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Summary. Let W () be a standard Wiener process and let f(x) be a function
from the compact class in Strassen’s law of the iterated logarithm. We
investigate the lim inf behavior of the variable
sup |W(xT)(2T loglog T)~*>—f(x)],
0s=x=1

suitably normalized as T— co.

This extends Chung’s result valid for f(x)=0, stating that
liminf[ sup [(2T loglog T)~'> W(xT)|(loglog T)~*]=n/4 a.s.

1

T— o 0=x=

1. Introduction

Let (Q, o/, P) be a probability space and let W(t)=W(t, w) (weQ) be a standard
Wiener process defined on it. We also consider the space C[0, 1] with the sup
metric | | and let us denote by B, the Wiener measure defined on the Borel
sets of C[0,1]. It is well known that there is a close relation between the
measures P and Pw, ie. if Bis any Borel set in C[0,1] and 4 ={w: W(t, w)eB} e,
then

B, (B)=P(A). (1.1)

Let S=C[0,1] be the class of functions defined in Strassen’s law of the
iterated logarithm [7], ie. f(x)eS (0=<x=1) if and only if f(0)=0, f(x) is
1

absolutely continuous and | f/*(x) dx <1. Denote by S° the e-neighbourhood of
0

S, ie. g(x)eS*(0=<x=1) means that there exists an f(x)eS such that |f(x)
—g()] <.

The proof of Strassen’s law of the iterated logarithm usually breaks up into
two parts:

(i) The first part consists in showing that for almost all we® and for all ¢>0
there exists a T, = T,(w) such that
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W(xT)
—_——cf* 1.2
(2T loglog T)"2 < (1.2)
whenever T=T,.

ii) The second part consists in showing that there exists an Q,<Q with

p 0

P(Q,)=1 such that for all weQ,, for all £>0 and for all f(x)eS, the inequality

W(xT)

P e 1.3
02321 (2T loglog T)'/? Fe)<e (L3

holds true at least for an increasing sequence of T tending to infinity.

Concerning part (i) Bolthausen [2] investigated the problem how can the
constant ¢ be replaced by a function ¢(T) in (1.2) so that the assertion in (i)
remains true. He shows that &(T)=(loglog T)~* with a«<1/2 will do, but &(T)
=(loglog T)~* will not. The problem is open for 1/2<a<1.

Our concern in this paper is to investigate the analoguous problem for part
(11), i.e. we want to replace ¢ by &(7T) in (1.3). To be precise, we choose f(x)eS and
fix it. Our aim is to determine the best rate &(7) in the sense that

W(xT .
P (Oiugl *“——(ZTlog(lJ(C)g)T)l/z —f(x)|<(+c)e(T) 1.0.) =1 (1.4)
but
W(xT . ,
P (Oiugl Q—Tlgg(l’;g—)nl/i—f(x) <(1—¢)&(T) 1.0.)=O (1.5)

for any ¢>0. Here and in what follows i.o. (infinitely often) means that the
inequality in the bracket occurs for a sequence of T increasing to infinity.

One can not reasonably expect to give a universal result for all f(x)eS.
Indeed, the best ¢(T) will depend on f(x). Also, the exceptional set of measure 0
in our results may depend on f(x). Unfortunately we can not give a complete
solution to the problem described above, ie. we can give the best rate &(7)
only for f(x)eS, satisfying certain further restrictions.

For the function f(x)=0 (0=<x <1) Chung’s law of the iterated logarithm [4]

says that W(xT)
(2T loglog T)'/?

Utz io.)=1 or 0 (1.6)

P .
e 4loglog T

o<x=1

according as ¢>0 or ¢<0. In this way our results can be regarded as extensions
of Chung’s L1L, establishing also a connection with Strassen’s LIL.

