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On Glivenko-Cantelli Convergence* 

D. W. MOLLER 

0. In this paper ideas which were first developed by the author in [6] are 
applied to the investigation of the almost sure convergence behavior of empirical 
distribution functions (the proofs, however, do not depend on results of the 
previous article). Generally speaking, the problems in question suggest themselves 
once the concept of almost sure convergence is reformulated in terms of the 
weak* topology of measures: let (41, 42,-..) be a sequence of random variables 
taking values in a separable metric vector space E; then 

P [! im ~-n = 0] = 1 if and only if ~iln s176 4,+1,...) = 57(0, 0 . . . .  ); 

here ~ denotes the operator assigning the distribution to a random variable 
(which, in this case, is a sequence of random variables); the limit is to be inter- 
preted as pointwise convergence on real-valued bounded measurable continuous 
functions, which are defined on the space H of all sequences of elements of E 
having uniform topology. 

Given almost sure convergence we can replace H by a separable space and 
ask for the limit behavior of Y(N(n)(~,, ~+~,...)), N(n) being suitable norming 
factors (!im N(n)--oo). In the following the answer is given for the case that ~n 

is the error D, of the n-th sequence of independent uniformly distributed observa- 
tions. By means of Theorem 1 below it will for instance be possible to reduce 
the problem of finding the limit distribution of the maximum error that will 
occur after the n-th observation to a simpler (combinatorial) problem. Although 
this distribution F is not known explicitly to the author, the present method 
yields the estimates 

e-2~Z<=l-F([O,o~])<=2e-2~2 (o~>=0) 

(the left inequality being trivial). 

There are not many results in multidimensional fluctuation theory as yet so 
that explicit applications of Theorem l are not abundant. However, we mention 
that from a theorem of Hobby and Pyke [2] together with Theorem 1 it follows 
that the asymptotic distribution of the t >  1 maximizing the Hilbertian norm of 

DI. tl - �89 Dn 
has density ct ~,~c~-2. Another application is to the asymptotic joint distribution 
of the medians med(n) of the first n of a sequence of independent uniformly 

* This work was prepared while the author  was Miller Fellow at the University of California, 
Berkeley. 
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distributed variables: the distributions of the (linearly interpolated) processes 
t t ,~V~(med(nt)- �89 (t_>l) converge weakly to ~ ( t t , ~ ( t ) / 2 t ) ( ~ = B r o w n i a n  
motion) in the space of all continuous functions on [1, c~) vanishing at oo (uniform 
topology). 

An estimate of the speed of convergence will be given by Theorem 2. The 
author believes that it cannot be improved over O(n-�88 

1. Let (X~: i=  1, 2, ...) be a sequence of independent random variables which 
are uniformly distributed over [0, 1], and let 

F.(s)." =--1 {number of X i<s  (iNn)} 
n 

be their n-th empirical distribution function (se [0, 1]). We put D.(s)= = F. (s)-s.  
Then, as is well-known, D.EN [0, 1] (= the space of real-valued functions on the 
unit interval without discontinuities of the second kind, endowed with the Sko- 
rokhod topo logy)wi th  probability 1 and l imLP( l /~D. )=LP(s~( s ) - s~ (1 ) ) ,  

where ~ denotes Brownian motion over [0, 1] with ~(0)=0. Moreover 

P[ l i rn  [[D.[[~ = 0 ]  = 1 ([[ [[~ being uniform norm). 

The topology of ~ [0, 1] can be described by a metric p~ such that 

Pe(Yl, Y2)= [[Yl(s)--y2(s)lloo (Yl, Y 2 ~ [  0, 13). 

This metric will be used to define a metric on the space eg o of all continuous 
mappings x from [0, oo) to ~ [ 0 ,  1] which satisfy 

(i) x (0) = 0;  

(ii) lim IIx(t)H~=0: 
t~oO t 

namely, define 

We form the process 

p (X1, X2):  = sup t~o t v l  

x2(t)) 

t .~A.(t) ,=]//ntD.t  

where D.t is obtained from the (Dk: k =  1, 2 . . . .  ) by linear interpolation: 

D, (s) = (1 - (t - [t])) D m (s) + (t - [t]) D m + 1 (s). 

