A Relation Between Chung's and Strassen's Laws of the Iterated Logarithm

E. Csáki

Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Reáltanoda u. 13-15, Hungary H-1053

Summary. Let $W(t)$ be a standard Wiener process and let $f(x)$ be a function from the compact class in Strassen's law of the iterated logarithm. We investigate the lim inf behavior of the variable

$$
\sup _{0 \leqq x \leqq 1}\left|W(x T)(2 T \log \log T)^{-1 / 2}-f(x)\right|
$$

suitably normalized as $T \rightarrow \infty$.
This extends Chung's result valid for $f(x) \equiv 0$, stating that $\liminf _{T \rightarrow \infty}\left[\sup _{0 \leqq x \leqq 1}\left|(2 T \log \log T)^{-1 / 2} W(x T)\right|(\log \log T)^{-1}\right]=\pi / 4$ a.s.

1. Introduction

Let (Ω, \mathscr{A}, P) be a probability space and let $W(t)=W(t, \omega)(\omega \in \Omega)$ be a standard Wiener process defined on it. We also consider the space $C[0,1]$ with the sup metric $\left\|\|\right.$ and let us denote by P_{W} the Wiener measure defined on the Borel sets of $C[0,1]$. It is well known that there is a close relation between the measures P and $P w$, i.e. if B is any Borel set in $C[0,1]$ and $A=\{\omega: W(t, \omega) \in B\} \in \mathscr{A}$, then

$$
\begin{equation*}
P_{W}(B)=P(A) . \tag{1.1}
\end{equation*}
$$

Let $S \subset C[0,1]$ be the class of functions defined in Strassen's law of the iterated logarithm [7], i.e. $f(x) \in S(0 \leqq x \leqq 1)$ if and only if $f(0)=0, f(x)$ is absolutely continuous and $\int_{0}^{1} f^{\prime 2}(x) d x \leqq 1$. Denote by S^{ε} the ε-neighbourhood of S, i.e. $g(x) \in S^{\varepsilon}(0 \leqq x \leqq 1)$ means that there exists an $f(x) \in S$ such that $\| f(x)$ $-g(x) \|<\varepsilon$.

The proof of Strassen's law of the iterated logarithm usually breaks up into two parts:
(i) The first part consists in showing that for almost all $\omega \in \Omega$ and for all $\varepsilon>0$ there exists a $T_{0}=T_{0}(\omega)$ such that

$$
\begin{equation*}
\frac{W(x T)}{(2 T \log \log T)^{1 / 2}} \in S^{\varepsilon} \tag{1.2}
\end{equation*}
$$

whenever $T \geqq T_{0}$.
(ii) The second part consists in showing that there exists an $\Omega_{0} \subset \Omega$ with $P\left(\Omega_{0}\right)=1$ such that for all $\omega \in \Omega_{0}$, for all $\varepsilon>0$ and for all $f(x) \in S$, the inequality

$$
\begin{equation*}
\sup _{0 \leqq x \leqq 1}\left|\frac{W(x T)}{(2 T \log \log T)^{1 / 2}}-f(x)\right|<\varepsilon \tag{1.3}
\end{equation*}
$$

holds true at least for an increasing sequence of T tending to infinity.
Concerning part (i) Bolthausen [2] investigated the problem how can the constant ε be replaced by a function $\varepsilon(T)$ in (1.2) so that the assertion in (i) remains true. He shows that $\varepsilon(T)=(\log \log T)^{-\alpha}$ with $\alpha<1 / 2$ will do, but $\varepsilon(T)$ $=(\log \log T)^{-1}$ will not. The problem is open for $1 / 2 \leqq \alpha<1$.

Our concern in this paper is to investigate the analoguous problem for part (ii), i.e. we want to replace ε by $\varepsilon(T)$ in (1.3). To be precise, we choose $f(x) \in S$ and fix it. Our aim is to determine the best rate $\varepsilon(T)$ in the sense that

$$
\begin{equation*}
P\left(\sup _{0 \leqq x \leqq 1}\left|\frac{W(x T)}{(2 T \log \log T)^{1 / 2}}-f(x)\right|<(1+c) \varepsilon(T) \text { i.o. }\right)=1 \tag{1.4}
\end{equation*}
$$

but

$$
\begin{equation*}
P\left(\sup _{0 \leqq x \leqq 1}\left|\frac{W(x T)}{(2 T \log \log T)^{1 / 2}}-f(x)\right|<(1-c) \varepsilon(T) \text { i.o. }\right)=0 \tag{1.5}
\end{equation*}
$$

for any $c>0$. Here and in what follows i.o. (infinitely often) means that the inequality in the bracket occurs for a sequence of T increasing to infinity.

One can not reasonably expect to give a universal result for all $f(x) \in S$. Indeed, the best $\varepsilon(T)$ will depend on $f(x)$. Also, the exceptional set of measure 0 in our results may depend on $f(x)$. Unfortunately we can not give a complete solution to the problem described above, i.e. we can give the best rate $\varepsilon(T)$ only for $f(x) \in S$, satisfying certain further restrictions.

For the function $f(x) \equiv 0(0 \leqq x \leqq 1)$ Chung's law of the iterated logarithm [4] says that

$$
\begin{equation*}
P\left(\sup _{0 \leqq x \leqq 1}\left|\frac{W(x T)}{(2 T \log \log T)^{1 / 2}}\right|<\frac{(1+c) \pi}{4 \log \log T} \text { i.o. }\right)=1 \text { or } 0 \tag{1.6}
\end{equation*}
$$

according as $c>0$ or $c<0$. In this way our results can be regarded as extensions of Chung's LIL, establishing also a connection with Strassen's LIL.

In Theorem 1 we give universal results, valid for all $f(x) \in S$, by determining upper and lower bounds for the best rate $\varepsilon(T)$. In Theorems 2 and 3 basically two cases will be treated:
case (i):

$$
\begin{align*}
& \int_{0}^{1} f^{\prime 2}(x) d x<1 \tag{1.7}\\
& \int_{0}^{1} f^{\prime 2}(x) d x=1 \tag{1.8}
\end{align*}
$$

In case (i) we solve our problem provided $f^{\prime}(x)$ is of bounded variation, while case (ii), i.e. the case of extremal functions of S seems to be more difficult. In this case we can give a solution only if $f(x)$ is piecewise linear. In particular, we can treat the functions $f(x)=x(0 \leqq x \leqq 1)$ and $f(x)=-x(0 \leqq x \leqq 1)$.

In Sect. 2 some preliminary results will be presented in the form of lemmas. Sect. 3 contains our main results.

