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Summary. Let W(t) be a standard Wiener process and let f(x) be a function 
from the compact class in Strassen's law of the iterated logarithm. We 
investigate the lim inf behavior of the variable 

sup [W(x T) (2 T loglog T)-  1/2 - f ( x ) l ,  
O~<x_<l  

suitably normalized as T--+ c~. 
This extends Chung's result valid for f(x)-=0, 

lim inf[  sup I(2Tloglog T) -1/2 W(xT)l(loglog T) -1] =n /4  a.s. 
T + o o  0 < x < l  

stating that 

1. Introduction 

Let (f2,d,P)be a probability space and let W(t)= W(t, cO) (cOef2) be a standard 
Wiener process defined on it. We also consider the space C[0, 1] with the sup 
metric I[ ]l and let us denote by Pw the Wiener measure defined on the Borel 
sets of C[0, 1]. It is well known that there is a close relation between the 
measures P and Pw, i.e. ifB is any Borel set in C[0, 1] and A = {co: W(t, co)eB} e d ,  
then 

Pw (B) = P(A). (1.1) 

Let S c  C[0, 1] be the class of functions defined in Strassen's law of the 
iterated logarithm [7], i.e. f(x)eS (0__<x__<l) if and only if f ( 0 )=0 ,  f(x) is 

1 

absolutely continuous and S f ' 2 ( x ) d x  < 1. Denote by S t the e-neighbourhood of 
0 

S, i.e. g(x)eS~(O<__x<__l) means that there exists an f(x)~S such that IIf(x) 
-g(x)l[ < a  

The proof of Strassen's law of the iterated logarithm usually breaks up into 
two parts: 

(i) The first part consists in showing that for almost all coeQ and for all e > 0  
there exists a To= To(cO ) such that 
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W(xT) 
~ (1.2) 

(2Tloglog T) i/2 S 

whenever T > T o. 
(ii) The second part consists in showing that there exists an ~o c f2 with 

P(s = 1 such that for all (oeD0, for all e >0  and for all f(x)eS, the inequality 

sup (2T W(xT) f(x) 
o_<x_<i loglog T) i/2 <5 (1.3) 

holds true at least for an increasing sequence of T tending to infinity. 
Concerning part (i) Bolthausen [2] investigated the problem how can the 

constant e be replaced by a function e(T) in (1.2) so that the assertion in (i) 
remains true. He shows that e (T)=( loglogT)  -~ with ~<1/2 will do, but e(T) 
= (loglog T)-1 will not. The problem is open for 1/2 < ~ < 1. 

Our concern in this paper is to investigate the analoguous problem for part 
(ii), i.e. we want to replace e by e(T) in (1.3). To be precise, we choosef(x)eS and 
fix it. Our aim is to determine the best rate e(T) in the sense that 

P(\o_<~_<isup (2r~gr)l/2W(xT) f(x) <(l+c)e(r) i.o.) =1 (1.4) 

but 

P( sup W(xT) f(x) i.o.) = 0  (1.5) ~ 
\o_<x_<l (2TloglogT) a/2 < ( l - c )  ~(r) 

for any c >0. Here and in what follows i.o. (infinitely often) means that the 
inequality in the bracket occurs for a sequence of T increasing to infinity. 

One can not reasonably expect to give a universal result for all f(x)ES. 
Indeed, the best e(T) will depend on f(x). Also, the exceptional set of measure 0 
in our results may depend on f(x). Unfortunately we can not give a complete 
solution to the problem described above, i.e. we can give the best rate e(T) 
only for f(x)ES, satisfying certain further restrictions. 

For the function f(x)=-0 (0 < x < 1) Chung's law of the iterated logarithm [-4] 
says that 

/ W(xT) (1 +c) zc \ 

P {  sup < i . o . ) = l  o r 0  (1.6) 
\o~x_<l ( 2 T ~ T )  1/2 4 loglog T 

according as c > 0 or c < 0. In this way our results can be regarded as extensions 
of Chung's LIL, establishing also a connection with Strassen's LIL. 

In Theorem 1 we give universal results, valid for all f(x)~S, by determining 
upper and lower bounds for the best rate e(T). In Theorems 2 and 3 basically 
two cases will be treated: 

1 

case (i): S f '  2 (x) d x < 1, (1.7) 
0 

1 

case (ii): S f ,  2 (x) d x = 1. (1.8) 
0 
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In case (i) we solve our problem provided f ' (x)  is of bounded variation, while 
case (ii), i.e. the case of extremal functions of S seems to be more difficult. In this 
case we can give a solution only if f (x) is piecewise linear. In particular, we can 
treat the functions f ( x ) = x  (O<x< 1) and f ( x ) =  - x  ( 0 < x <  1). 

