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Summary. For some subsets of the set of all A-monotone functions on [0, 1]" 
we characterize distribution functions F, G such that EFf<=EGf for all f 
within these subsets. Furthermore, we determine sharp upper and lower 
bounds of integrals of functions in these subsets w.r.t, all distributions with 
fixed marginals and give some applications of these results. 

I. Introduction 

For functions f :  [0, 1] ~ --+R 1 the multivariate difference operator A is defined by 

A~f= ~ (-1),o~ ' f ( e l x l + ( 1 - e l ) y , , . . . , e , x , + ( 1 - e , ) y , )  
(el . . . . .  e.)e{O, 1} n 

where x = (x~ . . . . .  x,), y =(Yl . . . . .  y,)~ [0, 1]'. f is called A-monotone if A~f>=O for 
all x ~ y. f is called A-antitone if - f  is A-monotone. 

I f f  is A-monotone and right continuous, then f determines a measure # on 
[0, 1 ] ' ~ "  by #((x, y])= A~f Examples of A-monotone functions are absolutely 
continuous functions f with 

0" 
f ~  0 a.s., f ( x  1 .... ,x,)=min{xi, 1 ~i<=n} 

~ X I , . . . , ~ X  n 

and for tel0,  1]" 

f t ( x )  = l[ t  ' 1](X),  

while for n > 3 

gt(x) = 1~0, t~(x) 

is (in contrast to n = 2) not A-monotone. 
We consider the following two subsets M 1, M 2 of all A-monotone functions. 

M 1 = M~([O, 1] ~) = {f: [0, 1]" -~R~; 
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f right continuous, f (  .... ti , , . . . ,  ti~ . . . .  ) is 
A-monotone on [0, 1]" k Vk < n-- 1, Vtil,. . . ,  t i e  [0, 1]} 
M 2 = {f: [0, 1] n --~R 1 ; f  right continuous, 

f A-monotone and f ( x ) = 0  if there is an i<n with x~=0}. 

M x contains the set of all n-dim, distribution functions. The elements of M 2 are 
not necessarily nondecreasing. 

In the present paper we prove characterizations of distributions F, G on 
[0, l l "  such that E v f < E o f  for all f ~ M  1 as well as for all f ~ M  2. Furthermore, 
we derive bounds for the expectation of f in the class of all distributions with 
fixed marginals. Similar questions have been considered in the case n = 2  by 
Cambanis, Simons and Stout (1976) for the class M of all A-monotone functions. 
In contrast to comparison of distributions w.r.t. M1, M2, ~ f d F < ~ f d G  for all 
f ~ M  implies, that F, G have the same marginal distribution functions (dfs). 

2. Characterizations of M 1 

Let 
Gm={(il/2",...,iJ2m); 0__< i~_< 2", l ~ j ~ n }  

be the lattice with side length 2-" .  For a nondecreasing function f :  G m ~ R  ~ 
with f ( 0 ) = 0  define zo~G" such that 

a) f(zo) =min  {f(z); z sG" , f ( z )  >0} 

and (1) 

b) z~G", z < z  o, z + z  o implies f (z)=0.  

Furthermore, define 

MI(Gm)= {f: G" --> R~; f (  .... t,1, ..., t,~ .. . .  ) 

is A-monotone for all k < n - 1 ,  tiy{I/2m; 0 = l < 2 " } ,  1 <=j<k}, 

where a function f : G " ~ R  1 is called A-monotone if A~f>O for all 
x, y~G", x <= y. 

Lemma 1. For f ~ M I ( G "  ) with f(O)=0 define 

fl(z) =f(z)  - f ( zo )  1Ezo. ll(z), zeG m 

where z o is defined as in (1). Then f l  is an element of Ml(G" ). 

Proof. To prove A-monotonicity of a function f on G m it is sufficient to consider 
points x, y with y~-xie{O, 1/2 m} since all other A-differences can be composed 
by A-differences of this type. 

Defining G(zo) to be the set of all minimal elements of {zeG";Zo<Z } we 
have 

A~lEzo, l~=l  for x ,y  with yi-xi~{O, 1/2 ~} 
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if and only if Ix, y] contains only the point y from G(zo). In all other cases we 
have 

AY 1[~o, 1~ = 0 

and, therefore, in these cases 

_ y _ y _ y > AU1-Axf f(zo)dx 1Ezo,,--AJ=O. 