2. Preliminary Lemmas

Our results are based on the translation formula for Wiener integrals due to Cameron and Martin [3] (see also Skorokhod [6]), stated as

Lemma 1. Let $W(x)(0 \leqq x \leqq 1)$ be a standard Wiener process; $\psi(x) \in C[0,1], \psi(0)$ $=0$, and suppose $\psi(x)$ is absolutely continuous with $\int_{0}^{1} \psi^{\prime 2}(x) d x<\infty$. Then

$$
\begin{equation*}
P(\|W(x)-\psi(x)\|<z)=e^{-\frac{1}{2} \int_{0}^{1} \psi^{\prime 2}(x) d x} \int_{\{\|W(x)\|<z\}} e^{-\frac{1}{\int_{0}^{\prime} \psi^{\prime}(x) d W(x)}} d P_{W} . \tag{2.1}
\end{equation*}
$$

From Lemma 1 we obtain the following inequalities:
Lemma 2. Under the conditions of Lemma 1, the following inequalities hold:

$$
\begin{align*}
& e^{-\frac{1}{2} \frac{1}{0} \psi^{\prime 2}(x) d x} P(\|W(x)\|<z) \\
& \quad \leqq P(\|W(x)-\psi(x)\|<z) \leqq P(\|W(x)\|<z) . \tag{2.2}
\end{align*}
$$

If, furthermore, $\psi^{\prime}(x)$ is of bounded variation and $T_{0}^{1}\left[\psi^{\prime}\right]$ denotes its total variation over the interval $[0,1]$, then

$$
\begin{align*}
& P(\|W(x)-\psi(x)\|<z) \\
& \quad \leqq P(\|W(x)\|<z) \exp \left(-\frac{1}{2} \int_{0}^{1} \psi^{\prime 2}(x) d x+z\left(\left|\psi^{\prime}(1)\right|+T_{0}^{1}\left[\psi^{\prime}\right]\right)\right) . \tag{2.3}
\end{align*}
$$

Proof. The first inequality in (2.2) is an easy consequence of (2.1) and Jensen's inequality. For the second inequality in (2.2) we may refer to Anderson [1].

To show (2.3), we use the following estimation: on the set $\{\|W(x)\|<z\}$ we have

$$
\begin{align*}
\left|\int_{0}^{1} \psi^{\prime}(u) d W(u)\right| & =\left|\psi^{\prime}(1) W(1)-\int_{0}^{1} W(x) d \psi^{\prime}(x)\right| \\
& \leqq z\left(\left|\psi^{\prime}(1)\right|+T_{0}^{1}\left[\psi^{\prime}\right]\right), \tag{2.4}
\end{align*}
$$

hence (2.3) follows from (2.1) and (2.4). Thus Lemma 2 is proved.
Explicit expressions are well known for $P(\|W(x)\|<z)$. In the next lemma we give the distribution of $\|W(x)-\gamma x\|$, where γ is a real constant. The given distribution is suitable to obtain also an asymptotic expression near zero. A different-but of course equivalent-expression for $P(\|W(x)-\gamma x\|<z)$ is given in Skorokhod [6].

Lemma 3. For real γ and $z \geqq 0$ we have

$$
\begin{align*}
& P(\|W(x)-\gamma x\|<z) \\
& \quad=4 \pi e^{-\frac{\gamma^{2}}{2}} \operatorname{ch}(\gamma z) \sum_{r=0}^{\infty} \frac{(-1)^{r}(2 r+1)}{4 \gamma^{2} z^{2}+(2 r+1)^{2} \pi^{2}} e^{-\frac{(2 r+1)^{2} \pi^{2}}{8 z^{2}}} \\
& \quad=\frac{4 \pi e^{-\frac{\gamma^{2}}{2}}}{4 \gamma^{2} z^{2}+\pi^{2}} \operatorname{ch}(\gamma z) \tag{2.5}\\
& e^{-\frac{\pi^{2}}{8 z^{2}}}+R(z),
\end{align*}
$$

where

$$
\begin{equation*}
|R(z)| \leqq \frac{\frac{4}{\pi} e^{|\gamma| z-\frac{\gamma^{2}}{2}-\frac{9 \pi^{2}}{8 z^{2}}}}{1-e^{-\frac{\pi^{2}}{8 z^{2}}}} \tag{2.6}
\end{equation*}
$$

Proof. By applying Lemma 1, and by evaluating the Wiener integral, we have

$$
\begin{gather*}
P(\|W(x)-\gamma x\|<z)=e^{-\frac{\gamma^{2}}{2}} \int_{\{\|W(x)\|<z\}} e^{-\gamma W(1)} d P_{W} \\
=e^{-\frac{y^{2}}{2}} \int_{-z}^{z} e^{-\gamma y} P(\|W(x)\|<z, W(1)=y) d y \tag{2.7}
\end{gather*}
$$

We use the following formula (see e.g. Feller [5]):

$$
\begin{gather*}
P(-b<W(t)<2 z-b \text { for } 0 \leqq t<T, W(T)=y) \\
=\frac{1}{z} \sum_{r=1}^{\infty} e^{-\frac{r^{2} \pi^{2}}{8 z^{2}} T} \sin \frac{r \pi b}{2 z} \sin \frac{r \pi(y+b)}{2 z}, \tag{2.8}
\end{gather*}
$$

where the probability $P(A, W(T)=y)$ is understood as

$$
\lim _{\Delta y \rightarrow 0}(P(A, y \leqq W(T)<y+\Delta y) / \Delta y)
$$

From (2.7) and (2.8) we obtain,

$$
\begin{align*}
& P(\|W(x)-\gamma x\|<z) \\
& \quad=e^{-\frac{\gamma^{2}}{2}} \int_{-z}^{z} e^{-\gamma y} \frac{1}{z} \sum_{r=1}^{\infty} e^{-\frac{r^{2} \pi^{2}}{8 z^{2}}} \sin \frac{r \pi}{2} \sin \frac{r \pi(y+z)}{2 z} d y \\
& \quad=e^{-\frac{\gamma^{2}}{2}} \sum_{r=1}^{\infty}(-1)^{r} e^{-\frac{(2 r+1)^{2} \pi^{2}}{8 z^{2}}} \frac{1}{z} \int_{-z}^{z} e^{-\gamma y} \sin \frac{(2 r+1) \pi(y+z)}{2 z} d y . \tag{2.9}
\end{align*}
$$

On integrating the last expression, we get (2.5).
To prove (2.6), we use the following inequalities:

$$
\begin{gather*}
\operatorname{ch}(\gamma z) \leqq e^{|\gamma| z}, \tag{2.10}\\
\frac{2 r+1}{4 \gamma^{2} z^{2}+(2 r+1)^{2} \pi^{2}} \leqq \frac{1}{\pi^{2}} . \tag{2.11}
\end{gather*}
$$

Hence

$$
\begin{align*}
|R(z)| & =\left|4 \pi e^{-\frac{\gamma^{2}}{2}} \operatorname{ch}(\gamma z) \sum_{r=1}^{\infty} \frac{(-1)^{r}(2 r+1)}{4 \gamma^{2} z^{2}+(2 r+1)^{2} \pi^{2}} e^{-\frac{(2 r+1)^{2} \pi^{2}}{8 z^{2}}}\right| \\
& \leqq \frac{4}{\pi} e^{-\frac{\gamma^{2}}{2}+|\gamma| z} \sum_{r=9}^{\infty} e^{-\frac{r \pi^{2}}{8 z^{2}}}=\frac{\frac{4}{\pi} e^{-\frac{\gamma^{2}}{2}+|\gamma| z-\frac{9 \pi^{2}}{8 z^{2}}}}{1-e^{-\frac{\pi^{2}}{8 z^{2}}}} . \tag{2.12}
\end{align*}
$$

