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1. Introduction 

Let {Xnk; l<_k<n, n > l }  be a triangular array of uniformly asymptotically 
negligible random variables which are independent in each row. Suppose that 

~X,k--fl, converges in distribution for some constants fin. Define point 

processes (b,, n > 1, by (b n = ~ 6x,,k, where 6 a is the Dirac measure located at a. 
k=l  

In the ordinary sense the sequence {r does not converge in distribution 
because ~,(U) tends to infinity for every neighborhood U of the origin. However 
it is possible to modify the definition of point processes so that {~b,} is 
convergent under some reasonable assumptions. 

For our purpose we first introduce the concept of generalized measures. Let 
J~o be the space of functions f on R satisfying (i) f, f '  and f "  are bounded 
continuous and vanish at infinity, and ( i i ) f(0)=0.  With a suitable norm Woo is a 
separable Banach space. A positive continuous linear functional on ~o is called 
a generalized measure. 

In terms of generalized measures we can define generalized random measures 
(g.r.m.) and generalized point processes (g.p.p.). It should be noted that g.r.m's 
defined in this paper are different from those considered before by several authors 
including Dennler [-1] and Nawrotzki [-8]. It turns out that g.p.p.'s introduced 
here are closely connected to processes with interchangeable increments (ich. 
incr.) on the interval [0, 1], which has been investigated extensively by Kallen- 
berg [-4-6]. 

It is proved that for every generalized measure ~ there exists a g.p.p, which 
may be called a generalized Poisson point process (g.P.p.p.) with intensity qS. 
There exists a natural one-to-one mapping from the class of all distributions of 
g.P.p.p.'s onto the class of all infinitely divisible distributions on R. It is shown 
that the limit distribution of a sequence {~b,} of g.p.p.'s generated by a triangular 
array {X,g} is essentially generalized Poisson. A necessary and sufficient con- 
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dition for the convergence in distribution of such a sequence {~,} is given. This 
result corresponds to the well-known classical limit theorem for sums S n 

= ~ X,k and provides a direct and intuitively appealing way to understand the 
k=l 

role of L6vy measures in the classical limit theorem. 
In w we prove a representation theorem for generalized measures which is 

interesting in itself because of its close relation to the generators of L6vy 
processes. In w 3 we state a uniqueness theorem and a convergence theorem for 
g.r.m.'s. In w we show the existence of g.P.p.p, with a given intensity qS. In w 
the relation between g.p.p.'s and the processes with ich. incr. is described. In w 6 
we give some results on the convergence of a sequence {~,} of g.p.p.'s generated 
by a triangular array. For  simplicity we restrict ourselves to g.p.p.'s on R. 
However our results are valid for R e without any essential change. 

2. Generalized Measures 

We write ~- for the space of all real-valued functions on the real line R which 
are bounded continuous with their first two derivatives and satisfying f(0)--0.  
Denote by J~o the subspace of ~ consisting of all functions vanishing at infinity 
with their first two derivatives. We define a norm of f ~  ~o by 

I/fll = m a x  {llfll~, Ilf'l] ~, L/f"ll ~}, 

where Hill co--sup {If(x)l;x~e}. With this norm ~ is a separable Banach space. 
We call a continuous linear functional q5 on ~o positive and write ~b >0  if 

~b ( f ) >  0 for every f >  0, f e ~ o .  A positive continuous linear functional 4 on ~o is 
called a generalized measure. The class of all generalized measures is denoted by 
M. 

Example 2.1. Let 6'o(f)=f'(O ) and (5'~(f)=f"(O),fE~o. If f~'__0, f e ~ 0 ,  then f ' (0) 
= 0 and f "  (0) > 0. Therefore a 6{) ~ M for a e R and b 6• ~ M for b ~ R + = [0, oo). 

Example 2.2. Let M' denote the class of all Borel measures # on R ' = R \  {0} 
satisfying/~(v) < 0% where v(x)=xa/(1 +x 2) and /~ ( f )=  ~fdl~. F o r / ~ m '  a linear 

R '  

functional ~b defined by O(f)=#(f- f ' (O)u) ,  f ~ o ,  is in M, where u is a fixed 
element of o~o such that 

u ' (0 )= l  and u"(0)=0. (2.1) 

In fact suppose Hfll <~, fe~ and let g=f- f ' (O)u .  Then g'(0)=0, ]lgil<e(1 
+1luLl), g(y)=(1/2)g"(Oy)y 2, 0 < 0 < 1 ,  and therefore Ig(y)l<(1/2)e(l+llull)y 2. 
Thus ]g(y)l<e(1 + IluH)v(y) and ]~b(f)l_-<#(lgl)_-<~(1 + [lulL)/~(v). This shows that q~ 
is continuous. Obviously q5 > 0. 