Theorem 1. There exists a process A, A 6ego with probability 1, its distribution 
being uniquely determined by the following two conditions: 

(i) A has independent increments A (t + h ) -  A (t); 
(ii) ~q~(A (t + h ) -  A (t))= ~a (s,~ ]//h(~ (s)-  s~ (1))) (h > 0). 
(t, s),~A (t), is a Gaussian process over [0, oo) x [0, 1], continuous with prob- 

ability 1, having covariance function 

EA(t)~A(t')~,=ts(1-s') (s<s ' , t~t ' ) .  
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For A the inversion formula holds: 

where the value for t = 0 of  the process on the left is understood to be O. 

A.e% with probability 1. 

lira 5~ (A,) = ~ (A) in weak* topology. 
n ~  oo 

To clarify the relation between Theorem 1 and the previous section we state 
the following immediate 

Corollary. Let cg 1 be the space of all continuous mappings x from [1, oe) to 
@[0, 1] having ltim [Ix(t)lJ~ =0,  endowed with uniform topology, cg 1 is isomorphic 

to ego1, the space of all continuous mappings x from [0, 1] to ~ [ 0 ,  1] with x(0)=0,  
the isomorphism being induced by the point transformation T: t ,~  t-1. 

l i m  Y( t , ,~  ]/-nDm: t >= 1)= ~ ( t , ~ A  (t)/t: t >= 1) 

= r ~ ( t , , ~ A  ( t)  O< t<_ 1) 

where the convergence takes place in weak* sense for measures on ~ .  

The proof of Theorem 1 can be obtained by a straightforward generalization 
of the proof of Theorem 1 of [6]. However, some additional attention must be 
paid to keep the s-part of the "paths"  smooth. In the following we sketch the 
main steps of the argument. 

Proof(Theorem 1). Let us first point out that A,(t) is asymptotically equal in 
probability to [,tl 

-�89 
n ~ (l~x, ~s~- s), 

i = 1  

i.e. to a sum of independent random vectors. The finite-dimensional distribu- 
tions of A, therefore converge to the corresponding marginals of ~(A),  and the 
theorem will be proven i f (~(A, ) :  n=  1, 2 . . . .  ) can be shown to be tight. In order 
to show that _P[A,~ns*Cgo]=l for all infinite n (cp. [5, 6]) in an enlargement 
of ego, or, which amounts to the same, to establish the existence of a set S c ns* ego 
(depending on n) with P[A,eS]>__I-e  for given standard e>0,  we apply the 
inequality 

P [  sup IlA,(t")-A,(t')ll~>=4?] 
t', t"E(O, 1/n, ...}c~ [0 T] 

| t " -  t ' l < 6  

--<2-- sup P[IIA,(t")-A,(t')lto~>=y] 6>= , 
- -  (~ t' t " ~ { 0  1/n . . . } ~ [ 0  T] 

t"-- t"  <6 " 

which, given a finite positive integer m and a standard Tm> 0, permits to find a 
standard 6,n > 0 satisfying 

P [ sup ][A,(t")-A~(t')]loo> 4~] < ~ 2  -m. 
Lt ' , t"ElO,  1/n . . .}c~[O,T~] mJ = 3 

]t"--t '  <g~m 

14 Z. WahrscheinlJchkeitstheorie verw, Geb., Bd, 16 
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Let mo be the largest (necessarily infinite) integer m, for which this inequality 
holds. Furthermore, to assure smoothness in s, let (t~: l=  1, 2, ...) be a standard 
dense subset of [0, oo); then, by tightness of (~(s'~A,(h)~): n =  1, 2, ...) there is 

<--e 2-1 for all l<l  o a standard compact Kz~N[0 ,  1] such that P[A,(tl)r 3 
(1o infinite). 

Delaying the choice of T,, > 1 we define 

4 t S=  (~ x: sup IIx(t")-x(t')lloo<= 
m=l l t" t"E[O Tml 

~ ( x :  sup x(t) < _ l ; c ~ { x : x ( h ) e , K z } "  
( t>-_rm t oo--mJ I=1 

Then S c n s  *% if T,, ~ Go (m ~ oe) as follows from the simple lemma below. 

