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1. Introduction 

Let (f2, { ~ t , 0 < t < l } , P o )  be a probability space and let {X.  0 = t < l }  be a Po 
local martingale. Dol6ans-Dade showed that the integral equation 

t 

L~ = 1 + ~ L s_ dX~ 
0 

has a unique solution {Lt, 0 < t < 1} which is a positive local martingale. If  E o L  1 

dP L = 1 then L t is a martingale and ~-o = 1 defines a new probabili ty measure P 
with 

Results concerning Po local martingales under P or P local martingales under Po 
have come to be known as Girsanov's theorem [4]. For example, if N~ is a 
continuous Po local martingale then N t -  IN, X]  t is a P local martingale where 
IN, X]~ is defined intrinsically as a quadratic variation process. 

_<t If { t, 0 _  < 1} is generated by a P0 Wiener process W t then there exists a P 
Wiener process l,~. Further, any P local martingale Z t has the integral repre- 

t 1 

sentation Z t =  ~ qsdlTV~ where ~ q2 s ds < oe a.s. 
0 0 

For processes with a two-dimensional parameter  the martingale concept has 
several extensions [1, 9]. The purpose of this paper is to present some results of 
the Girsanov type for such processes defined on the probability space of a 2- 
parameter  Wiener process. When possible, transformation results are stated and 
proved in an intrinsic (representation independent) form. 

Preliminary material is presented in Sect. 2, while the main results are 
collected in Sect. 3. In the remaining two sections, the theorems regarding 
martingales and weak martingales, respectively, are proved. 
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2. The Stochastic Calculus and Likelihood Ratios 

The basic definitions of [1] will be used in this paper, and are summarized as 
follows. Let R+ = [0, oo) x [0, 00) denote the positive quadrant of the plane. For 
two points s=(st, s2) and s'=(s't,s'2) in R+, s>s' will denote the condition 
S 1 ~ S  1 and > ' s' ' ___ ' ' s2=s 2, s.~ will denote the condition s~>s 1 and s2>s2, s x s '  will 
denote the point (sl, s~), and s v s' will denote the point (max(s1, s~), max (s2, s'2) ). 
I(s3`s') will denote the indicator function of the set {s3`s'}. 0 will denote the 
origin in R+ and R~ the rectangle {0<~s<~z}. R z |  z is the set {(s,s'):s~R,, 
s' ffRz, s 3. s'}. 

Let {Wz, zeR~o } be a standard Wiener process defined on (O, {~},  Po) where 
~={o-(W~, sKz) completed with respect to Po}. A stochastic process X 
= {X~, zeR~o} is said to be adapted if X~ is ~ measurable for each zeR,o. In the 
following definitions, the process X is assumed to be adapted and for each z, X~ 
is integrable. X is a martingale if z '>  z implies that E o (X~, 1o~)= X~ a.s., X is an 
adapted 1-martingale (2-martingale) if {X~,~, ~ }  is a one parameter mar- 
tingale in s 1 for each s 2 (in s 2 for each sl). X is a weak martingale if s';>-s implies 
that EEX~,-X~,•215 a.s. 

A proper 1-martingale (2-martingale) is a square integrable, sample con- 
tinuous process Mr(M2) which is an adapted 1-martingale (2-martingale) and 
mean square differentiable in the 2-direction (1-direction). 

A process Z is a local martingale if there is a sequence Z,  of square 
integrable martingales such that Z,(z, co)= Z(z, co) for z~R,o and n > N(co) where 
N(co) < oo a.s. A local /-martingale (proper local /-martingale, weak local mar- 
tingale) is similarly defined as the limit of square integrable /-martingales 
(proper/-martingales, weak martingales) for i=  1, 2. 

For l < p <  +oo, define Le~' to be the collection of adapted, measurable 
functions q(s, co) on (R~o x s N(R~o ) x g )  (where N denotes Borel sets) such that 
y Iq(s, co)lPds<+oo a.s. if p < + o o  or else suplq(s, co)l<+oo a.s. if p = + ~ .  

Rz 0 s 

Define LeaP to be the collection of measurable functions r(s, s', co) on (R~o| 
x f2, ~(R~o| ) x o~) such that r(s, s') is J~vs' measurable for each s, s'ER~o 

and, if p <  +oo, then ~ [r(s,s')]Pdsds'<+aD a.s. or else, if p =  +o% then 
Rzo | Rz 0 

sup [r(s, s')[ < + oo a.s. Clearly Le~ _ Lei q if p < q for i -- 1, 2. 
s ,  s p 

By the Theorems of Wong and Zakai [see 2], all local martingales have the 
stochastic integral representation 

Z~= ~ q(s)dW~+ ~ r(s,s')dW~dW~, (2.1) 
Rz R~|  

and all proper local 1-martingales (2-martingales) are given by mixed area 
integrals 

offs, s') ds dVV~,( ~ fi(s, s') dW~ ds') (2.2) 
Rz@Rz Rz@Rz 

where q~Le2 and r, ~, fl~Le22. For 2<p__< + 0% denote by S p the class of random 
processes which can be expressed as the sum of processes of the form (2.1), (2.2) 
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and an absolutely continuous process B~= ~ b(s)ds where q , b ~ ,  and 
Rz 

r, ~, f i e ~ .  Clearly 5,P~_5,q ifp<__q. Define 5P~= ~ 5,P. The processes in 5 ,2 
p<+oo 

are called semimartingales. Denoting Lebesgue measure by #, a semi-martingale 
is conveniently written as 

Z =  Woro W+qo  W+ #oc~o W+ Wo flo #+bo  #. (2.3) 

Stochastic integrals can be defined with respect to semimartingales. If 7Je~cf~ 
1 1 1 

and Z~ 5 ,  r for some 2 < r , s , t _ _ < + ~  such that r + s = t  , then by a simple 

application of H61der's inequality the stochastic integral 

T ~  ~ qstPsdW~+ ~ rs, s, tlJss, dW~dW~ , 
Rz R z |  

Rz|  R z |  Rz 

is a semimartingale in 5,t. 
A process is a weak martingale if and only if it the sum of a 1-martingale and 

a 2-martingale [7]. It follows that all semimartingales which are local weak 
martingales have the representation 