Throughout  the rest u is a fixed element of ~o satisfying (2.1). 

Theorem 2.1. Every 0 ~ M is uniquely represented as follows: 

O(f)=af'(O)+(b2/2)f"(O)+#(f-f'(O)u), f ~ o ,  (2.2) 
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where a ~ R, b E R + and # ~ M'. Conversely every functional 4 defined by (2.2) with 
a~R,  b 6 R  + and # ~ M '  is an element of M. 

Remarks. (i) In the representation (2.2) the value of a depends on the choice of u. 
(ii) By (2.2) the domain of definition of a positive continuous linear functional 4 
on ~o can be extended to the space of all bounded complex-valued Baire 
functions f having continuous first and second derivatives in a neighborhood of 
the origin and satisfying f (0 )=  0. In particular 4 (f) is defined for every f ~  ~,~ 

Proof of Theorem 2.1. The last half was proved in Examples 2.1 and 2.2. To 
prove the first half suppose 4~M. Let @o (") be the class of functions f~Yo 

supported by E, = ( -  0% - l/n) u (1/n, oo), n __> 1, and ~o' = 0 ~o (")' By a standard 
n = l  

argument using Riesz representation theorem we find that there exists a unique 
Borel measure # on R' such that 4 ( f ) = # ( f )  for feo~o '. For f > 0 ,  fE~o,  let 
g e~o  ~2") be such that g = f  on E, and O < g < f  on R. Then 4 ( f ) > 4 ( g )  
=# ( g ) >  ~ fd#. By letting n--+ ov we have 

E n  

#(f)<-_O(f) for f > 0 ,  f~o~o . (2.3) 

This shows # ~ M'. Let 4 , ( f ) =  4 ( f ) -  ~ fd#,  fE  ~o, n >__ 1. By (2.3) we have 4 ,  ~ M 
E~ 

and 4 , ( f ) = 0  for f~Yo ~"). We shall show that i f f ~  o~ o is such that f ( x )=o(x  2) as 
x-+0  then l i m 4 , ( f ) = 0 .  In fact choose 7sC2(R) such that 7(x)=0 for x~El,  

7(x )= l  for x ~ E  2 and 0=<7(x)<l on R. Define Y, by 7,(x)=?(nx/2). Then 

f .  7,~o~ o, I lf .7. l l~O and therefore O~(f)=4.( f .  7 . ) = O ( f . ? . ) - ~ f . v . d # - ~ O .  
Thus we have for every f z  ~o ~" 

lim 4,  ( f  - f '  (O) u - f "  (O) u2/2) = 0. (2.4) 
n 

On the other hand by the definition of 4 ,  we have 

lim 4,  ( f - f '  (0) u) = 4 ( f - f '  (0) u) - # ( f  - f '  (0) u), (2.5) 
n 

for feo~0 . By letting f(x)=(u(x)) 2 in (2.5) we find that the finite limit b e 
= l i m 4 , ( u 2 ) > 0  exists. It follows from (2.4) and (2.5) that (2.2) holds with a 

n 

= 4(u). This proves the theorem. 
A measure # on R' is called integer-valued if #(A) is equal to an integer or 

+ oo for every Borel set A of R'. The class of all integer-valued measures # E M' 
is denoted by N'. The class of all 4 e M  such that the measure # in repre- 
sentation (2.2) belongs to N' is denoted by N. 

We introduce in M the coarsest topology with respect to which every 
mapping 4 - + 4 ( f ) ,  f ~ ,  is continuous. Thus for 4, ~b,, 42, ... in M 4 , - + 4  iff 
4 , ( f ) -*O( f )  for every f e J ~  By the same argument as in A7.4 of [7] we can 
show that N is a closed subset of M. Furthermore suitable modification of the 
proof of A7.7 of [7] yields the following: 

Theorem 2.2. M and N are Polish spaces. 



334 T. Mori 

In the space M' we introduce the coarsest topology with respect to which 
every mapping q~-+ ~b(f), f e ~ ' ,  is continuous where ~-' is the class of all f ~  
vanishing in a neighborhood of the origin. Then it is easy to see that the 
mapping from M onto the product space R x R+ x M' which sends ~b to (a,b 2 
+y(u2),y) is a homeomorphism, where a,b 2 and y are those in the repre- 
sentation (2.2). The restriction of this mapping to N is a homeomorphism of N 
onto R x R + x N'. 