If [x,y] contains exactly one point from G(2o) we decrease successively those 
components of y which are greater than the corresponding components of z 0 
and, simultaneously, the same components of x. In this way we get a sequence 

Y ~ Y l  ~ ' ' "  >~Yr=ZO 
and 

x>=xl>__...>=x r with Xr<Zo, Xr4:Z o. 

NOW by definition of MI(Gm) we have 

dy f >  A y~ f>_ .. >= A~~ f =f(Zo) x d =  X l J - -  �9 
and, therefore, 

dY~f~ =A~f  -f(zo)>=O. 

We are now ready to prove the following characterization of M~. 

Theorem 2. f e M  1 if and only if there exist ~eR 1, cq, j~O, ti,j~[O, 1]n , l <--_i<--_mj, 
mj~N, j c N  such that the sequence of functions 

mj 

fj(x)=0~+ E ~i, jl[ti.j, ll(X)' XE[-0,1]', (2) 
i = 1  

converges pointwise to f (x). Furthermore, f ~ can be chosen nonincreasing in j. 

Proof. The elements f~ defined in (2) are in M 1 ; so only one direction remains to 
be shown since 

Y - -  Y �9 lim A ~fj - A~(hm f~). 
j~,~ j~o~ 

Let ~ = f ( 0 ) e R  1 and denote the restriction of f on G m again by f. Then f~(x) 
= f ( x ) - , ,  x~G~, is in MI(Gm) and there exists at least one point xEG~ with 

f l (x)= 0. If f i@ 0, then let zo~G ~ be a point with property (1) which exists since 
elements of M~ are nondecreasing. The function 

f2(x) = f  l ( x ) - f  l(Zo) 1~=o. 11(x), xeGm 

is by Lemma 1 in MA(Gm) and has at least two points x in G m with f2 (x )=0 .  
Going on by induction we get a sequence fz of functions in MI(Gm), 
1 <1<_m2+2 and zlE[0 , 1] ", O<=l<=mj-- 1 such that 

a) fl+l(x)=fZ(x)--ft(zl 1) 1[ . . . .  ll(X), x~G,,, l<_l<_mj+l 

and 

b) f~J+2-=O. 



344 

This implies 

L. Riischendorf 

f (x) = ~ + f l(x) = ~ + f Z(x) + f  1 (Zo) 115o. ll(x) 
/ t l j  

=c~+ ~ fl(zl_l)lr=,_l,ll(X), x e G  m. 
1 - - 1  

Since f l (0)=0,  we have fl(z~_ 1)> O. With %j=f~( z  i_ 1) and ti, j =z  i -1 we get: 

fm =fm~+l is of type (2) and f(x)=fro(x), xeGm. 

By definition of f the lattice approximation fm is nonincreasing in m. Right 
continuity o f f  implies that 

f ( x )  = lira inf{ f(y);  y e Gin, y > x}. 
m ~ o o  

So there exists a sequence y,,+x, YmeG,, such that 

f ( x )  = lim f(Ym)= lim fm(Ym)= lim f,,(x). 
m ~ o~ r n  ~ oo  m ~ oo  

3. Inequalities for the Expectation of A-Monotone Functions 

For a df. F on [0, 1]" define 

hF(t ) = P~([t, 1]), t~[0, 1]" 

where Pv is the probability measure associated with F. 

Theorem 3. Let F, G be df's on [0, 1]". Then 

a) E v f < E G f  for all f e r n  1 if and only i f h v < h  a 
b) h v < h~ implies that E v f  < E o f  holds for all f E M  2. 