In Sect. 2 some preliminary results will be presented in the form of lemmas. 
Sect. 3 contains our main results. 

2. Preliminary Lemmas 

Our results are based on the translation formula for Wiener integrals due to 
Cameron and Martin [3] (see also Skorokhod [6]), stated as 

Lemma 1. Let W(x) (0 < x < 1) be a standard Wiener process; O(x)~ C [0, 1], ~(0) 
1 

=0, and suppose tp(x) is absolutely continuous with ~ tp'2(x) dx < co. Then 
0 

P(IPW(x)-~(x)ll <z)=e  -%~*'2<x) ~x ~ e-~~ (2.1) 
{][W(x) N <z} 

From Lemma 1 we obtain the following inequalities: 

Lemma 2. Under the conditions of  Lemma 1, the following inequalities hold: 

1 
- �89 I ~0'2(x) dx 

e P(II W(x)[I <z) 

< P(rl W(x) - ~ (x)I[ < z) < P(]I W(x)[I < z). (2.2) 

If, furthermore, t)'(x) is of  bounded variation and To 1 [t)'] denotes its total variation 
over the interval [0, 1], then 

P(II W(x) - 0 (x)I1 < z) 

<P(H W(x)]I <z)exp ( - � 8 9  #/:(x) dx +z([~9'(1)[ + To1 EO'])). (2.3) 
0 

Proof The first inequality in (2.2) is an easy consequence of (2.1) and Jensen's 
inequality. For the second inequality in (2.2) we may refer to Anderson [1]. 

To show (2.3), we use the following estimation: on the set {[I W(x)l[ <z} we 
have 

i ~'(u)dW(u) = ~'(l) W ( l ) - i  W(x)d~'(x)  

< z(]~'(1)l + To 1 [~']), (2.4) 

hence (2.3) follows from (2.1) and (2.4). Thus Lemma 2 is Proved. 
Explicit expressions are well known for P(I[ W(x)]l < z). In the next lemma we 

give the distribution of HW(x)-Txll,  where ? is a real constant. The given 
distribution is suitable to obtain also an asymptotic expression near zero. A 
different-but of course equivalent-expression for P(H W(x)-?x[[ <z) is given in 
Skorokhod [6]. 



290 E. Cs~k i  

L e m m a  3. For real 7 and z > 0 we have 

where 

P([I W(x)-Txll <z) 
~ p ~ ( _  1)~(2r+ 1) 

4re e - ~ -  ch(yz)r~ o 472 Z 2 + (2r + 1) 2 g2  

7 2 
x2 4 r e  e - T  ch(Tz) e-gYJ + R(z), 

47z z 2 + ~2 

(2r  + 1) 2 ~2 
e 8Z 2 

(2.5) 

4 el~lz ~a 9~.2 
- -  2 8• 2 
7~ 

[R(z)[ __< ~2 (2.6) 
1 - -e  8 Z2 

Proof By applying L e m m a  1, and by evaluating the Wiener integral, we have 

-~2 

P([[W(x)-TXH < z ) = e  2 ~ e-~W(1)dP w 
{l[ w(x)LI <z} 

~2 z 

=e 2 ~ e-TYP(llW(x)ll <z, W(1)=y)dy. 
-a  

We use the following formula (see e.g. Feller [-5]): 

P ( - b < W ( t ) < 2 z - b  for 0<= t < T ,  W(T)=y) 

1 ~ ~=~ r~zb rrc(y+b) 
= /., e-Yfs-=~ T sin ~ sin - - ,  

Z r = l  2z 

where the probabil i ty P(A, W(T)=y) is unders tood  as 

lira (P(A, y< W(T)< y+ Ay)/Ay). 
Ay-~O 

F r o m  (2.7) and (2.8) we obtain, 

P(LIW(x)-Txll <z) 

= e  ~ e - ~ y -  e a~ s l n ~ - s i n  2z dy 
--Z r= J. 