This proves Lemma 3.
Now consider piecewise linear functions $\psi(x)$. Assume that

$$
\begin{equation*}
\psi^{\prime}(x)=\gamma_{i}, \quad a_{i-1}<x<a_{i} ; \quad i=1, \ldots, k \tag{2.13}
\end{equation*}
$$

where $a_{0}=0<a_{1}<\ldots<a_{k}=1 ; \gamma_{0}=\gamma_{k+1}=0 ; \gamma_{i} \neq \gamma_{i-1}, i=2,3, \ldots, k ; \psi(0)=0$ and $\psi(x)$ is a continuous broken line. Put $\lambda=\min _{1 \leqq i \leqq k}\left(a_{i}-a_{i-1}\right)$.
Lemma 4. For $\psi(x)$ defined above, we have

$$
\begin{align*}
& P(\|W(x)-\psi(x)\|<z) \\
& =e^{-\frac{1}{0} \psi^{\prime}(x) d x-\frac{\pi^{2}}{8 z^{2}} \frac{4 \pi c h\left(\gamma_{k} z\right)}{4 \gamma_{k}^{2} z^{2}+\pi^{2}} \prod_{i=2}^{k} \frac{\pi^{2} \operatorname{sh}\left(z\left(\gamma_{i}-\gamma_{i-1}\right)\right)}{z\left(\gamma_{i}-\gamma_{i-1}\right)\left(\pi^{2}+z^{2}\left(\gamma_{i}-\gamma_{i-1}\right)^{2}\right)}} \\
& \quad+R_{1}(z) e^{-\frac{1}{0} \psi^{\prime 2}(x) d x}, \quad z \geqq 0 \tag{2.14}
\end{align*}
$$

where

$$
\begin{equation*}
\left|R_{1}(z)\right| \leqq \frac{k 2^{k} e^{-\frac{\pi^{2}}{8 z^{2}}(1+3 \lambda)}}{\left(1-e^{\left.-\frac{\lambda \pi^{2}}{8 z^{2}}\right)^{k}}\right.} \prod_{i=1}^{k} \frac{\operatorname{sh} z\left(\gamma_{i+1}-\gamma_{i}\right)}{z\left(\gamma_{i+1}-\gamma_{i}\right)} \tag{2.15}
\end{equation*}
$$

Proof. Again, by virtue of Lemma 1 we have to evaluate the Wiener integral

$$
\begin{align*}
I= & \int_{\{\|W(x)\|<z\}} e^{-\int_{0}^{1} \psi^{\prime}(x) d W(x)} d P_{W} \\
= & \int_{\{\|W(x)\|<z\}} e^{-\sum_{i=1}^{k} v_{i}\left(W\left(a_{i}\right)-W\left(a_{i-1}\right)\right)} d P_{W} \\
= & \int_{\substack{K \\
i=1}} \ldots \int_{i=1} \prod_{i=1}^{k} P\left(|W(x)|<z, a_{i-1} \leqq x<a_{i}, W\left(a_{i-1}\right)=y_{i-1}, W\left(a_{i}\right)=y_{i}\right) \\
& \times e^{-\gamma_{i}\left(y_{i}-y_{i-1}\right)} d y_{i}, \tag{2.16}
\end{align*}
$$

where $y_{0}=0$. From (2.8),

$$
\begin{align*}
I= & \int_{\substack{k \\
i=1 \\
i=1 \\
\left\{y_{i} \mid<z\right\}}} \prod_{i=1}^{k} \frac{1}{z} \sum_{r_{i}=1}^{\infty} e^{-\frac{-r_{i}^{2} \pi^{2}}{8 z^{2}}\left(a_{i}-a_{i-1}\right)} \\
& \times \sin \frac{r_{i} \pi\left(y_{i-1}+z\right)}{2 z} \sin \frac{r_{i} \pi\left(y_{i}+z\right)}{2 z} e^{-v_{i}\left(y_{i}-y_{i-1}\right)} d y_{i}=I_{1}+I_{2}, \tag{2.17}
\end{align*}
$$

where in I_{1} we consider the terms of summation corresponding to $r_{i}=1$, $i=1, \ldots, k$, while I_{2} involves all the other terms. Hence

$$
\begin{align*}
I_{1}= & \left.\int_{\substack { k \\
\begin{subarray}{c}{k \\
i=1{ k \\
\begin{subarray} { c } { k \\
i = 1 } }\end{subarray}} \ldots y_{i} \mid<z\right\} \\
& \times\left(\sin \frac{\pi\left(y_{k-1}+z\right)}{2 z} e^{-\frac{\pi^{2}}{8 z^{2}}}\left(\sin \frac{\pi\left(y_{1}+z\right)}{2 z}\right)^{2} \ldots\right. \\
& \sin \frac{\pi\left(y_{k}+z\right)}{2 z} \tag{2.18}\\
& \times e^{y_{1}\left(\gamma_{2}-y_{1}\right)+\ldots+y_{k}-1\left(y_{k}-y_{k}-1\right)-y_{k} \gamma_{k}} d y_{1} \ldots d y_{k} .
\end{align*}
$$

Substituting $\left(y_{i}+z\right) / 2 z=u_{i}$ in the above integral, we get

$$
\begin{align*}
I_{1}= & 2^{k} e^{-\frac{\pi^{2}}{8 z^{2}}+z \gamma_{1}} \prod_{i=1}^{k-1} \int_{0}^{1}\left(\sin \pi u_{i}\right)^{2} e^{2 z u_{i}\left(\gamma_{i+1}-\gamma_{i}\right)} d u_{i} \\
& \times \int_{0}^{1} \sin \pi u_{k} e^{-2 z u_{k} \gamma_{k}} d u_{k} . \tag{2.19}
\end{align*}
$$

On integrating out, we obtain the first term on the right hand side of (2.14). To estimate $I_{2}=R_{1}(z)$, we use the inequality

$$
\begin{align*}
& \left|\sum_{r=j}^{\infty} e^{-\frac{r^{2} \pi^{2}}{8 z^{2}}\left(a_{i}-a_{i-1}\right)} \sin \frac{r \pi\left(\frac{y_{i-1}}{2 z}\right)}{2 z} \sin \frac{r \pi\left(y_{i}+z\right)}{2 z}\right| \\
& \quad \leqq \frac{\left.e^{-\frac{j^{2} \pi^{2}}{8 z^{2}}\left(a_{i}-a_{1}-1\right.}\right)}{1-e^{-\frac{\lambda \pi^{2}}{8 z^{2}}}} \tag{2.20}
\end{align*}
$$

for $j=1$ and $j=2$.
Notice that in I_{2} exactly one summation is from $r_{i}=2$ to ∞ and all the other summations are from $r_{i}=1$ to ∞. Therefore from (2.20)

$$
\begin{align*}
\left|I_{2}\right|= & \left|R_{1}(z)\right| \\
\leqq & \int_{\left.\substack{k \\
i=1 \\
i=1} \ldots y_{i} \mid<z\right\}} \frac{e^{-\frac{\pi^{2}}{8 z^{2}}}}{\left(1-e^{\left.-\frac{2 \pi^{2}}{8 z^{2}}\right)^{k}}\right.} \sum_{i=1}^{k} e^{-\frac{3 \pi^{2}}{8 z^{2}}\left(a_{i}-a_{i-1}\right)} \\
& \times \frac{1}{z^{k}} e^{-\sum_{i=1}^{k} y^{y_{i}\left(y_{i}-y_{i-1}\right)}} d y_{1} \ldots d y_{k} \\
\leqq & \frac{k 2^{k} e^{-\frac{\pi^{2}}{8 z^{2}}(1+3 \lambda)}}{\left(1-e^{\left.-\frac{\lambda \pi^{2}}{8 z^{2}}\right)^{k}} \prod_{i=1}^{k} \frac{\operatorname{sh}\left(\gamma_{i+1}-\gamma_{i}\right) z}{\left(\gamma_{i+1}-\gamma_{i}\right) z}\right.} \tag{2.21}
\end{align*}
$$

proving (2.15).
The proof of Lemma 4 is complete.
The following property of Strassen's function is well known [7]:
Lemma 5. If $f(x) \in S$ and $0 \leqq a \leqq 1$, then

$$
\begin{equation*}
|f(u)-f(a u)| \leqq(u(1-a))^{1 / 2} \leqq(1-a)^{1 / 2} \tag{2.22}
\end{equation*}
$$