Proof a) is immediate from Theorem 2, since it is sufficient to consider functions 
of the type ltt' 11(x). 

b) For the proof of b) we use the following integration by parts formula. 
Let f, g be real functions on [0, 1]" such that ~ (A~f)dg(x)  exists (as weak net 

integral) then ~(A~ g)df(x) exists and both integrals are equal. 
For n = 2  this formula has been proved by Hildenbrand (1963) pg. 127. The 

proof for general n can be given along similar lines. 
For f e M  2 we have f ( x ) = A J  and, therefore, 

Er f = ~ f dF = ~ (A ~ f )  dF = ~ ( A~ F) df  = ~ h F df  < ~ h G df  = E a r  

Remark 1. a) For n =2  and when F, G have the same marginals the condition 
hF<h ~ is equivalent to F<=G so that the statement of Theorem 3 a) for this 
special case is contained in Theorem 1 of Cambanis, Simons and Stout (1976). 

b) The ordering of the survival functions h E c a n  be managed in a number of 
examples by means of Schur convex functions. Consider Nevius, Proschan and 
Sethuraman (1977), Sect. 3.5 of Marshall and Olkin (1974) and Tong (1977). 
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c) By an approximat ion  argument  the s tatement  of Theorem 3 holds true 
also for functions f :  R" ~ R  ~ which have the properties of functions in M~ and 
which are integrable w.r.t. F, G. 

Denote  by ~ ( F  1 . . . .  , F,) the set of all n-dimensional dfs  F with marginals 
F 1 . . . . .  F, and define 

F(x) = min Fi(xi), _F(x) = Fi(x l ) -  (n - 1) 
1 <-i<-n i + 

for x = ( x  1 . . . . .  x,) where a+ =max{a ,0}  and 

hi(x ) = 1 - max Fi (x i -  ) 
l <=i<=n 

and 
n 

Furthermore ,  define 

z' i = inf{x; F~(x) > 0} 

(3) 

(4) 

and (5) 
z'[ = sup {x; Fi(x ) < 1 }. 

The proof  of  the following lemma can be derived from Theorems 2, 3 of 
Dall 'Aglio (1972) which give a character izat ion of Jvt~(F 1 . . . . .  F,) by _F, _P. 

L e m m a  4. a) FeYf(F1,  ...,Fn) if  and only if h2 <hF <h l .  
b) h 1 =h r and fe~(F1 . . . . .  F . ) .  F~Nt~(FI . . . .  ,F,) if and only if  

1) n = 2  

or (6) 

2) n__> 3, at least three of  the Fz are non degenerate and 

L Fi(z i - ) = n - 1  or " 4 ! 

> ~ 6(z~-)_-<i. 
i = 1  i = 1  

I f  _ fe~ (F1  . . . . .  F,), then h2=h  s In all cases distinct from (6) there is no H e  
;gg(F~ . . . . .  F,) with hH <= h e, VFe~'~(F1 . . . . .  F,). 

F r o m  Theorem 3, L e m m a  4 and Remark  1 we get immediately the following 
result. Fo r  n = 2  consider Cambanis,  Simons and Stout (1976). 

Theorem 5. a) E ~ f  = sup {EFf; F e - ~ ( F  1 . . . . .  F,)} for all f ~ M i  u M  2. 
b) Under condition (6) we have E F f  = in f{Evf ;  F62/g(F 1 . . . . .  F,)} for all f e M  1. 
c) ~ h 2 dr< inf{EFf;  F ~ ( F ,  . . . .  , F,)}, for all f E M  2. 

By Theorem 5 and L e m m a  4 we get a sharp upper  bound  for { E l f ;  F~  
-2~(F 1 .... ,F,)} for f ~ M l w M  2 while a sharp lower bound  for a 1 1 f 6 M l w M  2 only 
exists under  condit ion (6). 

We now want to derive sharp lower bounds for a subset of M I ;  the lower 
bound  depending on the elements of this subset. 
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Define M~ to be the set of all functions f :  [0,1J"---,R with the following 
propert ies a), b) 

a) There  exist f~eMl ( [0  , lj2), 1_< i <  n -  1 such that  

f ( x  1 . . . . .  x,) = f ,  l ( f , _  2(... f 2 ( f t ( x l , x z ) ,X3)  . . . .  ),x,), 

for x l ,  . . . , x ,~ [0 ,  1]. 

b) For  two dfs  F, G on [0,1]  2 hF<h s implies hy~(F)<hc,(s) l<_i<_n-1,  
where f/(F) is the df. of  the image of  F under  fi. 

An example for an element of M 2 is f ( x  1 . . . .  , x , ) = m i n { x  i, 1 < i N n } .  