)~2 ~ (2r+l)zre2 1 i 
= e  2 ( -  1)' e s~2 - e-~y sin 

r = l  Z --z 

On integrating the last expression, we get (2.5). 
To prove (2.6), we use the following inequalities" 

ch(Tz)<e I~1~, 

2 r + l  1 
< - -  

472 z 2 + (2t" + 1) 2 ~z 2 = zc 2" 

(2.7) 

(2.8) 

( 2 r + l )  rc(y+z) dy. (2.9) 
2z 

(2.1o) 

(2.11) 
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Hence  

4~z e_y 2 --1 m = c h ( y z ) ~  ( -  1)~(2r + 1) 
J R ( z ) [  = 4 7 2 z 2 + ( 2 r + l ) 2 r c 2  e 

4 -Y=+/~I= 9r~2 
- -  e 2 8z z 

4 
--~-- e e 8z2 - -  ~2 

7"g r =  9 1 - e az2 

This proves  L e m m a  3. 
N o w  consider piecewise linear functions 6(x). Assume that  

( 2 r + l ) 2 n  2 

(2.12) 

where 

P([] W ( x )  - ~ (x)II < z) 

1 2 ~ ? - i , '~ (x)~x-  ~[2 4 ~ c h ( g k z )  )z-sh(z('~i- Ti_l) ) 
~ e  o 8z 11 472 z 2 + g 2 i = 2  Z(Yi-- gi-  i)(Tf'2"l- zZ(Yi-- 7i-1)2) 

1 
- I g " 2 ( x )  d x  

+ R I ( Z  ) e o , z > O  

;z 2 
k 2 g e - g ~ z ~ ( l + 3 ~ )  h s h z ( T i + l - T i )  

[Rl(z) l  _-< z.= 
(1 __ e -gT)k  i=l z(?i+ 1--Ti) 

P r o o f  Again, by virtue of  L e m m a  1 we have to evaluate the Wiener  integral 
1 

I = ~ e -~o o'(x) dw<~) d p  w 
{l[ W(x)II < z} 

k 

= I e -&, , (w(~ , ) -w(~  1>> dP.~ 
{l] W(x) l[ <z} 

k 

= I " ' Y  H P ( t W ( x ) l < z ,  a i _ l ~ = x < a i ,  W ( a i _ l ) = Y i _ l ,  W ( a , l = y , )  
k i = 1  111{]Yil <z} 

t ~  

X e -y~(yi-y'- 1) dYi, 

where Yo =0 .  F r o m  (2.8), 

,~l~b.,r<z } i=, z E,=I e - s T ( ~ ' -  . . . .  ) 

x sin ri ~(Yi-  1 + z) sin ri ~(Yi + z) e - ~'(Y'-Y' 1) dy  i = iz  + 12 , 
2z  2z  

(2.14) 

(2.15) 

(2.16) 

(2.17) 

where a 0 = 0 < a  I < . . . < G = I ;  7 o = 7 k + 1 = 0 ;  7iq=Ti_i, i = 2 ,  3, . . . ,  k; ~ ( 0 ) = 0  and 
O(x) is a cont inuous b roken  line. Put  2 =  rain ( a i - a i _ l ) .  

l <i<k 

L e m m a  4. For  ~ (x )  def ined above, we have 

~ ' ( x ) = 7 1  , a i _ l < x < a l ;  i = 1  . . . . .  k, (2.13) 
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where in 11 we consider the terms of summat ion  corresponding to r~=l,  
i =  1 . . . . .  k, while 12 involves all the other  terms. Hence  

I 1 =  Y".S fi-e-sz~-- sin rc( z) ... 

I~ {lyd <z} 
i = 1  

(sin ~z (Yk_- k + Z))2 sin rc(yk + Z) 
X \ 2Z __ 2Z 

X e y1(~2 - ~)+ "" +yk-l(~k-~k-~)-y~k dy  1 ... dyk. (2.18) 

Substi tut ing (Yl + z) /2z  = u~ in the above integral, we get 

re2 k -  i 1 
I 1 : 2  k - 7 _ 2  +zT~ l -  e 8~ 1-[ S(sinTrui) 2 e 2~"~(''+ " ) d u  i 

i = l  0 
1 

x ~ sin rc u k e -  2 z uk 7k d u k. (2.19) 
o 

On integrating out, we obtain the first term on the right hand  side of (2.14). 
To estimate I 2 = R I ( z ) ,  w e  u s e  the inequali ty 

~=~ ~ z) - - - ( a , -  . . . .  ) r l r ( Y i _ l  + Z) . rTz(Yiq-  
e s~2 sin 2z sin 2zz 