In Theorem 1 we give universal results, valid for all f(x)eS, by determining
upper and lower bounds for the best rate &(T). In Theorems 2 and 3 basically
two cases will be treated:

case (i): f*x)ydx<1, (1.7)

case (ii): fHx)dx=1. (1.8)

[ N g N
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In case (i) we solve our problem provided f'(x) is of bounded variation, while
case (ii), i.e. the case of extremal functions of S seems to be more difficult. In this
case we can give a solution only if f(x) is piecewise linear. In particular, we can
treat the functions f(x)=x (0<x<1) and f(x)= —x (0<xZ1).

In Sect. 2 some preliminary results will be presented in the form of lemmas.
Sect. 3 contains our main results.

2. Preliminary Lemmas

Our results are based on the translation formula for Wiener integrals due to
Cameron and Martin [3] (see also Skorokhod [6]), stated as

Lemma 1. Let W(x) (0= x=<1) be a standard Wiener process; y(x)e C[0, 17, ¥(0)
1

=0, and suppose Y(x) is absolutely continuous with | y'*(x) dx < oo. Then
0

P(IWE)—p(x)|<z)=e 28770 VO Op )

W <z}
From Lemma 1 we obtain the following inequalities:

Lemma 2. Under the conditions of Lemma 1, the following inequalities hold:

1
-3y 2(x)dx
3

e P(|W(x)ll <2)

SP(IIWx) -y <2)=P(IW X <2). (2.2)

If, furthermore, ' (x) is of bounded variation and Ty [¥'] denotes its total variation
over the interval [0, 1], then

P([Wx) =y ()] <2)

<P(IW( )H<z>exp( L]y 2 () dx+ (W' (O] + T [w])) 23)

Proof. The first inequality in (2.2) is an easy consequence of (2.1) and Jensen’s
inequality. For the second inequality in (2.2) we may refer to Anderson [1].

To show (2.3), we use the following estimation: on the set {||W(x)| <z} we
have

({lﬁ’(u)dW(u) =¥ (1) W(U-—g W(x) dy'(x)

<z(WOI+ T YD 24)

hence (2.3) follows from (2.1) and (2.4). Thus Lemma 2 is proved.

Explicit expressions are well known for P(|| W(x)|| <z). In the next lemma we
give the distribution of |[W(x)—yx|, where y is a real constant. The given
disiribution is suitable to obtain also an asymptotic expression near zero. A

different-but of course equivalent-expression for P(|W(x)—yx| <z) is given in
Skorokhod [6].
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Lemma 3. For real y and z=0 we have

P(HW(X)—VXH<Z)

o0

(=1y@2r+1)

E. Csaki

_Qr+1)2n2
822

=4ne 7 ch(yz) z

0 4y2 22+ 2r+1)7%n
gt ECIEE
where 4 ] o
T
|R(Z)|§ =
l1—e 822

2

(2.6)

Proof. By applying Lemma 1, and by evaluating the Wiener integral, we have

P(IW(x)—yx]| <z)=e "7

eGP,

W@ <2
y2 z
=e 2 [ e P(|W(x)| <z, W(l)=y)dy. 2.7
We use the following formula (see e.g. Feller [5]):
P(—b<W({t)<2z—bfor 0t <T, W(T)=
18 _ri=2 b . ra(y+b
= r; e 82 " sin ;—Z sin ’—E(gz—), (2.8)
where the probability P(A, W(T)=y) is understood as
lim (P(A, y=W(T)<y+4y)/4y).
Ay—0
From (2.7) and (2.8) we obtain,
P(|W(x)—yx| <z)
—e 2 j" e v = Z o smrzn s'niz(};—;_i)d
22 (2'+1)2”2 I (2r+1)n(y+2)
=¢ —1ye &2  — e —————dv. 29
; Iye w2 - _f sin 3, ¥ (29)
On integrating the last expression, we get (2.5).
To prove (2.6), we use the following inequalities:
ch(yz)sell?, (2.10)
1
2r+1 §—5 @.11)