Lemma. An s-continuous image of a topological Hausdorff space in the sense 
of Robinson [8] consists entirely of near-standard points, provided the same is true 
for the image of an s-dense subset (internal or not) of the original space. 

In order to obtain P [A,e S] > 1 -  e it suffices therefore to choose T,, standard 
and so large that 

,Lsup 
Substituting Tm = n,,]n we obtain 

, [ s u p  ~ 1]= , [ l lkDkl loo>_ k k>nm ] Lte,,~/, ~ > -- m 1/~ for some 
(1) 

< ~lP [ max ILkDklL~> n'2~-~ 
j= Lk=nm 2J = m l/n " 

Sk= kDk being a sum of independent random variables the generalized inequality 
of Kolmogorov is applicable saying that 

P [max  IISkll~o > 2 M ]  <2P[llSkollo~ >__M] 
k <~ko 

provided that P [ LISkll oo ~ M] _-<�89 for k__< k o (which is certainly the case for M = 
nm 2 j-  1/m l /n  according to the inequality of Dvoretzky-Kiefer-Wolfowitz [1, 4]: 

P E[IkDkll co >=M] =< ca exp { - c 2 MZ/k} <= c a exp { - c2 ] /n  2~/4 m} 

(q, c2 constants)). This inequality therefore yields 

n,.  2 i -  1 
f ] 

P max ][kDk][oo>= ] 
Lk<nm2 j m l /~  

< 2 c l  exp ( 
C22J -2  ~m)  

mZ " < 2 q c ~ l m  2 n ' 
nm 
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whence (1) is majorized by 
2clc21m2 T,/1. 

Now put Tm=6ClC21e -1 m22 ". 
This concludes the proof of the main statements of Theorem 1. As to the 

inversion formula we content ourselves with mentioning that it is proved by 
computing covariances (for the simpler case of Brownian motion on the line 
cp. [2], problem 3). 

2. In the following we determine the probability that the process t,,,,,lfnD, t 
(t> 1) lies between two bounds (i.e. continuous functions from [1, oo) to cd[0, 1]) 
g~ and gz. In order to cover a variety of interesting special cases we state a theo- 
rem of greater generality first. 

Let L denote the Prokhorov-distance in the space of distributions on ego, i.e. 

L(QI, Q2)= max inf{~: Qi(F)<Qj(U)+e for all closed F~Cgo}. 
i , j= l , 2  

Theorem 2. L(5O (A n), 5~ (A)) = o (n- ;~ + ~) (e > 0). 

Proof. As a first step we construct a mapping ~,: 9 [0 ,  1]-~@[0, 1] having 
the property 5O(7:, A (1))= 5r and 

log n -I - 1 
P JlTc,(A(1))-A(1)rloo>COc n~ J<=C,a /n 

for l>  4, a > 1 and C independent of a, l, n. 

To this end let us denote by X1 <X2 < . . .  < X ,  the ordered n-tupel of inde- 
pendent uniformly distributed random variables. We put 

n 

A,(1)s=~iFl(l[x,<=sl-s), 

whence A, (l)xk = ~  (k - nXk). Now the Xk, as is well-known, can be represented 
]/n 

as exponentials of sums of independent random variables. 

~,- k: = - log X k have the following properties: 

(i) o<r 
(ii) s ~2-~1 . . . . .  ~ , - ~ , - 1  are independent; 

(iii) P [ ~ + ~ - ~ i < a ] =  ~(n-i)e-("-OUdu (i=0, 1, . . . , n - l ;  40=0). 
0 

A s  

E(~i+l-~i)=(n-i) -1 and var(~i+l-~i)=(n-i) -2 
k 

s(k)= F~(~-~_~-(.-~+I) -~) (=oifk=o) 

14" 

(i=0, 1, ..., n -  1), 
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is a centered partial sum of independent random variables having 

k 

E~(k) 2 = ~ (n -  i+ 1)- 2 
i = l  

Let ( denote the process defined by 

( ( s )= ( s+  l)a(1)( ,+,)- ,  (s~0) 

which is a Brownian motion. By a theorem of Skorokhod [-9] there exist n inde- 
pendent non-negative random variables zi (i = 1, ..., n) having Ezi  = n var (~i- ~i- 1) 
and E ' c k < = M k n k E ( ~ i - - ~ i _ l - - ( n - - i + l ) - l )  2k- (k>l ,  M k absolute constants) such 
that 

k 

] / ~ ( k )  and ( ( ~ ' , z i )  
\ i = 1  / 

have the same joint distribution. 
Now define re, by putting 

x,(d (1))s=A,(1)s 

where the underlying Xi are the 

exp - ( , Z z i  - ~ , ( n - i + l )  -1 . 
1. V n ~ i = 1  ! i = l  

Clearly 2'(rc, A (1))= s (A,). 