J2rc2 ( a , - - a , -  i,) 
e 8z2 

< ~ (2.20) 
1 - e  sz~ 

for j = l  and j = 2 .  
Notice that in 12 exactly one summat ion  is from r~=2 to oo and all the other  

summat ions  are from r~ = 1 to Go. Therefore  from (2.20) 

1121=tRl(z)l 
r2 2 

b 3rc2 
= .Zrc2 e-ST2z2(a~-a~- 1) 

t = l  

1 e -  -~*y* y~ Y*-I) x ~ dya . . ,  dy  k 

g 2  

- - -  (1 + 3 ~,) h k 2 k e  s~'- s h ( g i + l - y i ) z ,  
.~ Tc 2 (2.21) 

( 1 _  e -gT)k  i=1 (?i+ 1-- Y~') z 

proving (2.15). 
The p roof  of L e m m a  4 is complete.  
The  following proper ty  of Strassen's function is well known [-7] : 

L e m m a  5. I f  f ( x ) ~ S  and 0<_a_<l, then 

If(u) - f ( a  u)l < (u(1 - a)) 1/2 < (1 - a) 1/2. (2.22) 
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Assume that {T.} is an increasing sequence and define the following vari- 
ables: 

U.= sup ]W(xT . ) -W(T ._ , ) - ( f ( x ) - f (T~ l ] t (2T .  loglogT.) 1/2 , (2.23) 
T n - l < _ x < _ l  ~ \ \ G / !  

Zn - _ 

V.= sup IW(xT.)I, (2.24) 
0 <2C< T n - 1  

- -  - -  T n  

Z(T) = sup t W(x T)-f(x)  (2 T loglog T)I/zl, (2.25) 
0 < x < l  

Z.  =Z(T~), (2.26) 
(1) Z.  = inf Z(T), (2.27) 

Tn-< T <  Tn+ I 

where f (x)~S. 

Lemma 6. By using the tzotations (2.23)-(2.27), the following inequalities hold: 

Z . <  U.+ V. + (2 T,,_ 1 loglog r n )  1 /2 ,  (2.28) 
(1) Z.<Z.  +(2T.+ 1 loglog T.+ 1) l/2 - (2T .  loglog T.) 1/2 

+ (2(rn + a - T.)loglog Tn) ~/2. (2.29) 

Proof We prove first (2.28). Choose an x(O<x< 1). 
For 0 _< x _< T._ 1/T., from Lemma 5 we get 

I W(x T , ) - f (x ) (2 r .  loglog T,,)1/2 I 

< I W(x T.)I + (2 x T~ loglog T~) ~/2 

< V. + (2T._ 1 loglog T.) 1/2 
< U.+ V. + (2T._ 1 loglog T.) 1/2. (2.30) 

For T,,_ ~/T. < x <  1, by using Lemrna 5 again, we obtain 

I W(x T. ) - f (x)(2T.  loglog T,,)1/2 I 

<= W(xT.)- W(T._ l j -  ( f  ( x ) - f  ( ~ )  )(2T. loglog T,,) 1/2 

+ W( T._ l ) - f  ( ~  ) (2 Tn loglog T,,) ~/2 

<U,+IW(T._O,+ f (T~"~L)(2T. loglogT.)t/2 

< U.+ V. + (2 T._ ~ loglog 7~) ~/2. (2.31) 

(2.30) and (2.31) yield (2.28). 
To show (2.29), define z. as the point where Z(T) takes its infinium on the 

interval [T.,T.+I). Thus Z~I~=Z(%). Let u ( 0 < u < l )  be arbitrary and put 
x = u T./z.. Then 0 < x <- TJz. < 1 and we obtain 
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I W(u T,,) - f ( u )  (2 T,, loglog T.)l/2 I 

= W ( x % ) - f ( ? ) ( 2 T ,  loglogT,) 1/2 

IW( ) f (  )(2 gl )l/z[ =< x ' c  n - x "c o l o  o g  "cn 

+ If(x)] ((2 ~. loglog %)1/2 _ (2 Z. loglog Z.) 1/2) 

+ f ( x ) - f ( ~ ) ( 2 T ,  loglogT.)  i/2 

< Z(-c.) + (2 T,+ i loglog T.+ 0 i/z - (2 T, loglog T,) i/2 

+ (2(T, + 1 - T.) loglog T,) i/2, (2.32) 

where in the last step we applied L e m m a  5 again and the fact that T, < -c, < T,+ 1. 
Since u is arbitrary, (2.32) yields (2.29). 