Z = Wo r o W+ q o W+ # o ~ o W+ Wo fl o # (2.4) 

A semimartingale is a one-parameter semimartingale in each direction with 
the semimartingale representations 

where 

zz= S Zwl(Z,s')dWs,+ Z.l(Z,S')ds' 
Rz Rz 

z:= zw2(z, s) dW + Z.2(z, s) ds 
Rz Rz 

Zwl(z  , s ' )=qs.+ S I(s~,s') rs, s, dVV~+ ~ I(s~.s') %,s' ds 
Rz Rz 

Zul(z, s')=bs,+ ~ I(s ~,s') fis, s' d!/V~ 
Rz 

(2.5) 

(2.6) 

(2.7) 

Zwz(Z, s )=qs+  j" I(s~s')  r~, s' dW~,+ ~ I(s~.s') fis, s' ds' 
Rz R~ 

Zu2(z, s )=bs+  S I(sJ~s') C~s, s, dW~,. 
Rz 

It is convenient to write (2.5) and (2.6) in the compact form 

Z = Z w 1  o W+ Z~, 1 o#, (2.8) 

Z = Z w 2  o W+ Zul o#. (2.9) 

Note that if Z = # o ~ o W  and Z = p o ~ o W ,  then Z - Z  a.s. if and only if 
Zwl(Z, s ')=Zwl(Z, s') for (ds'x dP measure) a.e. (s', co) for each z. In this case c~ 
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will be called a version of c~. Hence, c~ and fi in (2.3) are uniquely determined by 
Z up to versions. 

The composition Y . X  of two semimartingales X and Y is the process 
defined by 

(Y*X)~= ~ Ywz(SVS',S) Xwl(SVS',s')dW~dW~, 
Rz |  

+ ~ Yuz(svs',s)Xwl(svs',s')dsdWs. 
Rz| 

+ I Yw2(SVS"s) X.I( svs''s')awsas' 
Rz |  

+ ~ Y~2(svs',s) Xul(svs' ,s ')dsds'  (2.10) 
Rz |  

Formally, Y,  X satisfies 01 82(Y* X)=~2 Y#~X. In abbreviated form, (2.10) can 
be expressed as 

Y *  J = W o Y w  2 X w1 o W-t.- pt o Y# 2 X w1  ~ W - } -  W o  Y w  2 X # I o pt -l- pt o Y, 2 Xul ~ 

One may define quadratic variation processes for a semimartingale with 
representation (2.1) by 

[Z, Z]~=b  2 opt +pt or 2 opt (2.11) 

and, for i=  1 or 2, 

(Z, ZSiz=j  2 Xwi(~, s) ds. (2.12) 
R~ 

The definition (2.12) is consistent with the definition of quadratic variation for 
one-parameter semimartingales. Both I-Z, Z] and (Z, Z)i  are intrinsic to Z in 
the sense that they have representation free, quadratic variation interpretations 
[-1, 2]. Define [Z, Z] and (Z, Z)i  for semimartingales Z and Z by bilinearity. If 
Z has representation (2.3) and 

then 

and 

2 = W o ~ o  W+Oo w+pto~oW+Wo[jopt+tSopt 

(Z, 2>l(z)= jZwl(Z, ' ~ ' ' s ) Z w l ( z , s ) d s ,  
R~ 

z = (zl, z2) 

(2.13) 

(2.14) 

<Z, 2>l=EZ, 2]+(Wor+ptoCO2wlopt+(Wo~+ptoSOZwlOpt. (2.15) 

To obtain (2.15) apply the 1-parameter differential formula [4] to the integrand 
in (2.14) as a function of z 2 for fixed z 1 and use (2.7). Similarly, 

<Z, 2>2=EZ, 2]+ptO2wdroW+,8opt)+ptoZw2(~oW+flopt). (2.16) 

The differentiation formula of [8, 9] for semimartingales has been put into a 
representation free form [10]. Let F : R ~ R  be a function with continuous 
derivatives through the fourth order, and let Z be given by (2.1). Let Fk(x) 

3 k 
"--C3Xk F(x). Then 
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F (Z) = F (Z0) + Fa (Z) o Z + F 2 (Z) o (Z * Z) 

+�89 o (<Z, Z>~ + <Z, Z>~ - [Z, Z]) 

+�89 o(Z * <Z, Z ) l  +<Z, Z)2 * Z + 2[Z, z , z ] )  

-]-l F4(Z)  o ( ( Z  , Z ) 2  * ( Z ,  Z ) l  ). (2.17) 

If Z = ( Z 1  . . . .  , Z , )  is a vector of n semimartingales and if F: IR"~IR has 
continuous partial derivatives to fourth order, then (2.17) still yields the integral 
representation of F(Z)  if the terms are interpreted appropriately. For example, 
identify 

~F Fl(Z)oZ=X oZl 
82F 

Fz(Z ) o (Z * Z ) =  ,,2j az i azj ~ (zi  * Zj) 

83F 
F3(Z ) o (Z * <Z, Z > I  ) = i,j, aZ, aZj (~Z k o (Zi * <Zj,  Zk>l).  

For n = 2  and F(z, ~)=z~, this yields 

z 2 = Z o 2 o +  Zo2  + 2oZ + Z , 2 + 2 , z +<z ,2> l  +<z ,2>2 -Ez ,2 ] .  

(2.18) 

This generalization of the differentiation formula given in [8, 9] may be proved, 
as in [81, by repeated application of the differential formula for one parameter 
martingales. (2.18) shows that Z ,  Z + Z ,  Z is intrinsic to Z, Z since all the other 
terms are. Thus the symmetrization of �9 is an intrinsic operation. 

The following proposition summarizes some properties of the operations 
defined on semimartingales. One consequence is that ~ is closed under all 
operations of the stochastic calculus defined so far. 