The following lemma can be proved by a modificat ion of the proof  of 
L e m m a  1, pg. 216 of Ferguson (1967). For  a real dr. F and a r andom variable X 
with df. F define 

F ( x , X ) = P ( X  < x ) +  X P ( X = x ) ,  x e R  1, 2~[0,1] .  

L e m m a  6. Let  X ,  U be real, independent random variables. Let  X have df  F 1 and 
let U be R(O, 1)-distributed. Let, furthermore, F 2 be a real df  and define 

Y= F2-'(I--FI(X , U)). 

Then the random variable (X, Y)has the d f  

if(x, y) = (Fl (x) + F2(y ) - 1)+. 

N o w  let F1, ..., F, be n real df.s, let f e M  2 with associated f., 1 < i <  n - 1  and 
let U i . . . . .  U,,_ ~ be stoch, independent  R(0, 1)-distributed. Then define inductively 
r andom variables V i . . . .  , V, by 

V,-=Fll(U1), Ve=F2 ' (1-UO. (7) 

Let  V a . . . . .  V~, 1 < l < n be defined and let L z be the df of 

H,(V, . . . . .  V~) = f / _  l(f/  2("" ( f l (Vl ,  W2), V3) . . . .  ), V//) 
then define 

v~+~ =El+ I(1 - L,(H,(V1 . . . . .  V~), Ul+ 1))" 

Theorem 7. Let  f, Ui, Vi, F i be defined as above, then 

a) (V 1 . . . . .  V,) is a random variable with df  FoeJ{~(F1 . . . . .  F,). 
b) hf(Fo)<=hf(F) , V F s ~ ( F  1 . . . . .  F,). 
c) E r o f  = in f {EFf ;  Fe~f~(F~ . . . . .  F,)}. 

Proof  a) By L e m m a  1, pg. 216 of  Ferguson (1967) 

W z = L , _  ~(Ht_ 1(V1, . . . ,  W/_ 1), Ul) 

is R(0, 1)-distributed and, therefore, V l =Ft 1(1 - W~) has df. F t. 
b) We prove b) by induct ion in n. Fo r  n = 2 b) follows from Theorem 5 since 

(FI-I(U1), F2 I (1 -U1) )  has df. _F. Assume b) to be true for n and so by 
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assumption hH,~tFo)~=hHn(F) for all F s Y f ( F  I . . . . .  F,). Let X~ have df. F~, 1 _<i<_n + 1 
and denote the dl's of 

W = ( H n ( V l  . . . . .  Vn), Vn+l) 
and 

z = (H, (X1 , . . . ,  X,) ,  X ,+ 1) 

by F, G respectively. By the assumption of the induction H , ( V  1 . . . . .  V,) is 
stochastically smaller than I-I ,(X 1 . . . . .  X , )  and, therefore, by means of Lemma 1, 
pg. 216 of Ferguson (1967) one can construct a _F~Zf (L , ,F ,+I )  with h ~ < h  G. By 
Lemma 4 we get h e < h a and so by property b) of elements in M, 2 this implies 

which gives the induction step. 

c) is immediate from b. 

h f . ( f )  <= hy.(G) 

4. Examples 

a) Let X = ( X  1 . . . . .  X , )  be a n-dim, random variable and define 

s p ( x ) = m a x { x i ;  1 <i-<_n} -min{x , ;  1 < i N n } ,  

the span of x. sp(x) is a A-antitone function. So by Theorem 5 (generalized to R ") 
we have 

E F sp = inf {E F sp; F 6 ~f~(F 1 . . . . .  F,)}. 

This result has been proved by Schaefer (1976). It has applications in dynamic 
programming. 

b) Let X1, . . . ,X,  be n real random variables, X,>0,  with dfs F 1 . . . . .  F,. Let 

cq > 0, 1_<iN n be real numbers with ~ l/a, = 1. By Theorem 5 the best lower 

bound for --I~ [[X/[]~, obtainable by Hol=ders inequality is given by E I~ F/-I(U), 
i = l  i=1 

where U is R(0, 1)-distributed. Let especially (ai,j) 1 <,_<, be real numbers a i j >  0 
1 <=j<=k 

such that a,, 1 < ... <=ai, k, l<=i<n, and let F/be the discrete uniform distribution 
on {a,, 1 . . . .  ,ai.k}, 1 < i < n ,  then Fi(x )=j /k  for a~,j < x <ai,j+ 1, 1 < j<k(a i . k+  1 = oc) 
and, therefore, 