49?22+ (2r+1)* 72
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(2r+1)2r2

(-@r+y  _er

Hence
R{z)l=|4me 2 ch
IR@)I=|4me i v2) Z L 4y2 22+ (Q2r+ 1) n?
) 4 Lg%
y* ru?
A LI S v - 2.12)
T r=9 1—e 827
This proves Lemma 3.
Now consider piecewise linear functions {x). Assume that
Vix)=y, a,_,;<x<a; i=1,...k, (2.13)
., k; ¥(0)=0 and

Ver1=0; V;:':Vl 1 i=23,.
i-1)-

where g, =0<a, <...<g,=1; y,=
¥(x) is a continuous broken line. Put A= min (a;,—a,
15isk

Lemma 4. For Y (x) defined above, we have

P(IW(x) =y (x) <z)
Awa(x)dx—— dnch(y,z) & 7* sh(z(y,—v;_1))
4yk 2+7I2 i=2 Z(yt yl 1)(71: +Z (yl yt 1))
FR () e dVPE 20 (2.14)
where o
k2ke 82 Pk shz(y. . —7)
IR, (2)| = = 11 oL (2.15)
(1—e 82 i=1 21—

Proof. Again, by virtue of Lemma 1 we have to evaluate the Wiener integral

1
—Jy(x)dWw
= o Jv e (x)dPW
W@ | <z
k
— 2 n (W @) =W (ai-1) ip,

W x| <z}

HP W(x)|<z,al 1SX<GI,W( i— 1) y1 I’W( ) J’l)

- fed 1
.

X e~ =1 dy-,
1

where y,=0. From (2.8),

in rim(y;+2) e—vi(m—yi—l)dyizl'l +1,,

2z

16)

2.17)
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where in I, we consider the terms of summation corresponding to r=1,
i=1,..., k, while I, involves all the other terms. Hence

1 _= ) 2
L= {..§ F e 8zl<smn~()il+—z))...

K 2z
ilel(lyi|<z}
. T +2)\* . w(y,+z
“ (Sm _(_yk_l—)> sin "0 12
2z 2z
X el’1(?2—v1)+.--+yk— 1V — Ve — 1) ~ Ve vk dyl dyk- (218)
Substituting (y;+z)/2z=u; in the above integral, we get
7 k—1 1
I,=2%e7"82"""" ] [(sinmu,)? e2#0ir:=79 gy,
L i=1 0
x | sin mu, e~ 2#% 7 du, . (2.19)
0

On integrating out, we obtain the first term on the right hand side of (2.14).
To estimate I, =R, (z), we use the inequality

o . ral(y; zy . raly, 4z
Z P (@, —a;-1) sin (y1—1+ )Sln (yz+ )
e 2z 2z
R
S (2.20)
1—e 822

for j=1 and j=2.
Notice that in I, exactly one summation is from ;=2 to o and all the other
summations are from r,=1 to oo. Therefore from (2.20)

I,|=IR,(2)|
e—%f k 32

[ ——Zp— e
Tt fiyi<m (1—e7527)" 1=t

(ai—a;-1)

lIA

k
1 _3 yilyi—yi-
X—e =t
-3
L

1)
dy,...dy,

k —%(14—3/1) X _
§k2 € 8z _ Sh(Vis1 Vi)z, (2.21)
(1—e 82 =1 Gic1—7)2
proving (2.15).
The proof of Lemma 4 is complete.
The following property of Strassen’s function is well known [7]:

Lemma 5. If f(x)eS and 0<a <1, then
|f ) —flaw| S —a)? (1 -a)' (2.22)
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Assume that {7,} is an increasing sequence and define the following vari-
ables:

T
U=, sup |WGT) =T, - (169=f (1) )@, loglog Ty (223)
Tn-1 i<y n
V= sup [WT) (2.24)
Ty, -
Ogxg-n-b
Z(T)= sup [W(xT)—f(x)2T loglog T)'?|, (2.25)
0=x=£1
Z,=2Z(T), (2.26)
ZW= inf  Z(T), (2.27)
TuST< Tt
where f(x)eS.
Lemma 6. By using the notations (2.23)-(2.27), the following inequalities hold :
2,5U,+V,+(2T,_, loglog T)' ", (2.28)
2,52+ (2T, loglog T, "2~ (2T, loglog T,)""*
+2(T,.,, — T,) loglog T,)""”. (2.29)

