Ey—1— &y B‘,

8"-—1 85.
Lemma 2.1. For every nz1,
(1) Sr _Sre é(rsnﬂ_ran)gna
En+1 n
(if) S,‘g —S —12(18 i~ Te)Enrts
n— 1 n—1
(i) —2+4 Y (., — 7)1 =S, ~S, <Z(’L'£J+1 T, )e; and
j=1 j=1
(iv) foralljelr,,, Enﬂ],
n—1
—24 ¥ (T, — Te)Ej 1 S5-8; <Z(Te,+1 5 &5
j=1 j=1

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

Proof. Follows from observing that the random variables X; are non-negative,

XM <Sgp=> Xﬁ;’jﬂgsn for any j=0
and
—~1.

Here after, we shall suppose that ¢,=n"* for some a>0. Let

n
Z 8]+1

X">g,,, forany j<1

En+1

(2.16)



Limit Theorems for Sums of Order Statistics 289

and
U",: Z(Tﬁj+1__’[5j) 8j+1' (217)
j=1
In view of (2.12), (2.13) and (2.14), one can prove the following lemma.

Lemma 2.2.
(i) E(U,)=mologn+0(1),
(i) E(U)=mologn+0(1),
(ii)) Var(U)=2ma logn+0(1),
(iv) Var(U;)=2ma log n+0(1), and
(v) for every p=1,

Z E{(TSJ-+1 —‘Csj)p Sf} ~ Z E{(T£j+1 _Ts_j)p 85"-}-1} ~p! log n.
j=1 j=1

Lemma 2.3. U, — U, converges almost surely to a finite limit having moments of
order 2.
Proof. Observe that

n
U,—U= 3 (5, — 1. )(E—¢,1)- (2.18)
i1
It is sufficient to prove that the series
Z (TSJ‘-)-[ —Tﬁj)(sj—8j+1)
=1
converges almost surely to a random variable with finite second moment. Since

Ty, — T, J2 1 are independent random variables with finite second moment, it
is sufficient to show that

S E(ry,,— ) (e} <0 219
i=1

and
i Var{(z,,,, — 1, )(&;—¢; 1)} <o0. (2.20)
i=1

Since g;=j% >0, (2.19) and (2.20) hold in view of (2.12) and (2.13).

Theorem 2.1.
S

‘L'En

mlogn

converges to o almost surely and in quadratic mean.
Proof. Lemma 2.1 shows that
—2+U, =S5, -5, =U,_,. (2.21)
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(2.21) and Lemma 2.3 imply that theorem is true if
U,

n

mlogn

converges to o almost surely and in quadratic mean. Since

gl U ? 2 Var (U5 (U N
mlogn m?(log )2[ ar (U,)+{E(U,)—mlogn}*]
2
§W[2malogn+0(1)]

by Lemma 2.2 and the last term tends to zero, it follows that

v
Ay, 22
mlogn * (222)
Since
EU) | (2.23)
mlogn

it is sufficient to prove that

U,
EU)

-1 as (2.24)

Let{;=(z,,,, —7,,) ¢ It is known from earlier remarks that {;,j =1 are independent
with E({;)>0 and Var ({;) < co. Further more

fee)

ZE(C,) mZ[(;+1)a—f],-a zljl=+oo
and

o Var(() &

AL W] ~ i Jlog =t

Hence by Rényi (1970), p. 435 (Exercise 17),

24

=l 1 as. (2.25)
Y E(Q)

i=1

But U,= } ;. Hence (2.24) holds.
=1
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Theorem 2.2.
S

T-Ey.

—n____ __ Z, N, 1 2.26
(2ma log ny= ©.1) (2.26)

where N(0, 1) is the standard normal distribution.
Proof. Lemma 2.1 implies that

‘_ . S, —malogn
lim P (wéu)éﬂmp (_SL_MSM)

o \(2malogn) o \ (2malogn)* =
2.27)
— (U —malogn (
< T L
zjin;P ((2moc logn)® = u)
for every real u. But
m £, N, 1) (2.28)

(2ma log n)*

since {U,} satisfies Liapunov’s condition viz

[ E'(Tej-(»l_.’rﬁj) 8j+1—E{(TEj+1—Tﬁj) 8j+1}l3:|
Jj=1 —0

PAZICIREIEINY
j=1

as n— oo as the numerator is of the order (logn)* and denominator is of the
order (log n)* by Lemma 2.2. Similarly one can show that