Proposition 2.1 [3]. a) Let  Z e ~  p for  p < 2 .  7hen (s, s', (~),~Zwi(S v s',s', co) and 
(S,S,O)) Z ui(SVS,S,(D ) are in Y f  for  i=  1,2. b) I f  Ze~9 '~, 2 e S e s  and ~ P e ~ [ , f o r  

1 1 1 
some 2<r , s , t__<+~ such t h a t - +  = - ,  then [ Z , Z ] ,  ( Z , Z ) I  , (Z, 27)2 , Z * Z  

r s t 
and 71. Z are well-defined semimartingales in 2, ~ I f  s = + oo (so 2 <r  = t < + oo) 
then ~goZ is still a well defined semimartingale in ~ t .  c) I f  p > 2  and Z 
=(Z . . . .  , Z , )  is a vector of  n semimartingales, each in ~9 ~4p, and i f  F: IRn ~ I R  has 
continuous partial derivatives to fourth order, then F (Z)e  ~ ~ and all terms in (2.17) 
are semimartingales. 

Let P be a probability measure on (s {~}) equivalent to Po. Then if 

E o is finite, the likelihood ratio 

[ Z 
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satisfies L = e x where [7] 

x _ =  f O dWs-  2 1 2 0 s d s - 3  ~ dsds '  JO 8~ S' 
Rz Rz Rz |  

+ ~ & , s , [ d W ~ - f i ( s ' •  s')ds"l (2.19) 
Rz |  

for some functions p, O, u and ~. In an abbreviated form, (2.19) is expressed as 

X = O  o w - - l  OZ o l4-�89 p2 o l, t + ( W -  p~t) o p o ( W - u p ) .  

If p~s and 0es then u and ~ are uniquely determined by 

u (z, s') = 0 s, + 5 I (s ~ s') p s, ,' [d W, - fi (s' x s, s) d s] (2.20) 
R= 

~(z, s)= Os+ ~ I(s .a. s') p,, ~, [dW~,-  u(s' x s, s') ds'] (2.21) 
R= 

and X is a semimartingale. It then makes sense to write L = e X = g ( p ,  0). L = e  x 
also has the representation [7] 

e x = e x o (m + M 2 * M1) (2.22) 

where m is the local martingale part of X and MI(M2) is the local 1-martingale 
(2-martingale) part of X. It follows from (2.19)-(2.21) that 

X w  1 (z, s') = (M a)w 1 (z, s') = u (z, s'), (2.23) 

Xw2  (z, s)= (m2)w2 (z, s)= fi(z, s). (2.24) 

L = e x also has essentially one parameter representations, as expressed by 

X t X ew l (Z, s ) = e  s, xz u(z, s ), (2.25) 

eX2 (z, s)= eX• s ~ (z, s). (2.26) 

Proposition 2.2. I f  0 ~  and p~59 [ for some p>=4, then there exists a unique 
solution (u, ~) to equations (2.20) and (2.21) such that u (s' x s, s') and fi(s' x s, s), as 
functions of  (s, s', co), are in 59 p. I f  in addition p>= 8, then 2 ) ~ 5  '~p/4 and if  p>= 10, 
then X e 5  Pp/5. 

Lemma 2.3. Let  T be an interval [0, to]CN.. Given 2<p__<+o% g s ~ P ( T )  and 
K ~ 2 ' P ( T  x T), the integral equation 

f ( s ) = g ( s ) +  ~ K(s, t ) f ( t ) d t  t ~ T  (2.27) 
t<_s 

has a unique solution f 6s The solution satisfies 
p--2  

' If liP< [.~o= (l[Kl 'v#(T)~"]ni J" (2.28) 

Remark. The lemma and its proof easily carry over to more general partially 
ordered sets T. This generalization will be used without further mention. 
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Proof of Lemma 2.3. The proof will be accomplished by a version of Picard 
iteration. Define q~o(s)=g(s) and qS,(s)= ~ K(s, t)(o,_l(t)dt for n > l .  For each 

t__<s ( 1 1 ) P P  fixed seT, define a(s)= ][K(s, ")[[~,, where p' is conjugate to p i . e . - + ~ = 1  . The 
by Holder's inequality, for each s and n > 1 

I~b,(s)W <=a(s) S [qS,_ l(t)[ p dt. (2.29) 
t < s  

Also by Holder's inequality, 

][al] 1 = ~ (~ [K(s, t)] p" dt) v/v' ds <= ]]KIIeP # ( r )  p-2. (2.30) 
T T 

Now (2.29) for n = 1 implies that ]Ol(S)lv<=a(s)Ilgllp p and then by induction (2.29) 
implies that 

t l  t n  - 2 

[~bn(s)[P<a(s)S~ ~'" ~ a(tl)...a(tn-1)dtn-~...dtl ][g]]~. 
0 0 0 

Integrating each side of this inequality over T yields that 

a n p_ll I1~ ]lq~.llp~5-.v Ilgll v. (2.31) 

Hence, ~ ]]~b,]]p is dominated by the right hand side of the inequality (2.28) so 
n = O  c o  

that the sum f =  ~ qS, converges to a unique element f ~ P ( T )  which satisfies 
n = O  

(2.27) and (2.28). The proof of uniqueness of the solution f follows similar 
reasoning. [] 

Proof of Proposition 2.2. Substituting Eq. (2.21) into Eq. (2.20) with z=s'•  
yields that, for (s, s')~Rzo | R=o , 

V(s'• S I(tAs')p~,~,[dW~-(r ~ I(t~.t')p~,,,dW~,)dt]) 
R s '  • s R s ,  • t 

+ S I(tAs')Pt,~' ~ l(tht')Pt, t 'U(t 'xt ,  t')dt'dt. 
R s ,  x s R s "  • t 

Let T=R~o| ~IR 4 be equipped with Lebesgue measure and define a partial 
ordering on T by letting (t, t ')<(s, s') if t ' •  t<s' • Part a of Proposition 2.1 
insures that (s, s')~, ~ I(t ~ s') pt, s, dWt and (t, s'),~, ~ I(t z t') pt, c dWt, are each 

R s ,  x s R s ,  x t 

in ~V(T) for a.e. co. Application of Holder's inequality then implies that, for a.e. 
co, the term in curly braces in Eq. (2.31) is in 5fP/2(T) for a.e. co. 