Proof. We prove first (2.28). Choose an x(0<x <1).
For 0=x=T,_,/T, from Lemma 5 we get
|W(xT,)—f(x)(2T, loglog T,)'|
S|W(xT)+@2xT, loglog T,)'
<V,+QT,_, loglog T))'”*
<U,+V,+(T,_, loglog T,)!/%. (2.30)

For T,_,/T,<x<1, by using Lemma 5 again, we obtain
|W(xT,)—f(x)(2T, loglog T,)'?|
T
WT)=W(T, )= (109~ (“52) ) T, loglog 1)

L4
T,

n

T,
7 (7)1, loglog Ty

n

<

+W(7L1)—f( )(ZEloglog 1)1

sUAIWT,_ I+

SU+V,+QT,_, loglog T} (2.31)
n n n—1

(2.30) and (2.31) yield (2.28).

To show (2.29), define 7, as the point where Z(T) takes its infinium on the
interval [T,,1,,,). Thus Z"=Z(z,). Let u(0<u<1) be arbitrary and put
x=uT/z,. Then 0£x=T/r,<1 and we obtain
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|WuT,)—fw)(2T,loglog T,)"'?|
X,

=}W(xr,,)—f =z
<W(xe,)—f (923, loglog 7))

+1/®)] (27, loglog7,)'* — (2T, loglog T,)*"%)
se-1 ()

n

)@, loglog 712

-+

(2T, loglog T,)'/*
<Z(1,)+Q2T,,  loglog T, )**—(2T, loglog T,)'/?
+Q(T, .~ T, loglog T,)"", (2.32)

where in the last step we applied Lemma 5 again and the fact that T, <7, <T, _ ;.
Since u is arbitrary, (2.32) yields (2.29).
This completes the proof of Lemma 6.

Put
- Tt i, Tey) W) 23
o O 1 ) e
for 0Zu=l.

It is readily checked that W,(u) is again a standard Wiener process with
W, (0)=0, and f| (w)eS. Furthermore

U
—_— = W, (u)— 2 loglog T,)/|. 2.35
T =T 7 Oggll 1 (W) —f1(w)(2 loglog T,)""%| (2.35)
These facts will be used in the proofs of theorems in Sect. 3.
In Lemma 6 the sequence {T,} was an arbitrary increasing sequence, how-
ever in the proofs of our theorems we will use two particular sequences whose
properties are stated in the next Lemma.

Lemma 7. (i) If T,=n" n=1, and V, is defined by (2.24), then for any x 20 we have

lim (T, _,/T,)'"* (loglog T,)*=0, (2.36)
P(lim V, T~ /2 (loglog T,)*=0)=1. (2.37)

(i) If T,=exp (——L>, n =20, then for any 0<x<1/2, we have

(logn)®
T loglog T,. )2 —(T. loglog T)"2
hm( n+1 oglog n+1;—’1/2 ( n Og Og n) (loglog ,1—;1+1)K:0’ (238)
n— n+1
T —T\2
im (+~1T~) (loglog T)2(loglog T, .\ =0, (2.39)
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Sfurthermore T
lim L=

n— o0 n

1. (2.40)

Proof. (i) Let T, =n" then it is easy to see that T,/T, , ~en and loglog T, ~logn,
hence (2.36) follows. For ¥V, we have by the law of the iterated logarithm,

P(limsup V,(2T,_, loglog T,_,)""?<1)=1 (2.41)

which together with (2.36) implies (2.37).
(ii) Let T,=exp(n(logn)~3), n=20. Then

n+1 n
log(n+1)° (logn)® ) Sexp ((log n)?

T
1< ”T“=exp(

), (2.42)

and
loglog T, ~logn (2.43)

from which (2.38), (2.39) and (2.40) follow easily.