To make plausible that A,(1) is close to A (1) observe that by the law of large 
n - k  n - - k  

numbers ~ zi is close to its expectation ~ E z  i which is approximately equal to 
n i=1  i=1  

- - - 1  such that A.(1)xk is dose to 

l/~ ( k -  exp { - ~ n - n  ( ( k -  1) - log k +  7 (n, k)}) 

1 H 7(n, k)= y, ( n - i +  1)- -log-~- being small 
i=1  

which again is close to 

n ( 1 -  exp" 1 ' I t ;  

The rigorous proof follows. We put 2(n)= C n -~  log n with a positive con- 
stant C that will always be assumed to be large enough to allow the estimates 
given below. Furthermore, to avoid massing of subscripts, we agree to simply 
omit them denoting all positive absolute constants by C (so that two C's need 
not be identical). Let c~ denote a variable with range [1, oo). 
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In the following we majorize P[IIA,,(1)-A(1)II~>c~2(n)] by a sum of eight 
terms I, II, ..., VIII (in the order they are listed down below) each of which will 
then be replaced by an upper estimate. For brevity write #(n)= l/n log n. 

P[IIA,,(1)-A (1)11 ~o > cd  (n)] 

< P [  sup IA,,(1)s-A,,(1)x,J>~;v(n)] 
k<_n 

Xk <~5;<=Xk + 1 

log n ] 

k) k 
+P[Lu(,)= k=,sup< V ~ IL(1-e-Z("-k)+z'("'n )--~E(n-k)> c~ 2(n)] 

+P[t.~,o)=<k_-<.sup ]/nnE(n-k)-n<'-k k.("~kE~i),i=~ , >o~2(n)] 

+P[ sup k ~ ( k - 1 ) - s ~ ( 1 - 1 )  >o~2(n)] 
Lls- k/n] < - C ~  

ls (n) < k "d n 

+ P [  sup JA,(ll~l>e2(nl]+P[ sup lA(1)sl>os2(n)]. 
s < It (n)/n s < # (n)/n 

We now show that N < Cz c~- z n- 1 for N = I, II, ..., VIII (l any positive integer > 4). 

< C P  [2 (n/2)< -log(~ ]/~ 2 (n))] 

< C exp { - ] fn  log(e 1/n 2 (n))} 

< 2 P [  sup IA,,(1)s-A,,(1)x,.]>o~2(n)] 
k>n /2  

X k < s < X k + l  

< 2 P r  sup 1/~ [Xk+l- Xk] > ~ 2(n)] 
k=n /2  

-< 2P [ sup n -~ e- z(,- k, > c~ 2 (n)] 
- -  k >=n/2 

=< 2 P [ sup [ - e ( .  - k)] > log(~ ~ x (n))] 
k ~ n / 2  

< 2 ( inf P IS (n -  k) => 01) -1 P [~ (n/2) < - log (c~ ]/~ 2 (n))] 
k >n/2 

(according to a well-known inequality; 
we assume n to be even for simplicity 
only) 

(after the central limit theorem) 

by Cebysev's inequality (and hence 
< c(~ 1/~)- % 
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as the moment-generating function Eexp{ul/n~(n/2)} is bounded for 
namely, a direct computation shows it to be equal to 

" 1 ( . /2  "1 n(n-  1) ... n/2 r 2 ? < C. ,-, exp 
(n-  1/~) ... (n/2-1/~) exp ~ ~- 

k log n ] 
II _<2P [sup  Xk-- >Ca 

- -  kk >n/2 ]//~ .] 