This completes the p roof  of L e m m a  6. 
Put  

W(T,,_ 1 + u (T . -  T._ 1)) - W(T._ l) 
Wl(u) = (T. - T,_ i) 1/2 ' (2.33) 

~-, ) _ f  ( T ~ ! 1 ) ) ( 2 . 3 4 )  

for 0 _ < u < l .  
It is readily checked that Wl(u ) is again a s tandard Wiener process with 

W i (0) = 0, and f l  (u)eS. Fur the rmore  

sup h W l(u) - f l  (u)(2 loglog Tn)l/21. (2.35) 
(T . -T ,_ i )  i/z -o-<,-<1 

These facts will be used in the proofs of theorems in Sect. 3. 
In L e m m a  6 the sequence {T,} was an arbitrary increasing sequence, how- 

ever in the proofs of our theorems we will use two particular sequences whose 
propert ies are stated in the next Lemma.  

L e m m a  7. (i) I f  T.=n", n>= 1, and V. is defined by (2.24), then for any tc >=0 we have 

lim (T,_ 1/Tn) 1/2 (loglog T,) ~ = 0, (2.36) 
n ~ o o  

P( l im V, T,-1/e (loglog T.)~= 0 )=  1. (2.37) 
n ~ o o  

exp o> 0, a . .  

lira (T,+ 1 loglog Tn+ 1) 1/2 - (T n loglog T,) 1/z (loglog 7",+ 1) ~ = 0, (2.38) 
T i / 2  

n ~ m  * n + l  

.4  ~ T~ (loglog 7".) 1/2 (loglog T.+ 1) ~ = 0, (2.39) 
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furthermore T,+ I 
lira - ~ - =  1. (2.40) 

n ~ c ~  

Proof (i) Let - " T , - n ,  then it is easy to see that T,/T,_ 1 ~en and loglog T,~logn,  
hence (2.36) follows. For V, we have by the law of the iterated logarithm, 

P(lim sup V,(2 T, 1 loglog T,_ 1)-- 1/2 ~_ 1) = 1 (2.41) 
n ~ o o  

which together with (2.36) implies (2.37). 
(ii) Let T,=exp(n(logn)-3), n>20. Then 

n 1 
- '1, \(log (n + l)) 3 (logn) a 

and 
loglog T, ~ log n (2.43) 

from which (2.381, (2.39) and (2.40) follow easily. 
We note that in part (ii) T, is defined for n>20  only, because {n(logn) -3} is 

increasing from n=20. For n<20  T, may be defined so that the sequence {T,} is 
increasing but arbitrary otherwise. 

3. Main Results 

In this section we state and prove three theorems. The first of them provides 
universal results valid for any f (x)sS,  i.e. upper and lower bounds are given for 
the best rate e(T). Then we give the best rates for f (x t~S satisfying certain 

1 1 

additional conditions. The cases Sf '2(x)dx < 1 and S f ' Z ( x ) d x =  1 are treated 
0 0 

separately in Theorem 2 and in Theorem 3, resp. 

Theorem 1. For any f(x)~S and c > 0  we have 

and 

/ W(xT) 
P |  sup i2T \0_<x_<l loglog T) 1/2 

( sup (2 T 
W(x T) 

P 
\0-<x_< 1 loglog T) 1/2 

C 
f (x )  < (loglog T) 1/2 i.o.) = 1 (3.1) 

7~ 

f(x) <log~0gog T ~ -  ( 1 - c )  i.o.) =0. (3.2t 

Proof To prove (3.1), we choose T,=n" and show that for arbitrary c>0,  

P(Z,<cT,  1/2 i.o,)= 1, (3.3) 

where Z n is defined by (2.26). 
By using the inequality (2.28), the limit relations (2.36) with ~: = 1/2 and (2.37) 

with ~c=0, it suffices to verify (3.3) with Z,  replaced by U, and since U, are 
independent, is suffices to show that 

P(U, < c T, 1/2) = oo. (3.4) 
n 
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Referring to (2.35) and to Lemma 2, we get 

P(U, < c T~ ~/2) > P(U, < c( T, - T n_ 1) 1/2) 

= P (  sup I Wl(u)-fl(u)(2 loglog T,)1/21 <c) 
O < u < l  

>exp - log log  T, S f~2(u) du P(llwl(u)ll <c) 
0 

>_P(IIWI(u)LI <c)=P(llWl(u)ll <c) (3.5) 
- log T n n log n 

from which (3.4) follows. This proves (3.1). To show (3.2) is suffices to establish 

(3.6) 
\loglog T. + a 

where T.=exp(n(logn)-3), n>20. In fact we show 

~ P  Z . < ~ ( 1 - c ) (  2T"+l ~1/.2\ 
 loglog To+I ) ) < o0, (3.7) 

which together with the inequality (2.29) and the limit relations (2.38) and (2.39) 
with ~c= 1/2, will imply (3.7). Note that Z,  and Z~ 1) are defined by (2.26) and 
(2.27), resp. 