We note that in part (ii) 7, is defined for n =20 only, because {n(logn)~3} is
increasing from n=20. For n<20 T, may be defined so that the sequence {T,} is
increasing but arbitrary otherwise.

3. Main Results

In this section we state and prove three theorems. The first of them provides

universal results valid for any f(x)€S, i.e. upper and lower bounds are given for

the best rate (7). Then we give the best rates for f(x)eS satisfying certain
1 1

additional conditions. The cases [ f?(x)dx<1 and [ f'?(x)dx=1 are treated
4] 0

separately in Theorem 2 and in Theorem 3, resp.

Theorem 1. For any f(x)eS and ¢>0 we have

W(xT) ¢ S\
P(o?il; (2T loglog T)'"2 f(x){<wl-0~)—l (3.1)
and -
(02221 (2T loglog T)*? (x loglogT ) .

Proof. To prove (3.1), we choose T,=nr" and show that for arbitrary ¢ >0,
P(Z,<cTM?* i0.)=1, (3.3)

where Z, is defined by (2.26).

By using the inequality (2.28), the limit relations (2.36) with k=1/2 and (2.37)
with =0, it suffices to verify (3.3) with Z, replaced by U, and since U, are
independent, is suffices to show that

Y P(U,<cT}?)=oo. (3.4)
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Referring to (2.35) and to Lemma 2, we get

P(U,<cT,"?)2 P(U,<c(T,~T,_)"?)
=P( sup |W;()~/,()(2loglog T,)"* <c)

>exp (—loglogTj (u)du) P(|W, ()l <) '

S PVl <c) _ PUIW, @)l <c)

= 3.5
log T, nlogn (3:3)

from which (3.4) follows. This proves (3.1). To show (3.2) is suffices to establish

2T 1/2
plzw<l - (A) i .):0, 3.6
(20<5 -9 ot —) 0 (36)

where T,=exp (n(logn)~3), n=20. In fact we show
2T

ZP(Z,,<E (1— )(—”—1——)1/2)<oo, (3.7)
- 4 loglog T, , |

which together with the inequality (2.29) and the limit relations (2.38) and (2.39)
with k=1/2, will imply (3.7). Note that Z, and Z¥ are defined by (2.26) and
(2.27), resp.

By using (2.2), (2.5) and (2.6) with y=0, we obtain for any 0 <c <1, and for n
large enough,

7 2T 1/2
Plz <<(1— _L) )
( g4 (loglog T,y

sup |[W(xT)
n 2T 1/2
SP 0=x=1 < 1 ( n+1 ) )
- ( T2 4( 9 T,loglog T, ,

4 T, 9
_4 exp( loglog n+1)+0(exp( Tloglgg m))
n (1_ ) n+1 (1-0°T, n+1

where in the last step we used that for n large, T,/7T,,,=1/(1—

This shows (3.7) and as explained above, the proof of Theorem 1 is complete.

As mentioned already, our set of probability one for which (3.1) is valid, may
depend on f(x) and therefore our Theorem 1 does not imply part (ii) of
Strassen’s theorem. More precisely, it follows that (1.3) occurs i.0. with probabil-
ity oneg, ie. for all weQ, with P(Q,)=1, but Q, may depend on f(x)eS, while
Strassen’s , does not. It is not hard however to complete the proof of part (ii)
of Strassen’s theorem, one has to choose only a countable subset (f, f,...) of S,

dense in S. Then it is easy to see that Q,= ﬂ Q;, will do as Strassen’s 2,. Our

results, of course, do not concern part (i) of Strassen s theorem.
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1
Theorem 2. If f(x)eS, | f'*(x)dx=0a<1, ¢>0, then
0

Wi(xT) n(l+c) . )
e —_ 0. )=1. 39
P(é‘il; @ T logiog T2 Y| <31 =0T logiog T ° (39)
If, furthermore, f'(x) is of bounded variation, then
W(xT) z(l—c¢) . )
P — —————jo0.]=0. (3.10
(o?ﬁl T loglog 1) /™| <20 =0 logiog T (3.10)