[ log n ] 
=<2P,sup  II-e--~r 1/n J 

kk=n/2 

III 

U ~ I "  

-<2P [ sup  IS(n-k) l>  Ca logEl] (as S ( n - k ) > - y ( n , k ) + l o g k / n  and 
- Lk_->./2 ~ - J  sup 7(n, k)=O(1/n)). 

k >=n/2 

_-< C e- ~ log n < C/El~ according to the above argument. 

k sup< ~ y(n, k)] =<P[ sup ~f(S(n-k) -~(n ,k ) )>o~2(n) -#( , )=k=.] /n  j 
k#(n)<= k<n ]/ n 

(where f ( t )=  11 - e - t  t I) 

_<P[ sup ~ k  [ fA1] (Z (n -k ) -y (n ,k ) )>a2 (n ) ]  
- -  Lu0,)=<k__<, ]/~ 

(as sup k7(n,k)<C) 
u(n)<k<n 

L#(n)=k=n ]~,El 

- , 2  a,Z(n) ] 
< P  [~  sups  (E(n-k)-y(n,~))  > ~ ]  

Ln3 logn<k<_n ~ logn 

a2(n) -I 
+ P [ sup 

Lnk logn<k<n ~6 logn 

+ P  sup (~(n-k)-7(n,k))2> n ~ 
n s logn<k<n 

the first term of which will be estimated now (the others do not present additional 
problems); it is 

< P [ sup (Z ( n -  k)) 2 > C a n- r 
n �89 logn<--_k<=n ~a logn 

(as ( a -  ao)2 > A & a o < ~ implies a 2 > a/4; observe that for k > g(n) y (n, k) < 
C (l/~ log n)- l <= C n - ~ ) 

< P [  sup ,u(n) S(n-- k)2 > Ca log 2 n]. 
n �89 log n<=k<=n -} logn 

But as the moment-generating function of l / ~  ~ ( n - p  (n)) is bounded for u = i, 
this is < C e x p { - ~ C a l o g 2 n } < C / n  r by an argument similar to the above. 
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To obtain an estimate of IV, we need the following lemma which we will 
prove first. 

Lemma. For each integer l> 4 there exists a constant C~ such that 

[ ~1(  n ) >2-~c~nlogn ] logn 
P zi (n - k) ~ # (n)l/2-1 o;1 i (n--i-+l) 2 3 forsome k<=n-#(n) <=Cl �9 

Proof. As a first step we show 

P sup P~ >27l~  ~ <=qZ/l-lel, (2) 
Lk<--_n--q i 

where q < 2  and Pi= zi ( n - i +  1) 2- " 

9 - 1  
Pi has the same distribution as ( n _ i + l ) 2 ,  where ~ is a positive random 

variable stopping Brownian motion ( in the sense of Skorokhod [93 such that 

d~(~( '~))=e-"-l  du (u=>O). 

Thus E Pl = E ('~ - 1)l/(n- i + 1) 2/(l => 1) whence 

1 n--q n--q 
v a r - -  ~ z~= C ~ (n+ 1 - i )  - ~  C/q 3 

n i = 1  i = 1  

for small values of q/n. Therefore it is reasonable to consider the "normalized" 
variables 

t/k : = q} Pk- 
Now truncate: 

qk: = otherwise, 

~;. =~k-~. 
Hence 

k P[sUPLk<=n_q i ~ l  r/i > 2c~ l~ n] 
k 

~ ,_,,__<,-,,Isup, ~i"" > 2~ io~,] + ,  E,,~p?,~,~ > o f =  _ 

- [ L  j - < 2 P  r/'/ >2c~logn + Y, Pl-lr/kl>~] 
k = l  i = 1  k = l  

< 2 ~ - E e x p  t/'i + ~ T  exp l -  2~'it~"Jl" 2 Er/~c~-' 
k = l  i -  i = 1  . )  k = l  

the second term of which is 
n--q 

= E ( ' ~ -  1)tq 3l/2 ~, ( n - i +  1)- zlc~ -I 
i = 1  

<= Ctq -1/2+1 o~-t 
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for q <= n/2, as can be seen by an integral approximation of the sum. As q__< n it 
remains to show that 