U,—malogn 4

N . .
(2ma log n)* —NOD 229)
(2.28) and (2.29) prove (2.26) in the presence of (2.27).
Theorem 2.3.
Sy
mlogn —1 as. (2.30)

Proof. We shall first prove that

a—1<lim ‘28 e <Tim 108 % < 2.31)
logn logn

Let t>o. Then

1
P [—O—g—fﬂ> t] =P[1,, >n"]

logn
m—1 nt 1 J 1 nt—j
-3 (") (= 1__) .
j:zo (J) (n> ( n*

(2.32)
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. 1\~ . .
Since (1 _n_) — e~ !, there exists an integer n, such that for n=n,,

¢3

1\
(1——91) <axl.
n

Hence, for nzny, ,
lOgT ~ m~—1 nt 1 1 —J
p (108 % T e 1y Cen
[logn > ]_a j:zo (]) n'* ( na) ( )

It is easy to see that

m—1 nt 1 1 —J
1=
Therefore there exists a constant C such that for n=n, >n,,
1 o pte
Z P [ogf t] <CY g " pmm D), (235)

Since 0 <a<1 and t>«, the series on the right hand side converges. Borel-Cantelli
lemma now proves that

logz,
"<y
lim —= Togn = a.s. (2.36)

On the other hand, for any t<a—1,

logz
2 Byl <pt
p [logn __.t] Plz, =n]
m—1 1 1 nt—j
~1- 5 (”) : (1~7) 237)

joo \J/ n'° n

<i-(1-4
n

and the last term is of the order n'~% But 2 n'~*< o0 since t—a < —1. Hence

Jim 108> (2.38)
logn
by Borel-Cantelli Lemma. (2.36) and (2.38) prove (2.31) which implies that
o— logt log 7 o
Sl 2 <lim L — .
o ~"“log Tois m logz,,,, ~a—1 2-39)

for any o> 1. Since

S,
5o as.
mlogn
by Theorem 2.1, it follows that
S, __ S o

1<lim fn_<lim J-'L§
mlogr,, mlog 1 a—1

En+1

(2.40)
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for every > 1. But, for any j such that

‘Csnéjérsnﬂ
one has
Srﬁn < Sj S S18n+1 .
mlogz, ., ~—mlogj mlogr,
Hence
_ - 2
o léli__ S, <Tim S, é( o )
o mlogn mlogn™ \a—1

for every o> 1. Taking limit as a — oo, we obtain (2.30).
Remark. It can be seen from the previous proof that

gz, ., as (2.41)
logn
and
S
% 1 .S. .
) - a.s (2.42)

since E(S,)=m log n+0(1).
Let log, n denote log (log,_, n) for any p =2 where log, n=Ilog log n.

Lemma 2.4. For any p=2,
T T ) QOB Y 0B 1)y 243)
n mn*log,n .

Proof. From our earlier remarks, it is known that

T, — T =Lyt tZ,,

En+l

where Z,;, 1 <j<m are independent and identically distributed with

P(Z, =r)=21 if r=0
8"

=(8n—8n+1) 8';"'1 (1 "8n+1)r_1 lf l"zl.

Hence "
i (te,,, — T, ) —mn*(log, n+---+log,_; n)
" mn®log,n '

Y {Z,;j—n*(logyn+--+log,_,n)}
j=1

mn®log,n
(2.44)
im Z,;—no(log,n+---+log, ,n)

1
_rﬁjzl " n*log,n
1
m
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by Proposition 11 of Deheuvels (1974). On the other hand, by the same result of
Deheuvels (1974), ‘

Z,;—n*(logyn+---+log, , n)>1__

e as.
n*log,n

for infinitely many » and for every 1 <j<m. Hence

Y {Z,;—n*(log,n+logzn+---+log,_, n)}
=1

>m(1 —8)= 1—¢ as.
mn*log,n m
for infinitely many »n which implies that
m(rsm—ten)—mn (log2n+---+logp_1n)_2_1_ as.
n mn®log,n
for every ¢>0. This fact, together with (2.44), prove (2.43).
Lemma 2.5. For all p>3,
m 1 1
L ‘L'u‘——t‘l“ 10g (;) + . +10gp—1 (;—)
lim =1 as. (2.45)
S
w08 \y

Proof. Since t,=Z,,+-+Z,, where Z,,, 1<i<m are independent and
identically distributed with

PZ,,=n)=u(l-w™, rzl

m 1 1
W {log2 (;) + - +log, 4 (;)}

lim
S
u OBp u
m 1
Y [ZJ,‘ —{logz (—)+-~-+logp_1< )}]
<{im =2 “
v “ (1) 2.46
v og, m (2.46)

. .
<— li
_mjgl u~— 0 llog (l)
u P \u
1
<—-m=1 as
m

by Theorem 3 of Deheuvels (1974).
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Remark. Choosing u=¢,=n"% a>0, it follows that for all 4>0,

1, Smn*(log, n+logsn+---+log, ;n+(1+A4)log,n) as. (2.46)
for large n. '

Lemma 2.6.