By using (2.2), (2.5) and (2.6) with 7=0, we obtain for any 0 < c < 1 ,  and for n 
large enough, 

P(Zn<4(l-c)(--2rn+l 

sup 

<_P 
- \ T, 1/2 loglog T . +  1 

4 e x p (  T, loglogT,+l)  ( ( 9T, loglogT,,+~)) 
=~- ( l_c )2T ,+ l  +O exp ( 1 _ ~  7 

_ _ < K  1 - c  , ( 3 . 8 )  

where in the last step we used that for n large, T,/T,+ 1 > 1/(1-c). 
This shows (3.7) and as explained above, the proof of Theorem 1 is complete. 
As mentioned already, our set of probability one for which (3.1) is valid, may 

depend on f (x)  and therefore our Theorem 1 does not imply part (ii) of 
Strassen's theorem. More precisely, it follows that (1.3) occurs i.o. with probabil- 
ity one, i.e. for all coe(2 S with P(~?I)= 1, but f2 s may depend on f(x)eS, while 
Strassen's •0 does not. It is not hard however to complete the proof of part (ii) 
of Strassen's theorem, one has to choose only a countable subset (f>f2 ...) of S, 

dense in S. Then it is easy to see that Qo-- (~ f2i, will do as Strassen's ~2 o. Our 
i = 1  

results, of course, do not concern part (i) of Strassen's theorem. 
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1 
T h e o r e m  2. l f  f (x) ~S, ~ f '  2 (X) d x = o~ < 1, e > O, then 

o 

P o S_<_UxPl l o g l o g  T) 1/2 < 4 - ~ -  00 1/2 l o g l o g  r i.o. = 1. (3.9) 

I f  furthermore, f ' (x)  is of bounded variation, then 

P ,  ( sup W(xT) - f ( x )  n(1 -c )  i.o.] =0. 
\o_<x_<l (2TloglogT) 1/2 <4(1 - 001/2 loglog T ] (3.10) 

Proof As in the proof of Theorem 1, to show (3.9), choose T. = n" and prove 

P ( Z , < ~ (  1 ~(1+ 0(2 r~ i.o.) = 1, (3.11) 
- c01/2 (loglog T,) 1/2 

where Z. is defined by (2.26). By using (2.28), (2.36) with ~c= 1 and (2.37) with 
~c = 1/2, it suffices to verify that 

P ( U . < 4 ( 1 _  zc(2Tn)l/2 
c01/2 (loglog T.) 1/2 ) = oe. (3.12) 

From (2.35) and (2.2), 

P (Un<4( 1_ ~(2Tn)1/2 
c01/2 (loglog T.) 1/2 ) 

U n Tc(2Tn) 1/2 
= P ((7". -- T n_ 1) 1/2 < 4(1 - ~)1/2 (T n _ T._ 1) 1/2 (loglog 7~) 1/2 ] 

=P( sup I Wl(U)-L(u)(2 loglog T.)t/Zl 
0 _ < u < l  

/"C (2 Tn) 1/2 

< 4(1 - ~)1/2 (Tn - T,_ 1) 1/2 (loglog Tn) l/2 ) 

> exp - loglog T, io f~ 2 (u) du P r] W1 (u)II < 4(1 - ~)1/2 (loglog T,,) ~/2 " 

From (2.34), we obtain (3.13) 

1 1 

o T. -Tn-1  T. 
1 1 

= f f '2(x) dx<f f 'Z (x )dx=o: ,  
Tn- 1 0 

Tn 

(3.14) 

Therefore by applying Lemma 3 with 7 = 0, 

P ([5.<4( 1 ~(2 T~)1/2 
_ ~)1/2 (loglog Tn) 1/2 ) 