E exp q < C e ~ 

(and similarly for the parallel term). But 

Eexp  t 1 = Ee  ~ 
i i = 1  

k 

H E ( I  + y i l  I ' 2 e ~ (OiG(O , = + ~ ( ~ , )  ' 1)) 
i = 1  

k 

< [ I  (1 +lN~'ll +�89 e~E~ 2) 
i = I  

and 

together imply 

IE~'~I ~ E  I~'i'l 

~ ( E  I~i'12 P I-I~'/I > 0]) ~ 

~ ( E  I~/I 2 E 1~/i14) ~ c~ -2  

Cq~ 
= o~2(n_i+1)6 (El~i[2<=Cq3(n-i+l) -4) 

k ~ k 

logEe'~*"'< ~ log( l + [E rfi[ + �89 e~ E tl 2) 
i = 1  

n--q 

< 2 (Igrfil+�89 2) 
i = l  

-I 
<C C e ~ 7 < C e ~  

g_+ q3 

whence (2) follows. 

The statement of the lemma now follows by summing up: 

P Pl > (n_k)~ for some k<n-#(n)  
i 

[ =Zl 2}c~l~ 
< ~ P Pi > (n_k)~ 

[log # (n)/log 2] i 
=< j < [log n/log 2] 

k 

+ P  [ sup  ~lPi > 2~176 ] 
Lk<=n/2i (n/2) ~ 

k 

< ~ P [  sup ~=,pi> 
[log g(n)/log 2] kk<-- n -  2j  i 

__< j < [log n/log 2] 

s Cl 2 (2- j)l/2- 1 0~- 1 _[_ 

for some k e [ n - 2  j+~, n - 2 J ] ]  

2 e log n ] Ct 
(2j) ff " q 21/2-10:l 

1 < C~logn 
c~ < Cl Y, ~(n)'/2- ~(n)Z/2-1 2 1 / 2 - 1 ~ l  --~ ... l o~l ~ o~l " 
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According to this lemma, therefore, it suffices to consider the quantity 

P 
-I 

for some kz[#(n), n]J. 
. A  

It can be considerably simplified by the use of 

i=t ( n - i + l )  2 - 1  C k-Z-, 

which 
which 

0 
- -  1 ~., o,,,_l 

which is 

_<P 

A < = C - -  

/7 
follows from Euler's summation formula. Observe that ~2 < c ~ -  
allows us to replace (3) by the larger quantity 

>c~-2(n)  for some k~[/~(n), n]] 

sup ( ( ~ - -  1) - ( (s )  >~2(n)] 
t~_~+11~ca '7." 

n/3 <k<n '  

+ P  []((r)-~(s)] >c~(r+ 1)2(n) for some s, 1"> 1 such that Is-r] 

<__ 8 c~ (r +l/~1) ~ log n ] 

=A + B here ~ - -  1 was substituted by r . 

4 ~logn ]/~ ] 

Cn+ { c~,~(n)21/~ } 
< ~ 2 (/7) I/~ogn exp log n 

Cn ~ C 
- -  3 Z ~ - -  ~(log n)" exp { - Cc~ log n} < n ~ 

B<P[l((r)-((s)] >c~r2(n) for some s, t'___ 1 such that Is-r] < Co:r-~n -~ logn] 

< P [  ~,r__>lsup @((r)- l ( (s )>e2(n)]s  
a z 

[ s - r t  < C ~ r ~  n - ~  logn [11 
+ P  -~--~-]((s)[>c~Z(n)for some s,r~[1,1/(n ] 

such that [ s - r l <  Car~n-�89 
=B' + B". 

nlogn 
k~ 

(3) 
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By introducing the Brownian motion ~(s)= s ((l/s) B' becomes 

=<P[ sup I~(s)-~(r)l>ct2(n)]<=~- (as above). 
]s--r]<Car�89189 

s,r<l 

B"<  P [K(s)l > ~s~ ~(n) n~ log -~ n for some s~[1, I /n i l  

< P [  sup [((s)[ > ~2(n) n ~ log -1 n] 
1 

s e  [1, n~- log  - 2 n] 

+ P [  sup ]((s)l>~2(n)n�88 
s s [n�89 l o g -  2 n, n�89 

both of which are clearly < C/n ~. 
From the same argument it follows that V< C/n ~. Also VI can be treated 

similarly; we omit these details. 