Tm—2% 1 s 2.47)

u—0 1
m log, ”

Proof. Since 7, =1, —7,.,_, for every n, the result follows from Lemmas 2.4
and 2.5.

Lemma 2.7. For every A>0 and for every p=2

lim ut,log (—1—) log, (—1~) ...1log,_; (i) {logl, (1)}1+A=oo a.s. (2.48)

u—0 u u u u

Proof. Since t,=Z2,,+--+Z,, where Z;, are as defined in Lemma 2.5 and
1,22, ,, it follows that

. 1 1 1 1y \E+4
li_néuru log (—u—) log, (;) ... log, 4 (;) (logp (;))

lim uZ,  lo 1)10 1) lo 1) lo l)>1+A~—i- a.s
u—’Ou lu g (u gZ (u gp—l (u ( gp (u - 0.0] .S,

by Theorem 4 of Deheuvels (1974).
Theorem 2.4. For all A>0,

log (%) —(1+4)log, (%) <log (‘:7)

<log (%) +(1+A) log, (—1—) a.s.

2

(2.49)

u

Sor sufficiently small u.
Proof. This result follows from Lemmas 2.6 and 2.7.

Theorem 2.5. For any v>0,

o0
Put,>v)—>——[x""'e *dx as u—0.
rm) ;

Proof. Since ut,= Z uZ;, where Z;,, 1 £j<m are independent and identically
distributed with j=1

P(Z,,=n=u(l—uwy~ !, rz1
and

Puz,,>v)—e " as u—0
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it follows that uz, converges in law to the m-fold convolution of exponential with
mean one which is the Gamma Distribution as given in the theorem.

Theorem 2.6.

S,—mlogn

£
Gtogni 2 NO 1). (2.50)

. 1 1,
Proof. By choosing u = and ¢, = it can be shown that

<n<
Te[nm*l(logz m- (A= n= Ta[nm‘l (log n)! *+ 4] a.S.

for large n by Theorem 2.4 and the fact that

log 7,,

—1 as.
logn

It is sufficient to prove that

S, -1(1 —(+a) —mlogn £
S N £, N, 1) (2.51)
(2m log n)*
and
st[nm-l(logn)‘“l_mlogn—ﬂN(O 1) 232
e 1), (2.52)

But (2.51) and (2.52) follow from Theorem 2.2 since oo =1.
Remark. By some tedious computations, it can be shown that

Var(S,)=2m log n+0(1). (2.53)

3. General Case

Let {Y,, n=1} be independent, positive random variables with the same distri-
bution function F. Further suppose that for all 6>0, P(Y;<&)>0. Let G(t)=
Inf {x=0|F(x)=t}. G is a monotone non decreasing function. Let {X,, n=1}
be a sequence of independent random variables uniformly distributed on [0, 1].
Then {G(X,), n=1} is identical in law with {Y,, n=1}. The study of the behaviour
of .

S,= Y ym (3.1)
j=m

is equivalent to that of

S,= ). [m-th order statistic of {G(X}), ..., G(X))}]

j=m
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which is again equivalent to that of

= Y Gxm) (32
j=
since G is monotone non-decreasing. Let g,=n"". Define
Vn = Z (TEJH sJ) G(8j+1)a (33)
j=1
= Z oyer— Ts) G(&)) (3.4)

where 1, is as defined in the previous section. The following lemmas can be proved
by methods similar to those in Section 2.

Lemma 3.1. Foralln=1

—2+V,_ =8, =S, =V, (3.5)
and for all je[z, , 7, .1,

=24V, =8;-8, =V (3.6)

Lemma 3.2

M, =E0)=m3 6 ()i M,=E)=m 3 6 (7

1 n
—Var (V) =2m Y jG? (,+1) D2 =Var(V})=2mY jG? G)
j=1

Jj=1

Lemma 3.3. V, — V, converges almost surely to a finite limit.