Let g ~ N' be the measure appearing in the representation (2.2) of q5 ~ N. Then 
~{x; Ixl >c} = 0  for large c. This shows that if a function g on R has continuous 
second derivative in a neighborhood of the origin and satisfies g(0)=0 then we 
can define qS(g), ~b e N, by (2.2). Furthermore if g is continuous then the mapping 
4)--+ qS(g) is continuous on N. 

3. Generalized Random Measures 

Let ./~ be the a-algebra of Borel sets of M. Since M is Polish this coincides with 
the smallest o--algebra making all mappings qS-~q~(f), f ~ ,  measurable (E7] 
Lemma 4.1). Let ~ 2 =  Nc~Jg.  

A random element defined on a probability space (~, N, P) taking values in 
the space (M, ~ )  is called a generalized random measure (g.r.m.). A g.r.m. 4) is 
called a generalized point process (g.p.p.) if 4)~N a.s. By Theorem 2.1 we have 
the following canonical representation of g.r.m, or g.p.p. 4): 

4)( f )=Af ' (O)+B2f"(O)/2+ T ( f - f ' ( O ) u ) ,  feJ~o, 

where A and B are random variables, B > 0, and ~ is a random measure or a 
point process on R' resp. (i.e. M'-valued random element or N'-valued random 
element resp.) satisfying ~F(v)<oo a.s. The triple (A,B, ~) may be called the 
canonical random element of 4). The characteristic functional C~0 of a g.r.m. 4) is 
defined by 

C~( f )=  ~ exp( i4)( f ) )dP=Eexp( i4)( f ) ) ,  f 6 ~  

The distribution of 4) is uniquely determined by Ce. 
The following two theorems are proved by the same argument as in 

Theorems 3.1 and 4.2 of [7] resp. 

Theorem 3.1. For two g.r.m.'s 4)1 and 4) 2 the following three statements are 
equivalent." 

d d 
(i) 4)1=4)2, (ii) 4)l(f)=4)z(f) ,  fE~o ,  

(iii) Ce~(f)=C~2(f) ,  f ~ Y o ,  

where we write e= for equality in distribution. 

Theorem 3.2. Let 4) and 4)n, n >= 1, be g.r.m.'s. Then the following three statements 
are equivalent." 
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(i) q~n d , 4~, (ii) q~,(f) d , ~(f) ,  f ~  o~, 

(iii) C , n ( f ) - . C , ( f ) ,  f ~ f f ,  

where we write d ~ for convergence in distribution. 

Remark. Let (A, B, T) and (An, Bn, T,) be canonical random elements of �9 and q~n 
resp. Then the statements (i)-(iii) of Theorem 3.2 are equivalent to 

(iv) (An, 2 ~(A, B2+ T(u2), T). U n+ ~(u2), T.) a 

Furthermore when # and #n are g.p.p.'s these statements are also equivalent to 

(v) (q~,(h), q~n(h2), T,) d , (q~(h), ~(h2), t/,), 

where h(x)=x,  x ~ R .  

4. Generalized Poisson Point Processes 

Theorem 4.1. For every 4)~ M there exists' a g.p.p, q~ with characteristic functional 

C~(f) = exp [~(e ir - 1)], f c  ~.  (4.1) 

Remarks. (i) We call ~ the generalized Poisson point process (g.P.p.p.) with 
intensity ~b. The distribution P q~-1 of 4, will be denoted by P4. (ii) By letting f 
=th, teR,  in (4.1) we find that the random variable X = ~ ( h )  has infinitely 
divisible characteristic function 

Ee iteth) = Ca)(th ) = exp [q5 ( e  ith - -  1)], t e R. (4.2) 

Conversely if X is an infinitely divisible random variable then there exists a 

g.P.p.p. ~b such that X ~ 4~(h). The formula (4.2) is no other than the well-known 

Ldvy-Khintchine formula. 

Example 4.1. If ~b=~ then C~,(tf)=exp(itf'(O)), f e ~ ,  t~R .  Therefore ~(f)  
=if(0) a.s. If q~ = 6;/2 then C~o(tf)= exp [if'(O) t/2 - (f'(O)) z t2/2], f e  g,, t e R, and 
therefore 4~(f) is Gaussian with mean f"(0)/2 and variance If'(0)[ 2. 