Assume that $\left\{T_{n}\right\}$ is an increasing sequence and define the following variables:

$$
\begin{gather*}
U_{n}=\sup _{\frac{T_{n-1}}{T_{n}} \leqq x \leqq 1}\left|W\left(x T_{n}\right)-W\left(T_{n-1}\right)-\left(f(x)-f\left(\frac{T_{n-1}}{T_{n}}\right)\right)\left(2 T_{n} \log \log T_{n}\right)^{1 / 2}\right|, \tag{2.23}\\
V_{n}=\sup _{0 \leqq x \leqq \frac{T_{n-1}}{T_{n}}}\left|W\left(x T_{n}\right)\right|, \tag{2.24}\\
Z(T)=\sup _{0 \leqq x \leqq 1}\left|W(x T)-f(x)(2 T \log \log T)^{1 / 2}\right|, \tag{2.25}\\
Z_{n}=Z\left(T_{n}\right), \tag{2.26}\\
Z_{n}^{(1)}=\inf _{T_{n} \leqq T<T_{n+1}} Z(T), \tag{2.27}
\end{gather*} .
$$

where $f(x) \in S$.
Lemma 6. By using the notations (2.23)-(2.27), the following inequalities hold:

$$
\begin{align*}
& Z_{n} \leqq U_{n}+V_{n}+\left(2 T_{n-1} \log \log T_{n}\right)^{1 / 2}, \tag{2.28}\\
& Z_{n} \leqq Z_{n}^{(1)}+\left(2 T_{n+1} \log \log T_{n+1}\right)^{1 / 2}-\left(2 T_{n} \log \log T_{n}\right)^{1 / 2} \\
& +\left(2\left(T_{n+1}-T_{n}\right) \log \log T_{n}\right)^{1 / 2} . \tag{2.29}
\end{align*}
$$

Proof. We prove first (2.28). Choose an $x(0 \leqq x \leqq 1)$.
For $0 \leqq x \leqq T_{n-1} / T_{n^{\prime}}$ from Lemma 5 we get

$$
\begin{align*}
& \left|W\left(x T_{n}\right)-f(x)\left(2 T_{n} \log \log T_{n}\right)^{1 / 2}\right| \\
& \quad \leqq\left|W\left(x T_{n}\right)\right|+\left(2 x T_{n} \log \log T_{n}\right)^{1 / 2} \\
& \quad \leqq V_{n}+\left(2 T_{n-1} \log \log T_{n}\right)^{1 / 2} \\
& \quad \leqq U_{n}+V_{n}+\left(2 T_{n-1} \log \log T_{n}\right)^{1 / 2} . \tag{2.30}
\end{align*}
$$

For $T_{n-1} / T_{n}<x \leqq 1$, by using Lemma 5 again, we obtain

$$
\begin{align*}
& \left|W\left(x T_{n}\right)-f(x)\left(2 T_{n} \log \log T_{n}\right)^{1 / 2}\right| \\
& \quad \leqq \left\lvert\, W\left(x T_{n}\right)-W\left(T_{n-1}\right)-\left(f(x)-f\left(\frac{T_{n-1}}{T_{n}}\right)\right)\left(2 T_{n} \log \log T_{n}\right)^{1 / 2}\right. \\
& \left.\quad+W\left(T_{n-1}\right)-f\left(\frac{T_{n-1}}{T_{n}}\right)\left(2 T_{n} \log \log T_{n}\right)^{1 / 2} \right\rvert\, \\
& \quad \leqq U_{n}+\left|W\left(T_{n-1}\right)\right|+\left|f\left(\frac{T_{n-1}}{T_{n}}\right)\left(2 T_{n} \log \log T_{n}\right)^{1 / 2}\right| \\
& \leqq \tag{2.31}
\end{align*}
$$

(2.30) and (2.31) yield (2.28).

To show (2.29), define τ_{n} as the point where $Z(T)$ takes its infinium on the interval $\left[T_{n}, T_{n+1}\right)$. Thus $Z_{n}^{(1)}=Z\left(\tau_{n}\right)$. Let $u(0 \leqq u \leqq 1)$ be arbitrary and put $x=u T_{n} / \tau_{n}$. Then $0 \leqq x \leqq T_{n} / \tau_{n} \leqq 1$ and we obtain

$$
\begin{align*}
&\left|W\left(u T_{n}\right)-f(u)\left(2 T_{n} \log \log T_{n}\right)^{1 / 2}\right| \\
&=\left|W\left(x \tau_{n}\right)-f\left(\frac{x \tau_{n}}{T_{n}}\right)\left(2 T_{n} \log \log T_{n}\right)^{1 / 2}\right| \\
& \leqq\left|W\left(x \tau_{n}\right)-f(x)\left(2 \tau_{n} \log \log \tau_{n}\right)^{1 / 2}\right| \\
&+|f(x)|\left(\left(2 \tau_{n} \log \log \tau_{n}\right)^{1 / 2}-\left(2 T_{n} \log \log T_{n}\right)^{1 / 2}\right) \\
&+\left|f(x)-f\left(\frac{x \tau_{n}}{T_{n}}\right)\right|\left(2 T_{n} \log \log T_{n}\right)^{1 / 2} \\
& \leqq Z\left(\tau_{n}\right)+\left(2 T_{n+1} \log \log T_{n+1}\right)^{1 / 2}-\left(2 T_{n} \log \log T_{n}\right)^{1 / 2} \\
&+\left(2\left(T_{n+1}-T_{n}\right) \log \log T_{n}\right)^{1 / 2}, \tag{2.32}
\end{align*}
$$

where in the last step we applied Lemma 5 again and the fact that $T_{n} \leqq \tau_{n}<T_{n+1}$. Since u is arbitrary, (2.32) yields (2.29).