Let

h(u)=G(e™™) - ¢"
and

H(u)= [ h(u) du. (3.7)

0

Lemma 3.2 shows that

M,=mH(log n)+0(1) (3.8)
and

M, =mH(log n)+0(1). 3.9

Lemma 3.4. Suppose ,!EIE) H(n)= 0. In order that

N
EG. )H 1 a.s. (in probability)

it is necessary and sufficient that

Va . o
E() — 1  a.s. (in probability )
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or
E(V,,’)—)l a.s. (in probability ).

More over
E(STE )—mH(log n)=0(1). (3.10)

Proof. The above lemma follows from Lemmas 3.1 and 3.3 and relations (3.8)
and (3.9).

Theorem 3.1. (i) If }112 H(n)< o0, then S, tends almost surely to a finite limit

with finite expectation.
(i) If ,HIE, H(n)= o, then

(@ i

" 1
lim _‘J;,,IJG l(l )z
- [jglG (;)]

then

-0 (3.11)

S,
En 14 1 . .
mH (log n) T (3.12)

®) ¥
. e ()
lim ¥ <o (3.13)

Aol

then

S,
U - s. 14
T (3.14)

Proof. (1) If H(n) is bounded, then E(S,) is bounded in n. Hence sup S,(w) < o

a.s. But S,(w) is monotone non-decreasing for each w. Hence S, tends to a finite
limit almost surely. It is easily seen that this limit has a finite expectation.

(i) (a) follows from Lemmas 3.2, 3.4 and Cebysev’s inequality.

(ii) (b) follows from Lemmas 3.2, 3.4, Rényi (1970), p. 435 (Exercise 17) and
the fact that 7, —7,,, /=1 are independent.

Remark. Let
H ()= [ h*(u) du
0

for any p=2. It can be shown that
(3.11)<=H,(u)/H*(u)—>0 as u—>w (3.15)
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and ,
(3.13)@5%2—((1% du< 0. (3.16)
Theorem 3.2. If there exists p>2 such that
[Ere ()]
lim —=— NG =0 (3.17)
= e )]
j=1 J
then
w—%N(O 1). (3.18)
{2mH,(log n)}* ’
Proof. It is easy to see from Lemma 3.2 and the definition of H,(u) that
Var (V,)=2mH,(log n)+0(1) (3.19)
and
Var (V;)=2mH,(log n)+0(1). (3.20)

The result now follows from Lemmas 3.1 and 3.3 and relations (3.8), (3.9) by using
methods similar to those used in Theorem 2.2.

Remark.

(3.17) <= for some p>2, krg %’%:O. (3.21)

Theorem 3.3.

E(S., )=mH(log n)+0(1) (3.22)
and

Var (S,en) =2mH,(logn)+ 0 (J_i G? (]l) ) . (3.23)

Proof. (3.22) and (3.23) follow from Lemmas 3.1 and 3.2.
We shall now state a result regarding the asymptotic behaviour of S, /E(S, )
or equivalently that of i "

S £
mH(log n)’
Suppose that

. kl'H,(u)
31T2_FI?{W:AI(<OO’ k=1,2, ... (3.24)
and A, >0 for all k. Let

!
B,= Y b: A, .. A, (3.25)

P 1
raarmp ! 1 S(rg, 1)
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for every p=1, where S(ry, ..., r;) denotes the number of permutations leaving
Fi, ..., F; INvariant.

Theorem 3.4. If (3.24) holds, then there exists a distribution L with moments B
defined by (3.25) and

S
Ten 4
e (3.26)

Proof of this theorem is the same as that of Theorem 9 of Deheuvels (1974) in
view of the estimate (2.14).

Theorem 3.5. If r}{rg H(n)= o0, then

p

lm ———2 .logn=—. (3.27)
m

Proof. This result follows from Theorem 3.3 since
H,(logn)
-lognz
He(logn) 08"zl
by Schwartz inequality.
Theorem 3.6. If jG(1/)) is an increasing sequence, then, for all A>0,
{(log n)(log, 1) ... (log,_, n)(log, n)* +4}~*
S,

En

o (%) (3.28)

<(logn)(log, n) ... (log,_, n)(log,n)* **  a.s.

for large n.
Proof. Let A>0 and define

a,=nG ( ) (log n)(log, n)... (log, _, n)(log, n)* *4. (3.29)

Then q, is a positive increasing sequence and

e i(zw 1) G(z)

a, 4y j=1

7.) G(&)

z 51+1
Therefore
! "1 1
¢ () em. Lo
an j=194;j
Z": 1
=m), - - - - - .
£ jlogj(log,)) ... (log,_, j)(log,j) +4

II/\

J

(3.30)
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Since the series
® 1
I
j=1J ogj(log,j}-..( ng~—1.])

if follows that V,/a, is bounded above almost surely. On the other hand

1+A<OO

5., 20~ =116 (5).