As #(n) log n n - i f  ~ , a function occurring in II, the  problem of giving an esti- 

mate of VII can be reduced to the estimation of VIII. Putting A (1)s = (o ( s ) -  s (o (1) 
(~o some Brownian motion having ~o(0)=0) we obtain (using the symmetry 
s~ l - s )  
VIII < P [ sup ]~o(S)l>c~2(n)]+P[(o(1)>C~n �88 

-o ~ ~ ~ ~og./~'. 

= P > + c/:<= c/,:. 

In a second step of the proof we consider the processes A. and A for t <  1. We 
are going to construct a mapping/-/," Cgoi,,~C~ol having the properties 

(i) 5r 4 ) =  ~(z[,)  where 

~,,,.2(t)=SA"(t) for t=i/~(n) ( i=1 . . . .  ,~c(n)) 
[linearly interpolated otherwise; 

here •(n)< n will be determined later (we agree to skip minor difficulties arising 
from the fact that i/~:(n) may not be of the form fin); 

(ii) P[IIII, A -A  1[oo > / ( n ) ]  -< CJn where A(n)= CJnl/6-e(8>O). 
To this end let 

( i + 1 ]  ( i ) ( { i + i ~  ( i ) )  

(i= 1, ..., •(n)- 1), where ~,, is a mapping constructed for A(1/~(n)) in the same 
way as ~, was for A(1). (According to our convention we deal with n/~c(n) as 
if these numbers were integers.) This defines H,. 

To show (ii) we note that 

P [sup It//. A(t)- A (t)l[~, ~o > A(n)] ~ CP [[IH,, A (1)-  A (1)[[ oo > A (n)] 
t 
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which in turn is 
,<'in) rl,<O,) ] 

s c y, P [ > A(.) 
j = l  i-- 

+ CP[Is"- s'Isup- 1/ r '  ( .)  ]A, (1)s,, - A, (1)~, > A(n)] (4) 

sup IA (1)s, ,-  A (1)~,1 > A(n)]  ; + CP[is,,_s,l<=l/~,(n ) 

here ~c'(n) is a function of the same order as ~c(n). 

Now from the result of our first step it follows that 

l~ l 

E [w(i, Yt)s=j/K(n)[l~ CII~ ( ~ - )  ls -l/2 (/=4,6 .... ). 

�9 ~ ( n )  

Observing that in the multinomial expansion of ~ w(i, n)~ the monomials having 
i = l  

some exponent equal to 1 have expectation 0 (such that the number of monomials 
with non-vanishing expectation is of order ~r I/2) we conclude 

Consequently, by Cebysev's inequality, the first term in (4) is 

< ClA(n) -I (l~ t 
n, 4 ~(n) '4 ~' (n). (5) 

Moreover, putting K(n)=logn/A(n) 2, we obtain C~/n as a bound for the second 
and third term. Therefore A(n) makes (4)< CJn (e>0) i f / i s  chosen to be large 
enough. 

Observe that from (5) we have for fl> 1 
C~ 

P E II,rG A - A  IJ ~ > / ~  A(fln)] <= fin 

with the same C~, provided that ~c(fl n) is substituted by fl ~(n). This leads to the 
third step of the proof. We extend the mapping 11, in a natural way to the whole 
space %. Then 

P L,>orsup ~ l t v  1 I[II.A(tl-A(t)ll oo > A(n)] 

< P  [_t__>l [ s u p l t  [[H,A(t)-A(t)[]oo >A(n)] 

+ P [sup Ir n ,  zl ( t ) -  A (t)P[ ~ > A (n)] 
t_<l 

oo 

< ~ P[supZ_k/2 ]jH, A(t)_A(t)ll~>Zk/ZA(n)]_~ C~ 
- - k = l  t--  -<2k /~ 

<=Ce~2_kn_~q - C~_2C~, 
k = l  F/ /1 
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whence 

implying 

P[p  (H~ A, A) > A(n)] = - -  
C~ 

n 

L(~(FI,  A ) ,~A)=o(n  -1/6+~) (e>0), 

(cp. Lemma 1.2 of [7]). The proof is now concluded by the observation that 
L(~(EI,  A), 5fA,)= o(n-x/6+~) which follows from the Dvoretzky-Kiefer-Wolfo- 
witz inequality. 