This completes the proof of Lemma 6.
Put

$$
\begin{gather*}
W_{1}(u)=\frac{W\left(T_{n-1}+u\left(T_{n}-T_{n-1}\right)\right)-W\left(T_{n-1}\right)}{\left(T_{n}-T_{n-1}\right)^{1 / 2}} \tag{2.33}\\
f_{1}(u)=\left(\frac{T_{n}}{T_{n}-T_{n-1}}\right)^{1 / 2}\left(f\left(\frac{T_{n-1}+u\left(T_{n}-T_{n-1}\right)}{T_{n}}\right)-f\left(\frac{T_{n-1}}{T_{n}}\right)\right) \tag{2.34}
\end{gather*}
$$

for $0 \leqq u \leqq 1$.
It is readily checked that $W_{1}(u)$ is again a standard Wiener process with $W_{1}(0)=0$, and $f_{1}(u) \in S$. Furthermore

$$
\begin{equation*}
\frac{U_{n}}{\left(T_{n}-T_{n-1}\right)^{1 / 2}}=\sup _{0 \leqq u \leqq 1}\left|W_{1}(u)-f_{1}(u)\left(2 \log \log T_{n}\right)^{1 / 2}\right| . \tag{2.35}
\end{equation*}
$$

These facts will be used in the proofs of theorems in Sect. 3.
In Lemma 6 the sequence $\left\{T_{n}\right\}$ was an arbitrary increasing sequence, however in the proofs of our theorems we will use two particular sequences whose properties are stated in the next Lemma.

Lemma 7. (i) If $T_{n}=n^{n}, n \geqq 1$, and V_{n} is defined by (2.24), then for any $\kappa \geqq 0$ we have

$$
\begin{gather*}
\lim _{n \rightarrow \infty}\left(T_{n-1} / T_{n}\right)^{1 / 2}\left(\log \log T_{n}\right)^{\kappa}=0 \tag{2.36}\\
P\left(\lim _{n \rightarrow \infty} V_{n} T_{n}^{-1 / 2}\left(\log \log T_{n}\right)^{\kappa}=0\right)=1 \tag{2.37}
\end{gather*}
$$

(ii) If $T_{n}=\exp \left(\frac{n}{(\log n)^{3}}\right), n \geqq 20$, then for any $0 \leqq \kappa \leqq 1 / 2$, we have

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \frac{\left(T_{n+1} \log \log T_{n+1}\right)^{1 / 2}-\left(T_{n} \log \log T_{n}\right)^{1 / 2}}{T_{n+1}^{1 / 2}}\left(\log \log T_{n+1}\right)^{\kappa}=0, \tag{2.38}\\
\lim _{n \rightarrow \infty}\left(\frac{T_{n+1}-T_{n}}{T_{n}}\right)^{1 / 2}\left(\log \log T_{n}\right)^{1 / 2}\left(\log \log T_{n+1}\right)^{\kappa}=0, \tag{2.39}
\end{gather*}
$$

furthermore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{T_{n+1}}{T_{n}}=1 \tag{2.40}
\end{equation*}
$$

Proof. (i) Let $T_{n}=n^{n}$, then it is easy to see that $T_{n} / T_{n-1} \sim e n$ and $\log \log T_{n} \sim \log n$, hence (2.36) follows. For V_{n} we have by the law of the iterated logarithm,

$$
\begin{equation*}
P\left(\limsup _{n \rightarrow \infty} V_{n}\left(2 T_{n-1} \log \log T_{n-1}\right)^{-1 / 2} \leqq 1\right)=1 \tag{2.41}
\end{equation*}
$$

which together with (2.36) implies (2.37).
(ii) Let $T_{n}=\exp \left(n(\log n)^{-3}\right), n \geqq 20$. Then

$$
\begin{equation*}
1 \leqq \frac{T_{n+1}}{T_{n}}=\exp \left(\frac{n+1}{(\log (n+1))^{3}}-\frac{n}{(\log n)^{3}}\right) \leqq \exp \left(\frac{1}{(\log n)^{3}}\right), \tag{2.42}
\end{equation*}
$$

and

$$
\begin{equation*}
\log \log T_{n} \sim \log n \tag{2.43}
\end{equation*}
$$

from which (2.38), (2.39) and (2.40) follow easily.
We note that in part (ii) T_{n} is defined for $n \geqq 20$ only, because $\left\{n(\log n)^{-3}\right\}$ is increasing from $n=20$. For $n<20 T_{n}$ may be defined so that the sequence $\left\{T_{n}\right\}$ is increasing but arbitrary otherwise.

3. Main Results

In this section we state and prove three theorems. The first of them provides universal results valid for any $f(x) \in S$, i.e. upper and lower bounds are given for the best rate $\varepsilon(T)$. Then we give the best rates for $f(x) \in S$ satisfying certain additional conditions. The cases $\int_{0}^{1} f^{\prime 2}(x) d x<1$ and $\int_{0}^{1} f^{\prime 2}(x) d x=1$ are treated separately in Theorem 2 and in Theorem 3, resp.
Theorem 1. For any $f(x) \in S$ and $c>0$ we have

$$
\begin{equation*}
P\left(\sup _{0 \leqq x \leqq 1}\left|\frac{W(x T)}{(2 T \log \log T)^{1 / 2}}-f(x)\right|<\frac{c}{(\log \log T)^{1 / 2}} \text { i.o. }\right)=1 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(\sup _{0 \leqq x \leqq 1}\left|\frac{W(x T)}{(2 T \log \log T)^{1 / 2}}-f(x)\right|<\frac{\frac{\pi}{4}(1-c)}{\log \log T} \text { i.o. }\right)=0 . \tag{3.2}
\end{equation*}
$$

Proof. To prove (3.1), we choose $T_{n}=n^{n}$ and show that for arbitrary $c>0$,

$$
\begin{equation*}
P\left(Z_{n}<c T_{n}^{1 / 2} \text { i.o. }\right)=1, \tag{3.3}
\end{equation*}
$$

where Z_{n} is defined by (2.26).
By using the inequality (2.28), the limit relations (2.36) with $\kappa=1 / 2$ and (2.37) with $\kappa=0$, it suffices to verify (3.3) with Z_{n} replaced by U_{n} and since U_{n} are independent, is suffices to show that

$$
\begin{equation*}
\sum_{n} P\left(U_{n}<c T_{n}^{1 / 2}\right)=\infty \tag{3.4}
\end{equation*}
$$

Referring to (2.35) and to Lemma 2, we get

$$
\begin{align*}
P\left(U_{n}\right. & \left.<c T_{n}^{1 / 2}\right) \geqq P\left(U_{n}<c\left(T_{n}-T_{n-1}\right)^{1 / 2}\right) \\
& =P\left(\sup _{0 \leqq u \leqq 1}\left|W_{1}(u)-f_{1}(u)\left(2 \log \log T_{n}\right)^{1 / 2}\right|<c\right) \\
& \geqq \exp \left(-\log \log T_{n} \int_{0}^{1} f_{1}^{\prime 2}(u) d u\right) P\left(\left\|W_{1}(u)\right\|<c\right) \\
& \geqq \frac{P\left(\left\|W_{1}(u)\right\|<c\right)}{\log T_{n}}=\frac{P\left(\left\|W_{1}(u)\right\|<c\right)}{n \log n} \tag{3.5}
\end{align*}
$$

from which (3.4) follows. This proves (3.1). To show (3.2) is suffices to establish

$$
\begin{equation*}
P\left(Z_{n}^{(1)}<\frac{\pi}{4}(1-c)\left(\frac{2 T_{n+1}}{\log \log T_{n+1}}\right)^{1 / 2} \text { i.o. }\right)=0 \tag{3.6}
\end{equation*}
$$

where $T_{n}=\exp \left(n(\log n)^{-3}\right), n \geqq 20$. In fact we show

$$
\begin{equation*}
\sum_{n} P\left(Z_{n}<\frac{\pi}{4}(1-c)\left(\frac{2 T_{n+1}}{\log \log T_{n+1}}\right)^{1 / 2}\right)<\infty \tag{3.7}
\end{equation*}
$$

which together with the inequality (2.29) and the limit relations (2.38) and (2.39) with $\kappa=1 / 2$, will imply (3.7). Note that Z_{n} and $Z_{n}^{(1)}$ are defined by (2.26) and (2.27), resp.