Lemma 3.1 and Lemma 2.7 give the desired result.

Remark. 1t can be shown that (3.28) holds if there exists a constant K >0 such
that for every to and t=¢,,

@g K M. (3.31)
t to
Theorem 3.7. (i) If
. H(u+logu) © h?(u)
kiR | .
,EIE; ) and g T du< oo (3.32)
then
S 1 as (3.33)
mH (log n) ’
(ii) if there exists a sequence u,1 o0 such that
. H(logn+u,)
m = g (3:34)
and if
. H,w _
31_1101o () =0 (3.35)
then
S, ’
mH(log ) 2,1, (3.36)

Proof. (3.33) follows from Theorems 3.1 and 2.4 since S, lies between

Stgnlm(logz n)l +A and Sranm’l(log n)l +A4

for any 4 >0 almost surely for large n. Similar arguments give (3.36) since 7, _u,— o
and 7, u;?

Theorem 3.8. If u, 1 oo such that

0.

. Hy(logn+u,)
lim =2\ "2~ T 7l )
o THy(ogn) (337
H —
lim (4, +log n)— H(log n)= (3.39)

n— oo (HZ(IOg n))% ’
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and if for some p>2

H (u)
o
then
S,—m H(log n) g
{2m H,(log n)}*

=0

£ N(0,1).

B. L. S. Prakasa Rao

(3.39)

(3.40)

Proof. Proof is similar to that of Theorem 2.6 in view of Theorems 3.2 and 2.4.

Finally, we have the following theorem which gives bounds on §,,.

Theorem 3.9. If there exists a constant K >0 such that for all t, and t21t,,

FG) | o Fito
t to

then, for all A>0,
mnG (1)
n
logn ... log,_; n(log, n)* +#
=S,
<mnG ( ) logn ... log,_; n(log,n)' +*

for large n.

(3.41)

(3.42)

a.s.

Proof. This result follows from Theorem 3.6 and Lemmas 2.5 and 2.7.

4. Examples

Example 1. Suppose F(t)~ f,t%, a>0. Then
() ifa<1, S, tends a. s to a finite limit;

S
(if) f a= 1 ~+—as and
Jfo
"1 gn

e N, ;

lo n)
(77 s
(iii) if a> 1, there is a distribution L such that

S,

€ _.?;) L

7111_/;_
’"{1—1/61}
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and for sufficiently large »n, for every 4 >0,
mn'~Y(logn)~t ... (log, n)~4+4 f5 11

£5,

<mn*~*(logn)(log, n) ... log, n) ** fg71*  as.

Example 2. If

0<A§mn£?§ﬁﬁ£?

ZB<w

then
S, ,
—_——
mH(log n)

and

S,—mH(logn) e,

{(2m H,(log n)}* N(@©, 1).

e
Example 3. Suppose F(t)~ft {Iog (;)} . Then,

(i) fa< ~1, S, tends a.s. to a finite limit;
(i) ifaz ~1,

mH (log n) B
(i) if 2z —1

—-mH

S,—m (logn)ﬁ»N(O,l).

{2mH,(log n)}*

These examples were discussed in Deheuvels (1974) for the case m=1.

5. Some Further Results

303

Suppose {X,, n=1} are independent uniformly distributed random variables on

[0, 1]. Let X{™ be the (j—m+ 1)-th order statistic of (X, ...

§,= 3 &m.

j=m

, X;). Define

(5.1)

One can obtain the limiting behaviour of §, from that of S, derived in Section 2.