Proof. As in the proof of Theorem 1, to show (3.9), choose T, =n" and prove
n(l+c)2T)"? .
iz P 1.0.>=1,
4(1—a)*'“(loglog 1)

where Z, is defined by (2.26). By using (2.28), (2.36) with k=1 and (2.37) with
k=1/2, it suffices to verify that

P <Zn< (3.11)

2(2T)"?
12
Z P ( 4(1—a)'/?(loglog T)l/z) (3.12)
From (2.35) and (2.2),
n(2T)"?
P(Usg o )
—P U n2T)"” >
B ((Tn— T,_)'7? "4(1-o)"*(T,~T,_,)"*(loglog T,)"
=P( sup |W,()~f;(u)(2 loglog T,)'?|
O0=sux1
n(2T)"? )
4(1—a)>(T,—T,_,)"'*(loglog T,)*/?
TC21/2
> -
>exp ( loglog T, j 2(u) du) (H W, ()] <4(1 ~2)7 (loglog Tn)m)'
From (2.34), we obtain (3.13)
L (T HuT T, )
f wdu=g—p— 1/ ( e
1
f f'z(x)dxéff'z(x) dx=ua, (3.14)
T 0
Therefore by applying Lemma 3 with y=0,
n(2T)Y?
P\U L
( " 41— %) (loglog 7;,)1/2>
2(10g T)—zx (E e—(l—a)loglong+0(6—9(1~zx) loglong))
= Y
=Z£é;+ O((n log n)®*=9), (3.15)
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hence (3.12) follows. This proves (3.9). For (3.10), similarly to the proof of
Theorem 1, we have to verify that

n(l—c¢) 2T, 7?2
e (Z”<4(1—cx)”2 (logIOng) )< o, (3.16)

where T, =exp (n(logn)~?), n=20.
By using (2.3), (2.5) and (2.6) with y=0, we get for n large enough,

(1l —c) 2T, 1/2
PlZ n+1 ) )
( "<4(1-—oc)”2 (10glong+1

WixT,
= ( sup |55 ) loglog T

__m(l=0) ( 2T, )/)
4(1—a)** \T,loglog T, .,

n(l—c) (T,.,loglogT) .
2(1-a)" (T,,loglong H)(lf WI+TLFD)

n(l—c) ( T >/)
22(1—0)" \T,loglog T, ,

l—a T,
ém exp (—m T loglog Tn+1)
K < K

n+1
1—a= c(l—a)

(log T)(logT,. )i (logT) =

<exp (—oc loglog T,,+

WxT)
TI/Z

xP( sup

0sx<1

A

(logn)? )1+—~“‘3:ﬁ"

<K ( - (3.17)

with some constant K. This shows (3.16), completing the proof of Theorem 2.

It is an open problem, whether (3.10) is true without the condition that f’(x)
is of bounded variation. The main problem is to give a good asymptotic value,
or at least an appropriate estimation for P(||W(x)—y/(x)| <z), as in Lemma 2.

1

The case | f"2(x) dx=1 seems to be more difficult, we can give the best rate only
0

if f(x) is piecewise linear. So let f(x) be a continuous broken line with f(0)=0,

and
ffx)=p, a_,<x<a, (@(i=1,...,k), (3.18)

where a,=0<a,;<...<q,_,<a,=1.
1

Theorem 3. If f(x) is defined as above and | f'*(x)dx=1, then
0

W(xT)

1/2 —f(X)

_ M) —10r0 (3.19
(2T loglog T) o (.19

c
P ————— ].0.
(o 222 1 <(10g108 T)2/3 -0 )
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according as ¢>n*?27°P B3 or c<n?327-53B~13 ywhere B=|B,—B,|+...