By using (2.2), (2.5) and (2.6) with $\gamma=0$, we obtain for any $0<c<1$, and for n large enough,

$$
\begin{align*}
& P\left(Z_{n}\right.\left.<\frac{\pi}{4}(1-c)\left(\frac{2 T_{n+1}}{\log \log T_{n+1}}\right)^{1 / 2}\right) \\
& \leqq P\left(\frac{\sup _{0 \leq x \leqq 1}\left|W\left(x T_{n}\right)\right|}{T_{n}^{1 / 2}}<\frac{\pi}{4}(1-c)\left(\frac{2 T_{n+1}}{T_{n} \log \log T_{n+1}}\right)^{1 / 2}\right) \\
&=\frac{4}{\pi} \exp \left(-\frac{T_{n} \log \log T_{n+1}}{(1-c)^{2} T_{n+1}}\right)+O\left(\exp \left(-\frac{9 T_{n} \log \log T_{n+1}}{(1-c)^{2} T_{n+1}}\right)\right) \\
& \quad \leqq K\left(\frac{(\log n)^{3}}{n}\right)^{\frac{1}{1-c}}, \tag{3.8}
\end{align*}
$$

where in the last step we used that for n large, $T_{n} / T_{n+1} \geqq 1 /(1-c)$.
This shows (3.7) and as explained above, the proof of Theorem 1 is complete.
As mentioned already, our set of probability one for which (3.1) is valid, may depend on $f(x)$ and therefore our Theorem 1 does not imply part (ii) of Strassen's theorem. More precisely, it follows that (1.3) occurs i.o. with probability one, i.e. for all $\omega \in \Omega_{f}$ with $P\left(\Omega_{f}\right)=1$, but Ω_{f} may depend on $f(x) \in S$, while Strassen's Ω_{0} does not. It is not hard however to complete the proof of part (ii) of Strassen's theorem, one has to choose only a countable subset ($f_{1}, f_{2} \ldots$) of S, dense in S. Then it is easy to see that $\Omega_{0}=\bigcap_{i=1}^{\infty} \Omega_{f_{i}}$ will do as Strassen's Ω_{0}. Our results, of course, do not concern part (i) of Strassen's theorem.

Theorem 2. If $f(x) \in S, \int_{0}^{1} f^{\prime 2}(x) d x=\alpha<1, c>0$, then

$$
\begin{equation*}
P\left(\sup _{0 \leqq x \leqq 1}\left|\frac{W(x T)}{(2 T \log \log T)^{1 / 2}}-f(x)\right|<\frac{\pi(1+c)}{4(1-\alpha)^{1 / 2} \log \log T} \text { i.o. }\right)=1 . \tag{3.9}
\end{equation*}
$$

If, furthermore, $f^{\prime}(x)$ is of bounded variation, then

$$
\begin{equation*}
P\left(\sup _{0 \leqq x \leqq 1}\left|\frac{W(x T)}{(2 T \log \log T)^{1 / 2}}-f(x)\right|<\frac{\pi(1-c)}{4(1-\alpha)^{1 / 2} \log \log T} \text { i.o. }\right)=0 . \tag{3.10}
\end{equation*}
$$

Proof. As in the proof of Theorem 1, to show (3.9), choose $T_{n}=n^{n}$ and prove

$$
\begin{equation*}
P\left(Z_{n}<\frac{\pi(1+c)\left(2 T_{n}\right)^{1 / 2}}{4(1-\alpha)^{1 / 2}\left(\log \log T_{n}\right)^{1 / 2}} \text { i.o. }\right)=1 \tag{3.11}
\end{equation*}
$$

where Z_{n} is defined by (2.26). By using (2.28), (2.36) with $\kappa=1$ and (2.37) with $\kappa=1 / 2$, it suffices to verify that

$$
\begin{equation*}
\sum_{n} P\left(U_{n}<\frac{\pi\left(2 T_{n}\right)^{1 / 2}}{4(1-\alpha)^{1 / 2}\left(\log \log T_{n}\right)^{1 / 2}}\right)=\infty . \tag{3.12}
\end{equation*}
$$

From (2.35) and (2.2),

$$
\begin{align*}
P\left(U_{n}\right. & \left.<\frac{\pi\left(2 T_{n}\right)^{1 / 2}}{4(1-\alpha)^{1 / 2}\left(\log \log T_{n}\right)^{1 / 2}}\right) \\
& =P\left(\frac{U_{n}}{\left(T_{n}-T_{n-1}\right)^{1 / 2}}<\frac{\pi\left(2 T_{n}\right)^{1 / 2}}{4(1-\alpha)^{1 / 2}\left(T_{n}-T_{n-1}\right)^{1 / 2}\left(\log \log T_{n}\right)^{1 / 2}}\right) \\
= & P\left(\sup _{0 \leqq u \leqq 1}\left|W_{1}(u)-f_{1}(u)\left(2 \log \log T_{n}\right)^{1 / 2}\right|\right. \\
& \left.<\frac{\pi\left(2 T_{n}\right)^{1 / 2}}{4(1-\alpha)^{1 / 2}\left(T_{n}-T_{n-1}\right)^{1 / 2}\left(\log \log T_{n}\right)^{1 / 2}}\right) \\
& \geqq \exp \left(-\log \log T_{n} \int_{0}^{1} f_{1}^{\prime 2}(u) d u\right) P\left(\left\|W_{1}(u)\right\|<\frac{\pi 2^{1 / 2}}{4(1-\alpha)^{1 / 2}\left(\log \log T_{n}\right)^{1 / 2}}\right) . \tag{3.13}
\end{align*}
$$

From (2.34), we obtain

$$
\begin{align*}
\int_{0}^{1} f_{1}^{\prime 2}(u) d u & =\frac{T_{n}}{T_{n}-T_{n-1}} \int_{0}^{1} f^{\prime 2}\left(\frac{T_{n-1}+u\left(T_{n}-T_{n-1}\right)}{T_{n}}\right) d u \\
& =\int_{\frac{T_{n-1}}{T_{n}}}^{1} f^{\prime 2}(x) d x \leqq \int_{0}^{1} f^{\prime 2}(x) d x=\alpha \tag{3.14}
\end{align*}
$$