For each co, define K by 

K((s,s'),(t,t'))=I(tAs')I(tAt')pt, s, Pt,c for (s,s')<(t,t')~T. 

Since p~LV(T • T) for a.e. co, Holder's inequality implies that K~Lp/2(T • T) for 
a . e .  o) .  
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Now, for a.e. co, Eq.(2.31) as an equation for u ( s ' x s ,  s ' ) : ( s , s ' ) sT)  can be 
written as (2.27) where K6Lp/2(T x T) and g~Lp/2(T). Hence, by Lemma 2.3, 
there is a unique solution U~Lp/2(T) for a.e. co. Furthermore, the construction of 
the solution in the proof of Lemma 2.3 insures that u(s' x s, s', co)~P/2(T).  A 
similar argument shows that f i ( s ' x s ,  s, co)~59P/Z(T) as well. The remaining 
assertions of Proposition 2.2 follow from the representations (2.19) and (2.22) for 
X and L. []  

Technical Assumption. Throughout  the remander of this paper assume that P ~Po 
dP g 

with ~oo = (p, O ) = e x p ( X ) = L .  In addition, assume that one of the following is 

true: 
A.1 X e 5  P~' 

A.2 0, p, u and fi are a.s. bounded. 

Finally, if A.1 is assumed, then the definition of semimartingale will be restricted 
to consist only of processes in jo~. 

Remarks.  (1) By Proposition 2.2, condition A.1 is satisfied if 0 ~ 5 ~  and p ~  
for all p <  + oo. Condition A.2 is satisfied if, for example, p, 0, u and fi are 
sample continuous. An open problem is to find reasonable conditions on p, 0 to 
insure that A.2 is true. (2) The results of this paper which are true under 
assumption A.1 and the proviso that semimartingales are 5 a* processes are still 
true if the processes are only in 5 ap for some (rather than all) sufficiently large p, 
as determined by Proposition 2.1 and 2.2 in each case. (3) If p and 0 are given 
and if L = g ( p ,  0), then L is a positive local martingale. Included in the technical 
assumptions is the Girsonov condition E[Lzo ] = 1 ,  which implies that L is 
actually a martingale. Conditions on p and 0 which insure that E [ g ( p ,  0)] = 1 
appear to be severe when compared to the one parameter case, unless p = 0. (See 
[-7], Sect. 5). (4) L is a strong martingale [9] if and only if p -  0. Moreover, when 
probability P is used, ~ and ~z, are conditionally independent given ~ n ~ ,  
for all z,z'ER~o if and only if p--0.  Much of the complexity of this paper 
disappears and more general results are easily established if L is restricted to be 
a strong martingale. 

Lemma 2.4. Let  Z = {Z~, zERzo } be a semimartingale with the representation (2.3). 
Then the following identities hold and all terms are semimartingales. 

Z �9 e x = e x o (Z * M1) (2.32) 

e x * Z = e  x o (M 2 * Z) (2.33) 

(X,  Z ) l  = [X, Z]  + ( W -  Itfi) o p Z w i  o It+ Wo ru o I t+Ito ~u o # (2.34) 

(X, Z ) 2 =  IX, Z] + i t o Z w 2  p o ( W - u l ~ ) + i t o f i r o  W+Ito~c~oIt  (2.35) 

(eX, Z ) I = e X o { ( X , Z ) I + M 2 . ( X , Z ) I + [ X . Z , X ] + [ X * X , Z ] }  (2.36) 

(eX, Z ) 2 = e X o { ( X , Z ) 2 + ( X , Z ) 2 . M ~ + [ Z . X , X ] + [ X . X , Z ] }  (2.37) 

e X Z = Z  o eX+eXo { Z + M  2 . (Z+  (Z, X ) l  ) + ( Z +  (Z, X)2 ) * M~ 

-l-<X, Z > l - l - < X  , Z>2-I - [X  , X * Z ] - I - [ X ,  Z * X I - [ Z ,  X - X , X 1 }  

(2.38) 
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e - x = I  + e - X o { - X  * { X , X ) I - { X , X ) z .  X + { X , X ) I  +<X,X)2  

- [X, X]  - m  + M2 * M1 } (2.39) 

e-X Z = Z o e - X  +e-Xo {Z-<Z ,  X>I-<Z,  X>2+[Z,  X ] - [ X ,  X * Z ]  

- [X, Z * X] - (M 2 - <X, X)2 ) * (Z - <X, Z )  1) (2.40) 

- ( z -  <x,  z )2)  �9 (M, - <X, X ) , ) } .  

Proof Under the assumption A.1, each term in Eqs. (2.32)-(2.40) is a semi- 
martingale by Proposition 2.1. If, instead, assumption A.2 is made, note that Z 
appears at most once in each of the terms in (2.32)-(2.40) so that each term has a 
semimartingale representation with integrands in 5~ 2 or L~22, since each in- 
tegrand is the product of a.s. bounded processes and is at most an a.s. square 
integrable process. 

Now (2.23)-(2.26) imply (2.32) and (2.33), while (2.15), (2.16), (2.23) and (2.24) 
imply (2.34) and (2.35). Equation (2.36) is proved by applying the differentiation 
rule for one parameter semimartingales to the integrand in 

X <eX, Z} l=ewlZwlok t=  ~ x , e (s x z) u(z, s ) Zwa(Z, s') ds' 
R= 

as a function of z 2 for s' fixed. (2.37) follows similarly. (2.38) is obtained by 
applying the differentiation formula to F(e x, Z)=eXZ and using (2.32), (2.33), 
(2.36) and (2.37). (2.39) is obtained by applying the differentiation formula to 
F(X)=e -x and (2.40) follows by applying the differentiation formula to 
F(e - x , Z ) = Z e  -x. [] 

Local martingales, local /-martingales, and local weak martingales may be 
defined under the law P exactly as they were for law Po. It follows that a process 
Z is a P local martingale (a P local /-martingale, i=  1 or 2, a P local weak 
martingale) if and only if LZ is a Po local martingale (Po local /-martingale, Po 
local weak martingale). 