Proof of Theorem 4.1. Let a, b and p be those in the representation (2.2) of qS. Let 
be a Poisson point process on R' with intensity # and let X be an N(0, 1) 

random variable independent of ~P. Define 4~(f), f ~  ~, by 

q~ (f)  = (a + b X)f'(O) + b 2f,, (0)/2 + S [ f  d ~ - f '  (0) u d #], 

where the last term on the right is the so-called centered Poisson shower integral 
[6], that is 

[ f  d W-i f (O)  ud#] = lim [ ~ f d ~ -  ~ f'(O) u d#], 
n E n  En 
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where {E,} is a sequence of Borel sets of R' such that #(En)<o% E,'[R'.  The 
existence of this limit is implied by # ( f2 )<  oo and # ( f - f ' ( 0 ) u ) <  oo. It is easy to 
verify that 

Ce( f )  = lim exp [ iaf '  (O) + ib f "  (O)/2 - b( f '  (O))2/2 
n 

+ ~ (e i : -  1 - i f ' (O)u )d#]  
E~ 

= exp [iaf'(O) + ibf"(O)/2 - b(f'(O))2/2 

+ #(e i: - 1 - if'(O) u)] 

= exp [O(e i : -  1)]. 

Let O be a g.r.m, with the distribution Q. The characteristic functional 

C(f ;  r  exp [dp(e i: - 1)] 

of the g.P.p.p, with distribution P~ determines an d//-measurable function of q5 for 
each f e ~  Therefore by the same argument as in Lemma 1.7 of [-7] the mixture 
of P~ with respect to Q exists. Thus we can define a generalized Cox process 
directed by O whose characteristic functional is given by 

Coo(f) = E exp [O (e i f -  1)] = C o ( -  i(e ~ f -  1)), f ~  ~.  (4.3) 

Obviously the distribution of O is uniquely determined by that of ~. The 
following theorem is easily proved from (4.3) and Theorem 3.2. 

Theorem 4.2. For each n >= 1 let ~b, be a generalized Cox process directed by g.r.m. 
0 , .  Then ~ ,  e , ~ for some g.p.p, q~ iff O,  d , O for some g.r.m. O. In this case cb 
is a generalized Cox process directed by O. 

5. Processes with Interchangeable Increments 

Let Do[0 , 1] and Do(R+) be the class of functions on [0, 1] and R+ resp. which 
are right-continuous with left hand limits and which start at zero. The topology 
of these spaces are Skorohod J1 topology and its natural extension. Let X be a 
random process on [0, 1] separated by binary rationals and having interchange- 
able increments (ich. incr.). We assume that every random process starts at zero. 
Kallenberg [-4] obtained a representation theorem for X. In terms of g.p.p, his 
result is stated as follows ([4], Theorem 2.1): To every g.p.p. ~b with repre- 
sentation 

�9 ( f ) = A f ' ( O ) + B 2 f " ( O ) / 2 +  7J( f - f ' (O)h) ,  f ~ o  ~, 

we can associate a process X in D o [0, 1] with ich. incr. represented as 

X ( t ) = A t + B W ( t ) + ~ f l j [ l + ( t - z j ) - t ] ,  t~[O, 1], (5.1) 
J 

where 7J=~fiBj , W is the standard Brownian bridge on [0, 1], {zj} is a sequence 
J 

of i.i.d, random variables uniformly distributed over [0, 1], 1+ is the indicator of 
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R+, and finally r W and {zj} are independent. Conversely every process X with 
ich. incr. separated by binary rationals has an equivalent version in Do[0 , 1] 
represented as (5.1) with ~, W and {zj} subjected to the above conditions. ~ may 
be called the canonical g.p.p, of X. 

In view of Theorem 3.2 a convergence criterion for processes with ich. incr. 
(Theorem 2.3 of [4]) is stated as follows: 

Theorem 5.1. For n>  1 let ~n be the canonical g.p.p, o f  a process X n in D0[0 , 1] 
with ich. incr. In order that X n d ) some X it is necessary and sufficient that 
qV n d ~ some q~. In this case X has ich. incr. and 4) is the canonical g.p.p, o f  X.  

The process with ich. incr. whose canonical g.p.p, is a g.P.p.p, with intensity 
4) is equivalent to a L6vy process X such that 

E exp [ i tX(1)]  = exp [c~(e ith- 1)]. 