Theorem 5.1.
§—'5 —1 a.s.
n

Proof. Observe that

S,=(n—m+1)-S§,

(52)
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where S, is the sum of the m-th order statistics of (1 - X, ..., 1 —X)). But
{1-X,,n21}
are independent uniformly distributed on {0, 17. Hence

Sa

—1 as.
mlogn

by Theorem 2.6. Hence

S, (n—m+1)-S§, n—m+1 S, mlogn
no n T oon mlogn n

converges to 1 almost surely as n— oo.
Remark. In particular, if m=1, one obtains that

1 n
- Y max(X,..., X)—>1 as. (5.3)
=1

Theorem 5.2.
S,—n—mlogn o ‘
“Qmiogn)} = N(0, 1). (54
Proof. This theorem follows from Theorem 2.6 by noting that
S,=(n—m+1)—S,,
E(S,)=(n—m+1)—E(S,),
and
Var (§,)= Var (S,).

Remark. In particular, if m=1, we obtain that

max (X, ..., X;)—n—logn
j=1

i= £,
GTogn N(O, 1). (5.5

Theorem 5.3. Let {Y,, n=1} be a sequence of positive, independent and identi-
cally distributed random variables bounded by a constant b>0 i.e.,

b=Inf{a: POLY, <a)=1}.
Then

S —b as. (5.6)

n

where §,= Y. ¥™ and Y™ is the (j—m+ 1)-th order statistic of (Y, ..., Y)).

J

Jj=
Proof. Let {X,, n=1} be independent uniformly distributed on [0, 1] and
X{™ be the (j—m+1)-th order statistic of (Xj, ..., X)). Since ¥,<b a.s,, it can be
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shown that
YmM—b  as as jo oo (5.7)
and
X{m—1 as. as j—oo. (5.8)
Hence
Yim
njzﬁﬁb a.s. as j— 0. (5.9
J
But
S, 14, 18 .
. (L P X m)
- ”1§1 ] nszlm j
Hence
S

L _5b.1=b as. asn—w
n

by (5.9) and Theorem 5.1.

Remark. Theorem 5.3 reduces to Theorem 1 of Ghosh et al. (1975) when m=1
and the proof uses the same technique as in their paper.

Let {Y,,n=1} be a sequence of positive, independent random variables with a
common distribution function F and G(t)=Inf {x=0|F(x)=t}. Let {X,, nx1}
be a sequence of independent exponential random variables with mean one. It is
easy to see that {Y , n>1} is identical in law with {G(1 —e~*"), n=1}. Hence the
asymptotic behaviour of

S =

n

=

¥ (m)
Y

J=m

is the same as the asymptotic behaviour of
§,= Y G(l—e X7 (5.10)
j=m

where X{™ is the (j —m+ 1)-th order statistic of (X, ..., X;). Suppose F is absolutely
continuous with density f which is continuously differentiable and there exists
0<b< oo such that

(i) fl)za>0 forall 0=<x=b, (5.11)
(i) 1f"x)=f<oo forall 0=x=b, and (5.12)
(i) b=Inf{a: POLYZLa)=1}.

(1) and (ii) imply that

2

G(1—x)= G(1)—xc;'(1)+x7 0(1)
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in any neighbourhood of zero. But G(1)=>b. Hence

j=m

=(m—m+1)b— G’(l){

j=m

=(n—m+1)b—G’(1){z X)(W} Z e H™I2.0(1)  as.

"‘3} Z —XM2.0(1)  as.

i
! §M=

=m
Since e~ ¥ has a uniform distribution on [0, 1],

m(m+1)

—X(m)Z
B =g+

0
. . 1 .
Since the series ), — < oo, it follows that

j=m

[(e™)™12=0,(1).

J

I

Hence
n

S,=(n—m+1)b— (1) {]Z —x)§m)}+0p(1).

=m
Let

n

5,= 3 .

j=m
Since e~ ¥ is uniformly distributed on [0, 1], Theorem 2.6 implies that
S,—mlogn
2 = -Z5>N(,1
(2mlog n)* ©,D.

But
—fW){8,—(n—m+1)b} —mlog n+0,(1)=S8,

and hence

—f(){S,—(n—m+1)b} —mlog n+0,(1)
(2mlog n)* SNOD

ie.,

f){S,—nb}—mlogn
(2mlog n)* S NOD.

Hence we have the following theorem.

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

Theorem 5.4. Under the conditions of Theorem 5.3 and relations (5.11) and (5.12),

S,— f(l) log n

{2mlogn/f* (1)}

£, N(0,1).

(5.18)
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Remark. We were unable to study the behaviour of S, for unbounded random
variables by the methods described above. We conjecture that

S t
nlogn < e —log(1—F(1) (5.19)

almost surely. Ghosh et al. (1975) have proved that (5.19) holds for m=1.
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