The term semimartingale will always refer to the processes in 5 p2 (or 5 P~ if 
condition A.1 is assumed) which have stochastic integral representations with 
respect to the process {Wz} on (Q, ~-, Po). Equations (2.38) and (2.40) show that Z 
is a semimartingale if and only if eXZ is a semimartingale. For example, under 
assumption A.2, if Z is a P local martingale then Z is a semimartingale. 

3. Compensation and Representation Theorems 

The main results of this paper, which are summarized in this section, describe 
martingales, weak martingales and /-martingales under the change of measure 
P o ~ P  when subject to one of the technical assumptions described in Sect. 2. 
There are two types of results: one type concerns compensation (or transfor- 
mation) of Po martingales, Po/-martingales and Po weak martingales to obtain P 
martingales, P/-martingales, and P weak martingales (and vice versa). The other 
type concerns the integral representation of P weak martingales and P mar- 
tingales (i.e., the counterpart of (2.1) and (2.4) when Po is replaced by P). 
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Theorem 1 (i-Martingale Compensation). Let Z and N be semimartingales, and 
let i=1 or 2. 

(a) I f  Z is a Po local i-martingale, then (and only then) Z -  (X,  Z)i is a P local 
i-martingale. 

(b) I f  N is a P local i-martingale, then (and only then) N + (X,  N}i is a Po 
local i-martingale. 

I f  Z is a Po local i-martingale, then (X,  Z}i is the unique semimartingale with 
((X, Z}i)wi=O such that Z - ( X ,  Z}i is a P i-martingale. 

Remark. Theorem 1 follows easily from the theorem on transformation of one 
parameter local martingales. It is also easily proved using the identities in 
Lemma 2.4. 

It will be convenient to define some operators on the linear space of 
semimartingales. If Y is a semimartingale, let 

T ( Y ) = ( X ,  Y ) I  + ( X ,  Y}2, 

V(Y)= I-X, X * Y+ Y* X] - [Y, X - X  * X], 

let I denote the identity operator and define the linear operator H by H = I + T 
+V. 

Theorem 2 (Martingale Compensation). (a) If a semimartingale Z is a P local 
martingale then II(Z) is the unique Po local martingale such that Z - H ( Z )  has 
no P0 local martingale component (i.e., such that [Z-El(Z) ,  Z -E l (Z ) ]  =0). (b) 
Conversely, if a semimartingale N is a Po local martingale, then there are unique 
proper Po local /-martingales n~ i = 1 , 2  and a unique absolutely continuous 
semimartingale b such that 

n 2 + b = ( N - n l ,  X} ,  (3.1) 

n 1 + b = ( N  - n 2, X}, (3.2) 

and Z = N  1 - n  1 - n 2 - b  is the unique P local martingale such that N - Z  has no 
Po local martingale component. (c) Let N be as in (b). Then there exist unique 
semimartingales ml and m 2 such that 

m l = ( N - m 2 ,  X }  2 (3.3) 

m 2 - - - =  ( N -  m 1, X}I .  (3.4) 

If b is the absolutely continuous semimartingale 

b = IN, X - X * X] - IX, X * (N - ml) + ( N -  m2) * X] (3.5) 

then n~ = m~- b, i=  1, 2, are proper Po local/-martingales satisfying (3.1) and (3.2). 
Hence Z in part (b) satisfies Z =  N - m  1 - m  2 +b. (d) The linear operator El is an 
invertible map of the space of semimartingales onto the space of semimar- 
tingales. For  a semimartingale N , / 7 - I ( N )  has the representation 

E l - t ( U ) = ( I -  V) ~ ( -  1)"T"(N) (3.6) 
n - - O  
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where the series in (3.6) converges pointwise in probability to a semimartingale. 
N - / 3 - 1 ( N )  and Z - / 3 ( Z )  have no P0-martingale components for any semi- 
martingales N, Z , / 3  maps the space of P local martingales onto the space of Po 
local martingales. 

Remark. Theorem 2 shows that martingales can be compensated under a change 
of measure in an intrinsic fashion. Unfortunately, the compensation of a Po local 
martingale to obtain a P local martingale requires the solution of Eqs. (3.1) and 
(3.2), or equivalently, the series representation (3.6). Given a Po local martingale 
N, when Z is described using Eqs. (3.1) and (3.2) as in (b), then the P local 
martingale property of Z is immediate from Theorem 1 (see proof). The equiva- 
lent system of Eqs. (3.3)-(3.5) or the series representation (3.6) for Z has the 
advantage of not requiring semimartingale decompositions using proper local i- 
martingales. 

Theorem 3 (Weak Martingale Compensation). (a) I f  a semimartingale N is a Po 
local weak martingale then 

N - ( N ,  X ) I  - ( N ,  X ) 2 +  IN, X + X , X ]  (3.7) 
and 

N = N - # o ~ u o # - # o ~ f l o # - [ N , X  + X , X] (3.8) 

are P local weak martingales. The process in (3.1) is determined from N and X by 
intrinsic operations. N is the unique P local weak martingale such that N - N  is an 
absolutely continuous semimartingale. (b) I f  a semimartingale M is a Po local 
martingale, then M -  [M, X + X * X] is a representable P local weak martingale. 

Remark. It would be desirable to find an expression for N in Theorem 3 which is 
intrinsically determined by N and X. The last part of the theorem shows that 
this is possible if N is a Po local martingale (rather than just a Po weak local 
martingale). 

Theorem 4 (Weak Martingale Representation). All semimartingales which are P 
local weak martingales may be represented as 

q o ( W -  0#) + ( W -  #~) o r o ( W -  u#) 
(3.9) 

- #orpo # + # o a o ( W - u # ) + ( W - # f i ) o b o  #. 