>=(log Tn)-~ ( 4  e-(1-~)l~176176176 

7~ 
--4n logn t-O((n logn)8~'-9), (3.15) 
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hence (3.12) follows. This proves (3.9). For (3.10), similarly to the proof of 
Theorem 1, we have to verify that 

re ( l -c )  ( 2T,+ 1 2/2 
~ P  Z .<4 (1_c@/2  \loglogT.+ 1) ) <  0% (3.16) 

where T. = exp (n (log n)- 3), n > 20. 
By using (2.3), (2.5) and (2.6) with ?=0 ,  we get for n large enough, 

[_  r~(1-c) ( 2T.+ 1 
P ~ z " < 4 ( l _ c 0 1 / 2  \loglog T.+ l Y/z) 

= P  ( sup W(xT.) T.)l/2 \o<_x<_l 7'. 1/e f (x ) (2  loglog 

~(1-c) 2r.+~ ]~/2] 
< 4 ( 1 - e )  1/2 (7~loglogT,+l!  ! 

[ ~(1-c) (r.+l l ogXogrq 
<exp _ k -  ~ loglog T ,+2(  1 _ ~)l/z \T, loglog T,+ 2! (If'(1)l + To 1 I f ' ] )  

•  sup w(~r.)< ql-c) (. ro+l ~,~ 
\O<x_< 1 Tn 1/2 2(2(1-o0) I/2 \TnXoglogT.+ 1) ) 

( 1 - ~  r. loglog r.+~) < exp 
(log T.) (1 - c) 2 T.+ 1 

K K < < 
1-c~ = c ( 1 - e )  

(log T,)~(logT.+OY2T-c (log T~) ~ i-~ 

< K  1-c (3.17) 

with some constant K. This shows (3.16), completing the proof of Theorem 2. 
It is an open problem, whether (3.10) is true without the condition that f ' (x)  

is of bounded variation. The main problem is to give a good asymptotic value, 
or at least an appropriate estimation for P(llW(x)-t#(x)ll <z), as in Lemma 2. 

The case ~ f ' 2 ( x ) d x  = 1 seems to be more difficult, we can give the best rate only 
0 

if f (x) is piecewise linear. So let f(x) be a continuous broken line with f (0 )=0 ,  
and 

f ' (x)  =//i, ai_ 1 <x<a i (i= 1, ..., k), (3.18) 

where a o = 0 < a  ~ < ... <ak_ a < a k =  1. 
1 

Theorem 3. If  f (x) is defined as above and ~ f'2(x) dx= 1, then 
0 

,(sup ) \O=<x__< 1 T loglog T) j/2 i.o. -- 1 or 0 (3.19) 
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according as c > 7c 2/3 2-  5/3 B-  1/3 or c < 7r 2/3 2-  5/3 B -  1/3 where B = lfl2 - fill -}- "- 

+lflk--flk--ll +lflkl' 

Proof. First let c > ~z 2/3 2 -s/3 B-1/3 and define T n =n ~. We show that  

~ P (U, < (loglogC(2Tn)l/2 ! = oe. (3.20) T.) 1/6 

By (2.35), we get 

{U.< c(2Z)1/2 ] 
P 

(loglog T.) ~/6 ] 

= P (  sup ]Wl(U)-fx(U)(2 loglog T.) 1/2] 
0_<u<l 

c (2  Tn) 1/2 ) 
< (T. - T._ 1) 1/2 (loglog T.) 1/6 ' 

(2.34)) is again a continuous broken line where f~(u) (see 
1 

f~2(U) du < 1 and 
0 

f ;(u)= 

o f T . -  r._ 1 ~1/2 
j ' 

/ T . -  T, 1 ,,1/2 

O<u<al  T , -Tn-1  
L - T . _ 1  

ai_l Zn-Tn_ 1 <u< 
Tn--Tn_ 1 

a i T , - T , _ l  

(3.21) 

with f(0)  =0,  

Zn- Zn-1 

We may assume that n is large enough 
Lemma 4 with 

Tn (2 loglog T~) 1/2, i =  1, . . . ,  k, 

_2 o )1/2 
z -- c \ r ,  - r n_ 1 (loglog r~)- 1/6, 

we obtain further 

i = 2 , . . . , k .  