E ai,  j . 
i=1 /=1 

On the other hand, 
( ~  \1/~ 

i=1 '= j= 

So Theorem 5 implies the following extension of H61ders inequality (cf. Becken- 
bach, Bellman (1965), pg. 20) 

I1  a,,j__< a, , j  . 
j = l i ~ l  i=1 j _  

(8) 
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c) Let a~eR+, l<-i<-n be real numbers and let ctFR+, l<-_j<-_n-1 be real 

numbers with ~ 1/~j=l .  Furthermore, let F I = . . . = F , _  ~ be the discrete uni- 
I I  

j = l  

form df. on {a I . . . .  ,a,}. A distribution with marginals F 1 . . . . .  F,_ 1 is given f.e. by 

p{(ai, . . . .  ,al,_l)} =/01 if there are I, k<=n-1, l+k  and iz=ig 

~.~ else 

Theorem 5 and H61der's inequality imply 

n n n -1  / n  

~--1 j~i aJ <= j~_ i aj .-1<= ~[ ( ~= i a~ O1/~J" (9) 
i=  ' ' "= j = l  i -  

By the second inequality in (9) the product of the c~;norms of F~ is minimal for ~j 
1 

- n - l '  l < j < n - 1 .  This result is also implied by Theorem 1 of Tong (1977) 

who proves his result by means of Schur-convex functions. 
d) For F 1 = . . .  =F, the df. of the R(0, 1)-distribution Theorem 5 yields the 

following lower bound 

fi inf E F ~ F~Jte(F 1 F,) > ~... ~ 1 - i ~  d 1.  Xi 
i = 1  - + i = l  

i z ~  z . - ~  n 1 

z.dllz,= . 

o o o i=1 (n+ l ) !  

For n = 3  we get: 
2~ < = E X 1 X 2 X 3 ~ � 8 8  

for all X~, 1 < i < 3  which are R(0, 1)-distributed. The author is not aware of 
R(0, 1)-distributed Xi, 1 <i___3 with EX1X2X 3 ~1~" The value 1!6 is attained for: 

X I = - U  , X 2 = I - U  , X 3  = 2 I U - - l z l ,  

where U is R(0, 1)-distributed. (These are the random variables 1/1, 1/2, V 3 from 
Theorem 7. The result of Theorem 7 is not applicable in this case). 

e) Let X 1 . . . .  ,X,  be real random variables with dt's F1, . . . ,F,  and define 

Z , = m a x X i  and IV,= min X i. 
1 <--i<--n 1 <i<n 

Then Theorem 7 is applicable for 

f l ( x l , . . . , x , ) = m i n { x l  . . . . .  x,} resp. 

f2(x 1 . . . .  , x , )=  - m a x  {xl, ..., x,}. 

We obtain the following sharp upper and lower bounds for W, 

min (Va . . . . .  V,) <s W, <s min {F,- ~ (U), ..., F, -1 (U)} (10) 
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where <s is the stoch, ordering, 
constructed as in Theorem 7. We have by Lemma 6 

P(min(Va,.. . ,  V , )< t )=min  Fi( t -  . 

For  Z n we obtain the following sharp bounds 

U is R(0,1)-distributed and Vii, l<_i<_n are 

(11) 

(n ) 
1 -  min ( 1 - F i ) - ' ( t - ) > P ( Z . < t ) >  ~ F i ( t - ) - ( n - 1  ) . 

'<-i<--n i=1 + 

(12) 

In the case of continuous dfs the right inequality in (12) has been proved by Lai 
and Robbins (1978), (3.4). Lai and Robbins give in the case of F 1 . . . . .  F, - the 
df. of a R(0, 1)-distribution - a nice geometric construction for random variables 
V 1 . . . . .  V, such that max{V1 . . . . .  V,} has the df. given in the right hand side of 
(12). A similar construction is possible for the left hand side of (10), (11). It shows 
f.e. that min{V 1 . . . . .  V,} <=l/n for all n~N. 
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