+|ﬁk‘ﬁk_1l+|ﬁk|-
Proof. First let ¢>n?327%3 B~1/3 and define T,=n". We show that

2T

By (2.35), we get
0(2 7—;[)1/2
(0= oo Ty)
=P( sup. [W, () —f, ()2 loglog T,)!/?|

0=sus

<

C(2’I;1)1/2 >’ (321)

(T, T,_,)"(loglog T,)"/*
where f;(u) (see (2.34)) is again a continuous broken line with f(0)=0,

1
{ fi*(w)du<1 and
0

T-T 1/2 T-T
ﬁl(n Tn—l) , 0<u<a}TnTn~l
’ n n fn—-1
u =
1) [ (Tn_Tn—l)l/z a;_1 Tn_Tn—1<u<aiTn_Tn—1 =2 k
' T, | T,-T, 4 T,-T, ., U

(3.22)

We may assume that n is large enough to have T,_ /T, <a,. Applying
Lemma 4 with

T,—T,_, \\2
2= (Fo=t)  @loglog 1)1, i=1,k (6.23)
2T, 2
—c ="} (loglog T,)~ /¢ 3.24
z C(TW—T,,_l) (loglog T,)~ ", (3.24)

we obtain further

cQT)M
U e
P ( "~ (loglog T,J“G)

1
—exp (—loglog T, f12(w) du—
)

4 ch(2B,c(loglog T)'3)
[16/3,fcz(loglog T)3+n?
y ﬁ n? sh(2¢(B;— B;_ 1) (loglog T,)*'°) 4R ]
=3 2¢(B;~ B, )(loglog T,)'*(n* +4c*(B,— B,_,)* (loglog T,)*7) 1’
(3.25)

n*(T,—T,_,)(loglog )"
16¢*T,
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where
3%.7*(T,— 1/3
k2* exp (_ (T, Tn_lz)(logIOng) )
IR,| < 16¢2T,
o (1—ex (_Wﬂl—n_l)aoglog T,,)“3> z
P 16¢*T )

ﬁ sh2c(B;—PB;_,)(loglog T)'"?)
=2 20(Bi—Bi_y)(loglog T)V*

(3.26)

By comparing the first term in the squared bracket on the right-hand side of
(3.25) with the upper bound of |R,| given by (3.26) it is easily seen that R,
compared to the first term, tends to zero, thus for sufficiently large n, with some
constant K we have

cQT)H?
P N S
(U"<<loglog T,.>”6>

2
=K exp (—-loglog Tn—%é? (loglog Tn)1/3>

k

ch(2c B,(loglog T,)*) [ ] sh(2c 1B, — B;_ (|loglog T,)'7®)

i=2

(loglog Ty~ 173 T (327

X

Since sh(A(loglog T,)'*)~4 exp (A(loglog T,)'®), as n—oo, if A>0 and
chuziexp(jul), we get

cQT)?
P I S
(Un<(1og10g Tn)”6>

K, exp((2cB—7n*/16c*)(loglog T,)'7?)
“nlogn (loglog T,)<~ /3
K2
nlogn’

v

(3.28)

Z

because 2¢B— Teo? ——>0. This shows (3.20).

The proof of the first half of Theorem 3 can be completed by using the
inequlaity (2.28) and the limit relations (2.36) and (2.37) with k=2/3 and x=1/6,
resp.

Assume now that ¢ <n®32-53B~13 and let T,=exp(n(logn)~>), n=20.

We show that

5 p (7,402 T,.0)"

J (loglog T, n+1)”6><°0‘ (3.29)
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By applying Lemma 4, it can be seen after some calculations that for n large
enough,
2 1/2
P(Zn< 2T, 1) 16)
(loglog T, , )"
W(xT,)

1/2
T,

—f(x)(2 loglog T,)"*

=P( sup

0=x=1
< llal” )
T,!*(loglog T,, , )"/°
K exp(—K,(loglog T,)")
logT,  (loglog T,)* 7

IIA

(3.30)

with some K and K. Hence (3.29) follows and the proof of Theorem 3 can be
completed by referring to the inequality (2.29) and to the limit relations (2.38)
and (2.39) both with x=1/6.
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