It is shown in [4] that every process X in Do(R+) with ich. incr. is a mixture of 
L6vy processes. In terms of g.p.p. Theorem 3.1 of [4] is stated as follows: 

T he or e m 5.2. The canonical g.p.p, o f  a process X in Do(R+) with ich. incr. is a 
generalized Cox process directed by a g.r.m. O. Conversely every generalized Cox 
process directed by a g.r.m. 0 is the canonical g.p.p, o f  a process X in Do(R+) with 
ich. incr. 

The g.r.m. O is called the canonical g.r.m, of X. The following theorem is a 
restatement of Theorem 3.3. of [4]. 

The or e m 5.3. For each n >= 1 let O n be the canonical g.r.m, o f  a process X ,  in 
Do(R+) with ich. incr. Then X , ~  some X iff O n- d ~ some O. In this case X is a 
process in Do(R§ with ich. incr. and has the canonical g.r.m. O. 

6. Appl icat ion  to a Class ica l  L i m i t  T h e o r e m  

Let {Xnk ; l<_k<-n, n > l }  be a triangular array of uniformly asymptotically 
negligible (u.a.n.) random variables, i.e. X,k,  1 <= k < n, are independent for each n 
and 

lim max P{[Xnkl>e}=O , (6.1) 
n l<--k<--n 

for every e>0. Let ~n, n__> 1, denote the g.p.p, defined by ~0,= ~ 6x, ~ and let S n 

= r  Xnk. Define # , e M '  by #n= Fnk, where F,k is the distribution of 
k = l  k = l  

Xnk. Obviously the measure #, is identified with an element of M which will be 
denoted by ~b,. 

Theorem 6.1. Suppose EU(Xnk)=O, l<_k<_n, n>=l. Then the following three 
statements are equivalent" 

(i) ~ ,  d ~ some ~), (ii) S, a ) some S, (iii) ~b,-, some d) in M. In this case ~ is a 

g.P.p.p, with intensity 0 and s d  ~(h) has the characteristic function exp [~)(e i~h 
- 1)J. 
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Proof. (i) ~ (ii). Obvious. 

(ii) ~ (iii). Immediate from a well-nown result ([2], p. 585, [3] p. 116). 
(iii) ~ (i). Suppose qS,---~ ~b and ~b has the representation 

(o(f)=af ' (O)+b2f ' (O)/2+g(f- f ' (O)u) ,  f E ~  ~. 

It suffices to show that ~ , ( f )  d , ~b(f) for f e ~  where ~b is a g.P.p.p, with 

intensity ~b. Notice that ~bn(f)= ~ Ink, where Y,k=f(X,k). Since f is bounded 
k = l  

{Y,k; 1 <k<<_n, n> 1} is a u.a.n, array of uniformly bounded random variables. It 
is obvious that 

p , f - l _ . # f - a  in M', (6.2) 

and 

EY, k= ~ F,k(f)=~b,(f)-*q~(f), 
k = l  k = l  

EYe= ~ F.k(fz)=on(f2)-+ 4)(f2). 
k = l  k = l  

The assumptions (6.1) and (iii) imply that 

(6.3) 

(6.4) 

lim max IF.k(f)l=O 
n l<-k<-n  

and 

sup ~ ]Fnk(f--f'(O ) U)[ < GO 
n k = l  

resp. and therefore we have 

(Fnk(f))2<= m a x  IF, k(f)l ~ IF, k(f--f'(O)u)[---~O. 
k = l  1 <-k<-n k = l  

Together with (6.4) this shows 

Var (Y,0--+ ~b (f2) = b 2 (f, (0))2 + #(f2). (6.5) 
k = l  

It is well-known ([2] p. 585, [3] p. 100) that (6.2), (6.3) and (6.5) imply that ~ , ( f )  

= ~" Y,k ~ some E The characteristic function of Y is given by 
k = l  

E e itr = exp [itS)(f) - b z (f '  (0)) 2 t2/2 + p(e i~I- 1 - i tf)] 

= exp [-~b (e its - 1)] = E [exp (i ~(tf))]. 