(3.22) 

to have T,_ 1/rn < a 1. Applying 

(3.23) 

(3.24) 

p (cT c(2 T.) 1/-" 
< (loglog T,) 1/6 ) 

1 re2 (T.-- T,_ 1)(loglog rn) 1/3 
= exp - l o g l o g  T~ ~ f ;  2 (u) du 

o 16c 2 T, 

[4~ch(2pkc(loglog T,) 1/3) 

k zc 2 sh(2c(fl ,-  fli- 1) (l~176 Tn) 1/3) ] 
x i=2~I 2c(3i-f l i_ 1)(loglogT~)l/3(zc2+4c2(fii_fli_l)2(loglogTn)2/3 ) t-R, , 

(3.25) 
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where 

IR.I__< 

k2 k exp ( 3ZTr2(Tn- T._ 1)(loglog Tn) 1/3) 
16c2T~ 

1 ( Zzc2(T.- T._ 1)(loglog T.) 1/3 
16c2T. ) f  

i e x p  
\ 

k+ l sh(2c([3i_~i 1)(loglogT.)l/3) 
xl- I 

i= 2 2c(/~-/?i_ 1)(loglog T.) 1/3 
(3.26) 

By comparing the first term in the squared bracket on the right-hand side of 
(3.25) with the upper bound of INn[ given by (3.26) it is easily seen that R, 
compared to the first term, tends to zero, thus for sufficiently large n, with some 
constant K we have 

P 
c(2Zn)l/2 

v. <ilog  og J 
> K exp ( -  loglog re2 T~- 1~-c2 (loglog T~) 1/3) 

k 
ch(2c /?k(loglog Tn) 1/3) ~I sh(2c lfl~- ~_ ~ I (loglog Tn) 1/3) 

i=2 
x (loglog Tn) k- 1/3 (3.27) 

Since sh(A(loglog T,) 1/3)~�89 exp(A(loglog T,)~/3), as n ~  oo, if A > 0  and 
chu>�89 exp(lu[), we get 

P (U.< c(2T")1/2 
(loglog T.) 1/6 ) 

>_ K1 exp((2cB-Tz2/16c2)(loglogTn) 1/3) 
= n l o g  n ( l o g l o g  Tn) k -  1/3 

>_ K;  (3.28) 
- n  logn'  

~2 
because 2 c B -  1~2c2 >0. This shows (3.20). 

The proof of the first half of Theorem 3 can be completed by using the 
inequlaity (2.28) and the limit relations (2.36) and (2.37) with ~: = 2/3 and ~c = 1/6, 
resp. 

Assume now that c < ~2/3 2-  5/3 B-  2/3 and let T. = exp (n (log n)- 3), n > 20. 
We show that 

/ c(2T.+O 1/z 
p tz .  < (loglog T.+ O1/6 ) < oe. (3.29) 
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By a p p l y i n g  L e m m a  4, it can  be seen after some  ca lcu la t ions  tha t  for n large 
enough ,  

/ c(2T,+i) 1/2 
P ~Z" <ilog~og T.+ Oi/6 ) 

= P  ( sup  W(xT,) log log  T,) 1/2 \O<=x<= i rnl/2 f ( x ) ( 2  

c (27 ;+1)  1/2 

< T ,  1/2 ( loglog T,+ l) 1/6 ] 

K exp ( -  K s ( loglog T,) l/a) 
< (3.30) 
= log T, ( loglog Tn) k- 1/3 

wi th  some  K a n d  K s. H e n c e  (3.29) fol lows a n d  the p r o o f  of  T h e o r e m  3 can  be 
c o m p l e t e d  by  referr ing to the  i nequa l i t y  (2.29) a n d  to the  l imi t  r e l a t ions  (2.38) 
a n d  (2.39) b o t h  wi th  ~ = 1/6. 

References 

1. Anderson, T.W.: The integral of a symmetric unimodal function over a symmetric convex set and 
some probability inequalities. Proc. Amer. Math. Soc. 6, 170-176 (1955) 

2. Bolthausen, E.: On the speed of convergence in Strassen's law of the iterated logarithm. Ann. 
Probability 6, 668-672 (1978) 

3. Cameron, R.H., Martin, W.T.: Transformation of Wiener integrals under translation. Ann. of 
Math. 45, 386-396 (1944) 

4. Chung, K.L.: On the maximum partial sums of sequences of independent random variables. 
Trans. Amer. Math. Soc. 64, 205-233 (1948) 

5. Feller, W.: An introduction to probability theory and its applications. Vol. 2. New York: Wiley 
1966 

6. Skorokhod, A.V.: Random processes with independent increments. (Russian). Moscow: Izdat. 
Nauka 1964 

7. Strassen, V.: An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlich- 
keitstheorie verw, Gebiete 3, 211-226 (1964) 

Received November 15, 1979 