Remarks. (1) A consequence of Theorem4 is that p, 0, u and fi have the 
interpretation first noted in [7] (E denotes expectation under law P): 

O(s) ds = E  [dW~ [ ~ ]  

u(z, s') ds' =E[d~ ,  I~, x~] 

~(z, s) ds = E [dW, [ o~ • s] 

p (s, s') ds ds'= E [(dW~- fi(z, s) ds) (dW s, -u ( z ,  s') ds') ] J~ v s, ]. 

(2) Since the a-fields ~ are generated by a Po Wiener process, if z' .r z then 
and ffz, are conditionally independent given ~ • (using probability measure 
Po). However, when Po is replaced by P, the conditional independence is lost 
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unless p is identically zero. Indeed, this suggested by the interpretation given in 
Theorem 4 of p as a conditional correlation. As a result, the o--fields { ~}  cannot 
be generated by a process which is Wiener on (~?, ~ ,  P). 

A corollary to the representation (3.9) is that the class of representable P 
local weak martingales is stable under stochastic integration. Unless p is 
identically zero, the classes of P local martingales and representable P local i- 
martingales are not stable under the operation of stochastic integration. Hence, 
there does not exist a counterpart to the representation (3.9) for P local 
martingales. 

If p is identically zero, then W= W -  0 o # is a Wiener process on (~2, ~ ,  P0) 
[7]. If W generates the same o--fields as W (i.e., "innovations equivalence" holds 
for W under P), then P local martingales may be expressed as q o 17r I7r r o 
by the Wong-Zakai representation theorem. However, innovations equivalence 
is not necessarily true. 

Theorem 5 (Martingale Representation when p=O).  I f  p is identically zero, then 
any semimartingale which is a P local martingale may be represented as q o 17V 
+ lFV o r o lTV w h e r e ITV = W - O o #. 

4. Martingale Results 

Theorems 2 and 5 will be proved in this section. 

Proof of  Theorem 2.a. Let Z be a semimartingale and a P local martingale. 
Using the definition of H(Z), Eq. (2.38) may be rewritten as 

e X Z = e X o I I ( Z ) + e X o { M 2 , ( Z + ( Z , X ) I ) + M i , ( Z + ( X , Z ) 2 ) } .  (4.1) 

Now eXZ is a Po-local martingale. In addition, by Theorem 3.1, Z +  (Z ,  X ) i  is a 
Po local/-martingale for i = 1, 2 so that 

M 2 * ( Z + ( Z , X ) ,  ) and ( Z , + X , Z ) 2 * M  1 

are Po local martingales. So eXo(Z), and hence also H ( Z ) = e - X o  eXo(H(Z)), is a 
P0 local martingale since all the other terms in Eq. (4.1) are Po local martingales. 
The uniqueness assertion of Theorem 2a follows from the uniqueness of semi- 
martingale representations. 

Proof of  Theorem 2b. Let N be a semimartingale and a Po local martingale and 
suppose that Z = N - n  1 - n z - b  is a semimartingale where n~ i=1,  2 are proper 
Po local martingales and b is an absolutely continuous semimartingale. Then Z is 
a P local martingale if and only if Z is a P local/-martingale for i = 1, 2. Hence, 
by Theorem 1, Z is a P local martingale if and only if Eq. (3.1) and (3.2) are true. 
It remains only to prove the existence and uniqueness of solutions hi, n 2 and b 
to (3.1) and (3.2). Such existence and uniqueness are implied by Theorem 2c. The 
uniqueness of the solution to (3.1) and (3.2) follows from the fact that if n 1, n 2 
and b satisfy (3.1) and (3.2) then m l = n ~ + b  and m z = n a + b  satisfy (3.3)-(3.5) 
which have a unique solution by Theorem 2c. Thus, Theorem 2b will be proven 
once Theorem 2 c is established. 
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Proof of Theorem 2c. If m I and m 2 are semimartingales satisfying (3.3) and (3.4), 
then (ml)w2=(mZ)wl=O so that m 1 and m 2 must have the semimartingale 
representations 

ml = # ~  ~ W+bl  

m2=Wof2o#+b2.  

Let N = W o r o  W+qo W be the semimartingale representation for N. Using 
(2.34) and (2.35) and equating proper local/-martingale terms yield that (3.3) and 
(3.4) are equivalent to the four equations 

# of~ o W = #  o {Sr+(N-mz)w2  p} o W (4.2) 

Wof2 o#= Wo {ru + p ( N - m O w l }  o# (4.3) 

b~ = IN, X] - #  o {(N-mz)w2 pu + uf2} ~ # (4.4) 

b 2 = [N, X ] - #  o { S p ( N - m l ) w l  +f ,  u} o#. (4.5) 

Now (4.2) and (4.3) are true if and only if there are versions off1 and f2 so that, 
for  s A s ~, 

A(s, s')= (~(s, s') r(s, s') + p(s, s') (q(s) + ~ l(s ,v ~') r(s, t') dW,,)} 
R . . . .  ( 4 . 6 )  

-p(s ,s ' )  ~ I(s~.t')f2(s,t ')dt' 
R s ,  x s 

f2 (s, s')= {r(s, s') u (s, s')+ p (s, s')(q (s')+ ~ I (tav s') r (t, s') d Wt) } 
R s '  • s 

-p(s , s ' )  f. l (s ' ,vt) f~(s ' , t )dt .  (4.7) 
R s ,  x s 

Under either of the two possible technical assumptions of this paper, there is 
a unique solution (fl ,f2) to the Eq. (4.6) and (4.7). If condition A.1 is assumed, 
so that X, N, Ms, Mze5  ~', then by Proposition 2.1a and Holder's inequality, the 
quantities in curly brackets in (4.6) and (4.7) are each in s for 2 < p <  + oo. As 
in the proof of Proposition 2.2, a single iteration of equations (4.6) and (4.7) and 
an application of Lemma 2.3 then show that there is a unique solution (fl,  f2) to 
Eq. (4.6) and (4.7) with f/es for 2=<p< + m. 