Therefore by applying Lemma 3 with $\gamma=0$,

$$
\begin{align*}
P\left(U_{n}\right. & \left.<\frac{\pi\left(2 T_{n}\right)^{1 / 2}}{4(1-\alpha)^{1 / 2}\left(\log \log T_{n}\right)^{1 / 2}}\right) \\
& \geqq\left(\log T_{n}\right)^{-\alpha}\left(\frac{\pi}{4} e^{-(1-\alpha) \log \log T_{n}}+O\left(e^{-9(1-\alpha) \log \log T_{n}}\right)\right) \\
& =\frac{\pi}{4 n \log n}+O\left((n \log n)^{8 \alpha-9}\right), \tag{3.15}
\end{align*}
$$

hence (3.12) follows. This proves (3.9). For (3.10), similarly to the proof of Theorem 1, we have to verify that

$$
\begin{equation*}
\sum_{n} P\left(Z_{n}<\frac{\pi(1-c)}{4(1-\alpha)^{1 / 2}}\left(\frac{2 T_{n+1}}{\log \log T_{n+1}}\right)^{1 / 2}\right)<\infty \tag{3.16}
\end{equation*}
$$

where $T_{n}=\exp \left(n(\log n)^{-3}\right), n \geqq 20$.
By using (2.3), (2.5) and (2.6) with $\gamma=0$, we get for n large enough,

$$
\begin{align*}
P\left(Z_{n}<\right. & \left.\frac{\pi(1-c)}{4(1-\alpha)^{1 / 2}}\left(\frac{2 T_{n+1}}{\log \log T_{n+1}}\right)^{1 / 2}\right) \\
= & P\left(\sup _{0 \leqq x \leqq 1}\left|\frac{W\left(x T_{n}\right)}{T_{n}^{1 / 2}}-f(x)\left(2 \log \log T_{n}\right)^{1 / 2}\right|\right. \\
& \left.<\frac{\pi(1-c)}{4(1-\alpha)^{1 / 2}}\left(\frac{2 T_{n+1}}{T_{n} \log \log T_{n+1}}\right)^{1 / 2}\right) \\
\leqq & \exp \left(-\alpha \log \log T_{n}+\frac{\pi(1-c)}{2(1-\alpha)^{1 / 2}}\left(\frac{T_{n+1} \log \log T_{n}}{T_{n} \log \log T_{n+1}}\right)\left(\left|f^{\prime}(1)\right|+T_{0}^{1}\left[f^{\prime}\right]\right)\right. \\
& \times P\left(\sup _{0 \leqq x \leqq 1}\left|\frac{W\left(x T_{n}\right)}{T_{n}^{1 / 2}}\right|<\frac{\pi(1-c)}{2(2(1-\alpha))^{1 / 2}}\left(\frac{T_{n+1}}{T_{n} \log \log T_{n+1}}\right)^{1 / 2}\right) \\
\leqq & \frac{K}{\left(\log T_{n}\right)^{\alpha}} \exp \left(-\frac{1-\alpha}{(1-c)^{2}} \frac{T_{n}}{T_{n+1}} \log \log T_{n+1}\right) \\
\leqq & \frac{K}{\left(\log T_{n}\right)^{\alpha}\left(\log T_{n+1}\right)^{\frac{1-\alpha}{1-c}} \leqq} \frac{K}{\left(\log T_{n}\right)^{1+\frac{c(1-\alpha)}{1-c c}}} \\
\leqq & K\left(\frac{(\log n)^{3}}{n}\right)^{1+\frac{c(1-\alpha)}{1-c}} \tag{3.17}
\end{align*}
$$

with some constant K. This shows (3.16), completing the proof of Theorem 2.
It is an open problem, whether (3.10) is true without the condition that $f^{\prime}(x)$ is of bounded variation. The main problem is to give a good asymptotic value, or at least an appropriate estimation for $P(\|W(x)-\psi(x)\|<z)$, as in Lemma 2. The case $\int_{0}^{1} f^{\prime 2}(x) d x=1$ seems to be more difficult, we can give the best rate only if $f(x)$ is piecewise linear. So let $f(x)$ be a continuous broken line with $f(0)=0$, and

$$
\begin{equation*}
f^{\prime}(x)=\beta_{i}, \quad a_{i-1}<x<a_{i} \quad(i=1, \ldots, k), \tag{3.18}
\end{equation*}
$$

where $a_{0}=0<a_{1}<\ldots<a_{k-1}<a_{k}=1$.
Theorem 3. If $f(x)$ is defined as above and $\int_{0}^{1} f^{\prime 2}(x) d x=1$, then

$$
\begin{equation*}
P\left(\sup _{0 \leqq x \leqq 1}\left|\frac{W(x T)}{(2 T \log \log T)^{1 / 2}}-f(x)\right|<\frac{c}{(\log \log T)^{2 / 3}} \text { i.o. }\right)=1 \text { or } 0 \tag{3.19}
\end{equation*}
$$

according as $c>\pi^{2 / 3} 2^{-5 / 3} B^{-1 / 3}$ or $c<\pi^{2 / 3} 2^{-5 / 3} B^{-1 / 3}$ where $B=\left|\beta_{2}-\beta_{1}\right|+\ldots$ $+\left|\beta_{k}-\beta_{k-1}\right|+\left|\beta_{k}\right|$.
Proof. First let $c>\pi^{2 / 3} 2^{-5 / 3} B^{-1 / 3}$ and define $T_{n}=n^{n}$. We show that

$$
\begin{equation*}
\sum_{n} P\left(U_{n}<\frac{c\left(2 T_{n}\right)^{1 / 2}}{\left(\log \log T_{n}\right)^{1 / 6}}\right)=\infty \tag{3.20}
\end{equation*}
$$

By (2.35), we get

$$
\begin{align*}
P\left(U_{n}\right. & \left.<\frac{c\left(2 T_{n}\right)^{1 / 2}}{\left(\log \log T_{n}\right)^{1 / 6}}\right) \\
= & P\left(\sup _{0 \leqq u \leqq 1}\left|W_{1}(u)-f_{1}(u)\left(2 \log \log T_{n}\right)^{1 / 2}\right|\right. \\
& \left.<\frac{c\left(2 T_{n}\right)^{1 / 2}}{\left(T_{n}-T_{n-1}\right)^{1 / 2}\left(\log \log T_{n}\right)^{1 / 6}}\right) \tag{3.21}
\end{align*}
$$

where $f_{1}(u)$ (see (2.34)) is again a continuous broken line with $f(0)=0$, $\int_{0}^{1} f_{1}^{\prime 2}(u) d u \leqq 1$ and
$f_{1}^{\prime}(u)= \begin{cases}\beta_{1}\left(\frac{T_{n}-T_{n-1}}{T_{n}}\right)^{1 / 2}, & 0<u<\frac{a_{1} T_{n}-T_{n-1}}{T_{n}-T_{n-1}} \\ \beta_{i}\left(\frac{T_{n}-T_{n-1}}{T_{n}}\right)^{1 / 2}, & \frac{a_{i-1} T_{n}-T_{n-1}}{T_{n}-T_{n-1}}<u<\frac{a_{i} T_{n}-T_{n-1}}{T_{n}-T_{n-1}}, \quad i=2, \ldots, k .\end{cases}$