This proves the theorem. 
Let C,k=EU(X,O. It follows from (6.1) that 

lim max IC,k[=0. 
n 1 ~k<--n 
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Write * -  * -  �9 X~k--X,,k--Cnk and F/~k--F,k ( +Cnk ). Define qS*~M and a g.p.p. ~* by ~b* 

= F2* and ~n - 6x*.~. Then we have the following: 
k = l  k = l  

Corollary 6.1. In addition to (2.1) we suppose that u satisfies u ( x ) = x  in a 
neighborhood of  the origin. Then the following three statements are equivalent: 

(i) 4)* a ~ some qs, 

(ii) there exists a sequence {fin} such that Sn--fln a ~ some S, 

(iii) qb*--~ some ~) in M. 

Proof. The proofs of implications (i) ~ (ii) and (ii) ~ (iii) are the same as the 

proof of Theorem 6.1. To prove (iii) ~ (i) we shall show ~ (F*(f)2-* 0, f ~  ~.  It 
is easy to see that k= 1 

lu(x+c)-u(x)-cl<(l+llull)lcI, c ~ R .  

Furthermore by the additional assumption on u 

U(X+Cnk)--U(X)--Cnk=O, for Ixl<~ and n>no ,  l<_k<_n. 

Since F*(u)=Fnk(U (. +C,k)--U(')--Cnk ) we have ~ If~(u)l~0 and therefore 
k = l  

F~(u)Z~ 0. By an argument similar to the proof of the theorem we obtain 
k = l  

lira ~ F * ( f ) 2 = l i m  ~ [F/ ,*( f - f ' (O)u)+f ' (O)F*(u)]  2 
n k = l  n k = l  

=f '(0)  2 lim ~ F*(u) 2 =0. 
n k = l  

The rest of the proof is contained in the proof of the theorem. 

Theorem 6.2. Suppose u(x)=x in a neighborhood of  the origin. In order that q), 

some q~ it is necessary and sufficient that (i) ~b* -~ some d?, (ii) ~ C,k -~ some m, d 
~, k=l 

and (iii) .2 Cnk---~some q. In this case the distribution of  �9 is P4,6r where * 
k = l  

denotes the convolution and 4)o ~ M is such that 4 o ( f)  = mf '  (O) + q f "  (O)/2. 

Remark. It follows from the theorem that ~,  d ~ some �9 iff S. a ~ some S and 

T,,= ~ Xn 2 d , s o m e T .  
k = l  

Proof of  Theorem 6.2. To show the necessity of the conditions suppose ~,  a ~ ~. 

Then (i) is immediate because ~ X~k = ~,(h) d , ~(h). It follows from 
k = l  

q~n(u) = ~ u(Xnk) d , ~(U) and ~(u2)= ~ u2(X,k) d , ~(U a) 
k = l  k = l  

that 

 Varu Xnkl and  u2 Xnkt 
k = l  k = l  k = l  k = l  
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conve rge  a n d  therefore  

c,Zk : ~ EuZ(X.k) - ~ Varu(X,k) 
k = l  k = l  k = l  

converges  as n---* oe. 

N o w  suppos e  tha t  the  c o n d i t i o n s  (i)-(iii) hold.  Le t  ~*  be  a g.P.p.p, wi th  
i n t ens i t y  qb. I t  suffices to p ro v e  tha t  

~ , ( f )  d , r  f e g .  (6.6) 

By the  m e a n  va lue  t h e o r e m  in  ca lcu lus  we have  

[f(X.* + C.k ) --f(C.k )] -- I f(X'k) --f(O)]  = C.kZ.k , (6.7) 
where  

- -  t , ! 

Z.k -- f ( X .k + O .k C,.k) -- f ( Onk C .k) 
(6.8) - -  , / t  ~ , - X.k f (O.k X.k + O.kC.k), 

, wi th  0 < O.k < 1 a n d  0 < O.k < 1. S u m m i n g  (6.7) over  k we o b t a i n  

+.(i): i 7: l (x ,+  7: i(c,+ i 
k = l  k=l k = l  k = l  

By C o r o l l a r y  6.1 the first t e r m  o n  the  r ight  of  (6.9) converges  to ~ * ( f )  in  
d i s t r i bu t ion .  I t  is easy to see t ha t  the  s econd  t e r m  converges  to mf'(O) 
+(q/2)f"(O). F r o m  (6.8) we have  I Z , k l < m i n ( 2 l l f l l ,  ]lfll * �9 IX,kl). T h u s  by  (6.1) 

sup  E Z nk--~ Thi s  impl ies  ~ Cnk2 2 ~ C nk Z nk--~ 0 EZnk--+O a n d  therefore  in  p r o b -  
k k = l  k = l  

abi l i ty .  Th i s  p roves  (6.6) a n d  therefore  the  theorem.  
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