Under the alternative assumption A.2, the quantities in curly brackets in 
(4.6) and (4.7) are each in og a2 since each term is the product of a single term in 
s 2 and a.s. bounded processes. A Picard iteration argument then implies the 
existence and uniqueness of a solution (fDf2) to (4.6) and (4.7) such that f,~Se2 z 
for i=  1, 2. 

In summary, under either of the assumptions A.1 or A.2 there is a unique 
solution (fl ,f2) to (4.6) and (4.7), and n l = # o f l o  W and nz=Wof2o fl a re  the 
unique semimartingales satisfying (4.2) and (4.3). Finally, substitution of (4.7) 
and (4.6) into (4.4) and (4.5) respectively yields that ba=-bz=-b a.s. where b is 
given by Eq. (3.5). 

Proof of Theorem 2d. It is easy to check that TV-- V2--O so that H = I  + T+ V 
= ( I +  T ) ( I +  V) and ( I+  V) is invertible with ( I+  V) -1 = I - V .  The represen- 
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tation (3.6) can hence be established by proving that for any semimartingale Y, 
the series 

o f )  

( -  1)" T"(Y) 
n = O  

converges pointwise in probability to a semimartingale R(Y), and proving that 
the resulting linear operator R satisfies ( I + T ) R = R ( I + T ) = I  (i.e. R = ( I  
+ T)- t). 

So suppose that Y is a semimartingale. By Lemma 2.4 and induction on n, 
T" Y is a semimartingale for all n > 0. Let 

T"(Y) = q(") o W +  Wo r (") * W +  # o f(~") o W +  Wo f(2 ") o # + b (") 

be the semimartingale representation. By (2.34) and (2.35), 

T(Y)  = Wo (p Ywl + r(~ fi) ~ # + # o (Yw2 P + ur(~ ~ W +  2 IX,  Y] 

+~o(f(o)~_~p y~l +of~o)_ y~p.)o#. 

Hence q(t)=r(1)= 0, and moreover, q(")=r (") =0  for all n > 1. Also 

f t  (1)-  r(~ c ( 1 ) -  Yw~ + r(~ ft. - Yw2P+U P 3 2  - -  

Under assumption A.1 fi(~ for all p <  +0% and under assumption A.2 
f~(1)(1)e~q~, for i=  1, 2 by Propositions 2.1 and 2.2. Applying (2.34) and (2.35) 
again to compute T " ( Y ) = T ( T " - I ( Y ) )  and using the fact that r(")=q(")=O for 
n > 1 yield that, for n __> 2, 

f~")(s,s ')=p(s,s ')  ~ I (sAr ' ) f (2"- l ) (s ,r ' )dr  ' 
R s '  • s 

(n) (S ,  f ~ ,  S')=p(s,s') ~ I ( s ' x r ) f ( l " - l ) ( s ' , r )dr  
R s '  • s 

(n) _ 
b z - ~ dsds '{( f (2"- l)(s ,s ' ) - f ( l")(s ,s ' ) )u(s 'xs  ') 

R z |  

+ (f~"- 1)(s, s') -c(") ts  sq~ ~(s' x s, s)}. d 2  \ ~ ] l  

(4.8) 

Under assumption A.1 the Picard iteration argument of Lemma 2.3 shows that 

the sum ~ fi (") converges a.s. in LP(Rz | Rz) to a function f~ where f i e ~  for all 
n = 0  

p < + oo, for i = 1, 2. Under the alternative assumption A.2, the fact that f/(1)eA~ 
and peA~ implies by induction that f~(n~eA~ for all n>3.  Picard iteration then 

yields that ~ f~(") converges uniformly a.s. to a function f ieA~ for i=  1, 2. 
n = O  

Under either technical assumption, the stopping time provided in [6] and 
Lemma 7 of I-5] then imply that the proper Po local /-martingale term of 

~ T " ( Y )  converges pointwise in probability to the proper P0 local/-martingale 
n = l  

# of  1 o W (if i = 1) or Wof2 o # (if i =2). The convergence of ~ f l  (") and (4.5) imply 
n 
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the uniform convergence of ~ b (n~ a.s. to an absolutely continuous process b. 
n = 0  

Thus the series (4.1) does indeed converge to a local semimartingale R(Y). 
Finally, note that 

R ( I +  T ) ( Y ) =  (2i+rn ~ ( - 1 )  ~ T ~) ( I+  T)(Y) 
n ~ 0  

= Y+ lim T(k+I)(Y)= Y 
k--+ oo 

where the limit is pointwise in probability. Similarly, ( I+ T ) R = I .  The proof of 
the representation (3.6) is complete. 

The fact that N - H - ~ ( N )  and Z - / 7 ( Z )  have no Po-martingale component 
for any semimartingales N and Z is immediate from the definition o f / 7  and 
(3.6). 

Now /7 maps the space of P local martingales into the space of Po local 
martingales by part (a). To prove that this mapping is onto, let N be a P0 local 
martingale, and let Z be the unique P local martingale such that N - Z  has no Po 
local martingale component. Z exists by part (b). Then N and H(Z) are each Po 
local martingales and N - / 7 ( Z )  = N -  Z + (Z - H (Z)) has no P0 local martingale 
component. Hence N =/7(Z). 

Proof of Theorem 5. If p is identically zero then X=Oo W - I O  2 o# by (2.19). It 
follows that T"=  0 for n > 3 so the series defining R is finite. The result is (using 
(2.24) and (2.35), 

R(N)(I + T) - ~ N 

= N - ( N , X ) I - ( N , X ) 2 + ( X ,  ( N , X ) I ) 2 q - ( X ,  ( N , X ) 2 )  1 

= N - ( N , X ) ~ - ( N , X ) e  + 2 [ N , X  * X]  
and 

VR(N)= IX, R(N) * X + X * R(N)] - JR(N), X - X  �9 X]  

= O - [ N , X - X  * XJ. 