3. In this section we return to the consideration of t-  1A (t) for t > 1. We are 
interested in comparing the probabilities of 

Z , = [ g l ( - ~ , s ) < l / n D k ( s , < g 2 ( ~ , s  ) for all k>n, s s [ 0 , , ] l  

and 
Z =  [gl(t, s)<t- lA(t)<g2(t ,  s) for all (t, s)e[1, oo) x [0, 1]]. 

Here gi (i = 1, 2) denote real-valued cont inuous functions on [1, oo) x [0, 1] sub- 
ject to the condition 

l iminf g2(t, s )>0,  
t -  l s ( l _ s ) ~ O  

lim sup gl (t, s) < 0. 
t 1 s ( 1 -  s)--,0 

We note that the following theory can easily be extended to the case that the 
"bounds"  gl are defined on [0, ~ )  x [0, 1]. 

Theorem 3. [PZ, - PZI = o (n- 1/6 +,) (5 > 0). 

Proof. It suffices to show that PZ ~-  PZ = O (6); for then the statement appears 
to be a consequence of Theorem 2. Without losing generality we put g l -  - oo 
and then omit the subscript ofg 2 . It is sufficient to show that the random variable 

A~,~G(A):= max ( t - lA( t ) -g( t ) )  
t > l  

�89 s-ssi 

has a density bounded in a neighborhood of 0. We compute this density. 

P [-G (A)< ao] = f P [G (u (1 - s)+ r(t,  s))< ao] ~o (u) du 

= II I[G(u(1- s)+r(t, s))<~ol (P (u) du dP, 

where F(t, s )=~(s- �89189 for some Brownian motion ~ (~(0)=0), ~o 
is the normal density with variance �89 Given F a = G ( u ( 1 - s ) + F )  is a strictly 
increasing function of u, hence invertible: 

u=a-l(~lr). 
To each e we make correspond the coordinates (t~, s~) of the maximum c~ of 

G- i(a]F) (1 - s) + F ( t, s) 
(t, s).~, -g( t ,  ~) 

t 
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(since these coordinates may not be unique, let t~ be the smallest t-coordinate 
and take s~ to be maximal under this condition). Then 

I i ~+h "~PE~<h G(A)<cc+h] =-h ~! ~p(G-i(~[F)) Fr(d~)de 

(with F r = 5P(G(u IF) ldu)). 

<~C f Fr {[a , c~+ h]} dP 
- - h  a 

< c ~ t ~ = d P ,  for Fr{[a,a+h]}< Cht~ 
= 1 -- s~ 

as follows from 

max {t -1 [(G- 1(, IF) + h t~ (1 - s,)- 1)(1 - s) + r(t, s)] - g (t, s)} 
> tj l [ G- l(c~l F) (1 - s,) + r(t~, s~)] -g( t~,  s~) + h=c~ + h. 

Thus d~(G(A)) 
dc~ 

is finite. But 

Et~(1-s~) -1= ~ E[t~(1-s~)-a]2-i-l<l-s~<=2i &2J-a<-_t~<2 j] 
i , j=l  

< ~ 2i+J+lP[2-i-l<l-s~<2-i&2J-l<t~<2J], 
i , j= l  

the boundedness of which follows from the inequality 

P[rl/2<l-s~<tl&b/2<t,<6]<Ce -co/" ( r />0 ,6>2)  

exists and is majorized by CEt~(1-s,) -1 provided the latter 

to be proved now: its left side is 

=<P[ sup F(t,s)>b6/4] 
O<l--s<=rl 

l<_t<,J 

+ P [G-  ~ (c~ I F) > b ,5/4 ~J 

= I + I I  (b ,=  liminf g(t,s)>O). 
t-~s(1--s)~O 

sup ~(s)>b6/12] I <P[o_<l-s__<. 

+ P [((�89 b 6/12q] 

+ n [  sup A(t-1)s>b6/12] 
l_<t_<~ 

O<l-s<~t 

<Ce-C(b~ sup A(5 -1 ) s>  <Ce- 

II <=P[((�89189 -c(~-)2. 
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