We may assume that n is large enough to have $T_{n-1} / T_{n}<a_{1}$. Applying Lemma 4 with

$$
\begin{gather*}
\gamma_{i}=\beta_{i}\left(\frac{T_{n}-T_{n-1}}{T_{n}}\right)^{1 / 2}\left(2 \log \log T_{n}\right)^{1 / 2}, \quad i=1, \ldots, k \tag{3.23}\\
z=c\left(\frac{2 T_{n}}{T_{n}-T_{n-1}}\right)^{1 / 2}\left(\log \log T_{n}\right)^{-1 / 6} \tag{3.24}
\end{gather*}
$$

we obtain further

$$
\begin{align*}
P(& \left(U_{n}<\frac{c\left(2 T_{n}\right)^{1 / 2}}{\left(\log \log T_{n}\right)^{1 / 6}}\right) \\
= & \exp \left(-\log \log T_{n} \int_{0}^{1} f_{1}^{\prime 2}(u) d u-\frac{\pi^{2}\left(T_{n}-T_{n-1}\right)\left(\log \log T_{n}\right)^{1 / 3}}{16 c^{2} T_{n}}\right. \\
& \times\left[\frac{4 \pi c h\left(2 \beta_{k} c\left(\log \log T_{n}\right)^{1 / 3}\right)}{16 \beta_{k}^{2} c^{2}\left(\log \log T_{n}\right)^{2 / 3}+\pi^{2}}\right. \\
& \left.\times \prod_{i=2}^{k} \frac{\pi^{2} \operatorname{sh}\left(2 c\left(\beta_{i}-\beta_{i-1}\right)\left(\log \log T_{n}\right)^{1 / 3}\right)}{2 c\left(\beta_{i}-\beta_{i-1}\right)\left(\log \log T_{n}\right)^{1 / 3}\left(\pi^{2}+4 c^{2}\left(\beta_{i}-\beta_{i-1}\right)^{2}\left(\log \log T_{n}\right)^{2 / 3}\right)}+R_{n}\right] \tag{3.25}
\end{align*}
$$

where

$$
\begin{align*}
\left|R_{n}\right| \leqq & \frac{k 2^{k} \exp \left(-\frac{3 \lambda \pi^{2}\left(T_{n}-T_{n-1}\right)\left(\log \log T_{n}\right)^{1 / 3}}{16 c^{2} T_{n}}\right)}{\left(1-\exp \left(-\frac{\lambda \pi^{2}\left(T_{n}-T_{n-1}\right)\left(\log \log T_{n}\right)^{1 / 3}}{16 c^{2} T_{n}}\right)\right)^{k}} \\
& \times \prod_{i=2}^{k+1} \frac{\operatorname{sh}\left(2 c\left(\beta_{i}-\beta_{i-1}\right)\left(\log \log T_{n}\right)^{1 / 3}\right)}{2 c\left(\beta_{i}-\beta_{i-1}\right)\left(\log \log T_{n}\right)^{1 / 3}} . \tag{3.26}
\end{align*}
$$

By comparing the first term in the squared bracket on the right-hand side of (3.25) with the upper bound of $\left|R_{n}\right|$ given by (3.26) it is easily seen that R_{n} compared to the first term, tends to zero, thus for sufficiently large n, with some constant K we have

$$
\begin{align*}
P\left(U_{n}<\right. & \left.\frac{c\left(2 T_{n}\right)^{1 / 2}}{\left(\log \log T_{n}\right)^{1 / 6}}\right) \\
& \geqq K \exp \left(-\log \log T_{n}-\frac{\pi^{2}}{16 c^{2}}\left(\log \log T_{n}\right)^{1 / 3}\right) \\
& \quad \times \frac{\operatorname{ch}\left(2 c \beta_{k}\left(\log \log T_{n}\right)^{1 / 3}\right) \prod_{i=2}^{k} \operatorname{sh}\left(2 c\left|\beta_{i}-\beta_{i-1}\right|\left(\log \log T_{n}\right)^{1 / 3}\right)}{\left(\log \log T_{n}\right)^{k-1 / 3}} . \tag{3.27}
\end{align*}
$$

Since $\operatorname{sh}\left(A\left(\log \log T_{n}\right)^{1 / 3}\right) \sim \frac{1}{2} \exp \left(A\left(\log \log T_{n}\right)^{1 / 3}\right)$, as $n \rightarrow \infty$, if $A>0$ and $c h u \geqq \frac{1}{2} \exp (|u|)$, we get

$$
\begin{align*}
P\left(U_{n}\right. & \left.<\frac{c\left(2 T_{n}\right)^{1 / 2}}{\left(\log \log T_{n}\right)^{1 / 6}}\right) \\
& \geqq \frac{K_{1}}{n \log n} \frac{\exp \left(\left(2 c B-\pi^{2} / 16 c^{2}\right)\left(\log \log T_{n}\right)^{1 / 3}\right)}{\left(\log \log T_{n}\right)^{k-1 / 3}} \\
& \geqq \frac{K_{2}}{n \log n}, \tag{3.28}
\end{align*}
$$

because $2 c B-\frac{\pi^{2}}{16 c^{2}}>0$. This shows (3.20).
The proof of the first half of Theorem 3 can be completed by using the inequlaity (2.28) and the limit relations (2.36) and (2.37) with $\kappa=2 / 3$ and $\kappa=1 / 6$, resp.

Assume now that $c<\pi^{2 / 3} 2^{-5 / 3} B^{-1 / 3}$ and let $T_{n}=\exp \left(n(\log n)^{-3}\right), n \geqq 20$.
We show that

$$
\begin{equation*}
\sum_{n} P\left(Z_{n}<\frac{c\left(2 T_{n+1}\right)^{1 / 2}}{\left(\log \log T_{n+1}\right)^{1 / 6}}\right)<\infty \tag{3.29}
\end{equation*}
$$

By applying Lemma 4 , it can be seen after some calculations that for n large enough,

$$
\begin{align*}
P\left(Z_{n}\right. & \left.<\frac{c\left(2 T_{n+1}\right)^{1 / 2}}{\left(\log \log T_{n+1}\right)^{1 / 6}}\right) \\
= & P\left(\sup _{0 \leqq x \leqq 1}\left|\frac{W\left(x T_{n}\right)}{T_{n}^{1 / 2}}-f(x)\left(2 \log \log T_{n}\right)^{1 / 2}\right|\right. \\
& \left.<\frac{c\left(2 T_{n+1}\right)^{1 / 2}}{T_{n}^{1 / 2}\left(\log \log T_{n+1}\right)^{1 / 6}}\right) \\
\leqq & \frac{K}{\log T_{n}} \frac{\exp \left(-K_{1}\left(\log \log T_{n}\right)^{1 / 3}\right)}{\left(\log \log T_{n}\right)^{k-1 / 3}} \tag{3.30}
\end{align*}
$$

with some K and K_{1}. Hence (3.29) follows and the proof of Theorem 3 can be completed by referring to the inequality (2.29) and to the limit relations (2.38) and (2.39) both with $\kappa=1 / 6$.

References

1. Anderson, T.W.: The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6, 170-176 (1955)
2. Bolthausen, E.: On the speed of convergence in Strassen's law of the iterated logarithm. Ann. Probability 6, 668-672 (1978)
3. Cameron, R.H., Martin, W.T.: Transformation of Wiener integrals under translation. Ann. of Math. 45, 386-396 (1944)
4. Chung, K.L.: On the maximum partial sums of sequences of independent random variables. Trans. Amer. Math. Soc. 64, 205-233 (1948)
5. Feller, W.: An introduction to probability theory and its applications. Vol. 2. New York: Wiley 1966
6. Skorokhod, A.V.: Random processes with independent increments. (Russian). Moscow: Izdat. Nauka 1964
7. Strassen, V.: An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie verw. Gebiete 3, 211-226 (1964)