So for any semimartingale which is a Po local martingale N = Wo r o W+ q o W, 

H - I ( N ) = N - ( N ,  X)~  - (N,  X ) 2 +  [g ,  X + X *X] 

= ITVo r o lTV+q o I?V (4.9) 

where W= W - 0  o #. Since H-~ maps onto the set of all semimartingale which 
are P local martingales, any such process has the representation (4.9). [] 

5. Weak Martingale Results 

Theorems 3 and 4 will be proved in this section. 

Proof of Theorem 3b. Suppose that M is a semimartingale and a Po local 
martingale. Then trivially 

e x ( M -  [M, X + X * X] )=  ( e X M -  [e x, M ] ) -  (e x [M, X + X * X]  - [e x, M]) 

(5.1) 
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Since M and e x are both Po local martingales, e X M -  [e x, M] is a Po local weak 
martingale. (This may be proved by using integral representations, but is an 
"intrinsic" fact [1].) By (2.22), 

[e x, M] = e x o [m ,  m + m 2 * m t ]  = e x o [ m ,  X + X * X].  (5.2) 

Using the differential formula (2.18) and substituting in (5.2) yield 

e X [ M , X + X . X ] - [ e  x, M - ] = [ M , X + X * X ] o e X + e  x * [ M , X + X * X ]  
+ [ M , X + X * X ] * e  x 

which is a Po local weak martingale. In view of (5.1), eX(M - [M, X + X �9 X]) is a 
Po local weak martingale so that M - [ M ,  X + X *  X]  is a P local weak mar- 
tingale. 

Proof  o f  Theorem 3a. Suppose that N is a semimartingale and a Po local weak 
martingale. Then N may be expressed as 

N = M + # o c ~ o  W +  Wo f l o # = M  +n l  +n  2 (5.3) 

where M is a Po local martingale, and n 1 = # o  ~o W (nz= Wo flog) is a proper Po 
local 1-martingale (proper Po local 2-martingale). By Theorem 1 and Theo- 
rem 3.6 the following semimartingales are all Po local weak martingales: 

n 1 -- (n l ,  X ) I  :/~1 -- (t"/1, X ) I  - (t/t,  X ) 2  4- [nl ,  X 4-X * X]  

n 2 - - ( n  2, X)2 = n2-- (n  2 , X ) I  - - ( t l  2, X ) 2  Af-IF/2, X - J f - X * X ]  

{ M -  (M, X)1} + { M -  (M,  X)2 } - { M -  [M, X + X �9 X]} 

= M - ( M ,  X ) I  - ( M ,  X)2-q-- [M, X + X �9 X].  

The sum of these processes is 

N -  (N,  X ) l  - (N,  X)2 + [N, X + X �9 X] (5.4) 

which is thus also a Po local weak martingale as advertised. 
The proofs that M -  [M, X + X �9 X] and (5.4) are P local weak martingales 

have been intrinsic (essentially representation independent) and are thus likely 
to remain valid in a more general setting. 

Since [ni, X + X * X] = 0 it follows that 

N - [ N , X  + X , X ] - # o c m o # - # o V t f l o #  
(5.5) 

= ( M -  [M, X + X  * X]) + (n 1 - # o  eu o #)+(n  2 - #  o~fio #). 

The first term on the right is a P local weak martingale by Theorem 3b. It will 
be shown that the other two terms are also. Let B 1 = # o eu o # and apply (2.33) to 
get 

eXnl  =t  h o eX +eXo {n 1 4- M 2 �9 (n 1 4- ( X ,  nl)1)4- (X ,  n l )  1 4- IX  * t11, X]}  
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and  

eX B1 =B 1 o eX + eXo {B a + M 2 , B 1 + B i , M1}. 

Hence  

eX(nl - B 1 ) =  K + e  x o { < X ,  n l )  1 -k I X  * hi ,  X ]  - B 1 }  

where K is a Po local  weak  mar t ingale .  App ly ing  (2, 3, 4) shows that  

(X ,  n l )  1 + IX  * nl, X] - B  1 = Wo p(nl)wl o p 

is a Po local  weak  mar t ingale ,  so tha t  eX(n l -B1)  is one also. Therefore  
n I - # o c ~ u o  # (and s imi lar ly  nz - f l o~ f l o# )  is a P local weak mar t ingale .  There-  
fore, each side of (5.5) is a P local  weak mar t ingale .  

Final ly ,  to p rove  the uniqueness  asser t ion in T h e o r e m  3 a, it suffices to show 
tha t  if B is an abso lu te ly  cont inuous  semimar t inga le  and  also a P local  weak 
mar t inga le ,  then B is ident ica l ly  zero a.s. Since B is abso lu te ly  cont inuous ,  (2.38) 
yields 

eXB=BoeX+eXo { B + M  2 * B + B * M a }  
so tha t  

B = e - X  o {eX B - B o e  x} + M 2 * B + B * M  1 

which shows tha t  B is also a P0 local  weak mar t ingale .  Hence  B is ident ica l ly  
zero a.s. The  p r o o f  of  T h e o r e m  3 is complete .  [ ]  

Proof of Theorem 4. Given  q, r, a and  b as in (3.9), let a=a-g t r ,  f l = b - r u  and N 
= q o W +  Wo r o W +  g o ~ o W +  Wo fi o p. Then ) )  in (3.8) is equal  to (3.9) which is 
thus a represen tab le  P local  weak mar t ingale .  

Conversely ,  any represen tab le  P local  weak  mar t inga le  Z may  be wri t ten  Z 
= N - B  where  N is a represen tab le  Po local  weak mar t inga le  and  B is a 
b o u n d e d  var ia t ion  process.  Let  N = Wo r o W +  q o W +  p o c~ o W +  Wo fl o # be the 
semimar t inga le  represen ta t ion  of  N. By the uniqueness  asser t ion  of  T h e o r e m  3.b, 
Z mus t  equal  N of (3.8), which is equal  to (3.9) with a = ~ + ~ r  and  b=fl  
+ ru. [] 
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