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Summary. W e  cons ider  S m o l u c h o w s k i ' s  m o d e l  of c o a g u l a t i o n  in  col lo ids :  n 
par t ic les  m o v e  in  t h r e e - d i m e n s i o n a l  euc l idean  space acco rd ing  to B r o w n i a n  
m o t i o n s  i n d e p e n d e n t l y  of  each o the r  as l ong  as the par t ic les  are at  a d i s t ance  
grea ter  t h a n  R. W h e n  two par t ic les  come  to w i th in  a d i s tance  R they stick 
toge the r  a n d  fo rm a " d o u b l e  par t ic le" ,  which  itself is in  B r o w n i a n  m o t i o n  - 
a n d  so on. In  the  B o l t z m a n n - G r a d - l i m i t  n-+o% n R = c o n s t a n t ,  we p rove  

" p r o p a g a t i o n  of chaos"  a n d  der ive  the k ine t i c  e q u a t i o n s  for the densi t ies  of 
the  k-fold part icles .  
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1. Introduction 

In  [19]  S m o l u c h o w s k i  deve loped  a theory  of c o a g u l a t i o n  in  col loids  based  o n  
B r o w n i a n  m o t i o n .  F o r  a survey  of his ideas see the  beau t i fu l  lectures  [18],  
pa r t  I I I :  Theo r i e  der  K o a g u l a t i o n  (p. 593-599),  cf. also [5].  The  u n d e r l y i n g  
m o d e l  m a y  be descr ibed  as follows. C o n s i d e r  n par t ic les  in  t h r e e - d i m e n s i o n a l  

* Research supported by the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 123) 

0044-3719/80/0054/0227/$10.80 



228 R. Lang and Nguyen Xuan Xanh 

euclidean space, each particle being surrounded by a sphere of influence of 
diameter R. The particles move independently of each other, according to a 
Brownian motion, as long as their distance is greater than R. When two particles 
meet at a distance R they stick together and form a "double particle", which 
itself is again in Brownian motion - and so on. Smoluchowski found on a 
heuristic basis an explicit formula for the average concentration of single, 
double, triple etc. particles at time t. 

Our aim is to put Smoluchowski's theory on a firm mathematical basis. It 
turns out that it holds rigorously in the limit with n--*oo, R + 0  in such a way 
that nR remains constant. We refer the reader to [13] for a heuristic derivation 
of the kinetic equations for the densities of the k-fold particles as well as for an 
introduction to the basic ideas of the proof. In this paper we give detailed 
proofs. 

To explain the meaning of the limit n R = const let us consider for a moment 
the case of particles moving in general d-dimensional space IR a with d > 2 (after 
that we restrict ourselves in the rest of the paper to the case d =  3). Suppose we 
are given n point-particles in a bounded set A c IRa with volume V, each particle 
being surrounded by a ball of diameter R. Every particle moves according to a 
Brownian motion (with the diffusion constant D) as long as it does not meet any 
other particle. What is the average time T in which a tagged particle does not 
undergo a collision? Let (co(t))o<=t be the path of a Brownian particle; denote by 

(1.1) WR(t)={X+Og(S): X~IR a, [xl<=e, O<=s<t} 

the Wiener sausage, swept out by a ball of radius R during the time interval 
[0, t], having the volume ]WR(t)[ and 

(1.2) C(R)= capacity of the ball with radius R. 

Then the mean free time T should be such that 

(1.3) n]WR(T)[ ~ V 

By a scale transformation we get 

(1.4) 

for small R. 

IWR(t)I=I{X-t-co(RZs): [xI <=R, O<=s<=t/R2}l 

=Rd + T  ]x[<=R, O<=s<=t/R 2 

= RdIW1 (t/R2)[ 

and therefore the condition (1.3) reads 

(1.5) nRalWl (T/R2)I ~ V for small R. 

The asymptotic behaviour of the volume of the Wiener sausage for t ~ o o  is 
given by (cf. [20] and [9]; for a use of the Wiener sausage in connection with 
the Feynman-Kac formula see [17] and [13]) 

I t .  C(R). D, d>_3 
(1.6) I WR(t)] ~ ]4zcD.t ,  -- (t-*oo). 

[. loggt d = 2  
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From (1.5) and (1.6) we get for R ~ 0 :  

nR d. (T/R2) �9 C(1)- D ~ V, d_> 3 

(1.7) 4 7r D T/R 2 4 rc D T d = 2 .  
nR2" log (T/R 2) - (l/n) �9 (log T -  logR 2) ~ V, 

Neglecting the term (l/n).  log T we arrive at 

Z yl(n/V) 'Ra-2" C(1) 'DI - I '  d > 3  
(1.8) 

~[l(n/V) .  (2 rc/llog RI). D1-1, d = 2 .  

We can write (1.8) in the following form (using the right normalization of the 
capacity): 

(1.9) T~I(n /V) .  C(R).DI ~ (d>2) 

(according to [16], Chap. 3.5, at the top of p. 81, the capacity of a set BmlR 2, 
which is contained in an open unit disc, is given by (Robin constant of B)-  1 ; for 
a disc B of radius R the capacity can be computed as 2rc/llogRI.). 

Back to the case d = 3 :  Because of (1.8) and (1.9) the limit n R = c o n s t  is the 
limit of constant mean free time (the so called Boltzmann-Grad-limit) or 
equivalently the limit in which the number of balls in the (fixed) volume V times 
the capacity of a ball is constant. 

The organization of the paper is as follows: 
In Sect. 2 we formulate the problem and the result precisely, in Theorem 2.1 

for the case of unlabeled particles (disregarding their multiplicities) and in 
Theorem 2.2 for the general case of particles with multiplicities. To describe the 
result in the former case, write for Borel sets AmIR 3 and times t > 0  

(1.10) N(t; A)=number  of unlabeled particles in A at time t. 

Then if the initial distributions of the n particles (neN)  are such that N(0; A)/n 
converges in probability for n~o~  (nR=const)  for all Borel sets AmlR 3 (and if 
the correlation functions at time 0 satisfy a certain natural boundedness con- 
dition which we do not formulate here), the same holds for N(t; A)/n for all t => 0 
(this is another formulation of what is called propagation of chaos), and in fact 
N(t; A)/n--,~ dxp(t,  x), where p(t, x) is the solution of the kinetic equation 

A 

(1.11) ot  P(t, x )=D.  Ap(t, x) -47zRDn(p( t ,  x)) 2. 

In Sects. 3 and 4 the four main propositions 3.1-3.4 are stated and the proof of 
Theorem 2.1 is given by means of them. We give the proofs of Propositions 3.1- 
3.4 in Sects. 5-8. The basic idea of the proof of Theorems 2.1 and 2.2 is the same 
as used by O.E. Lanford III in his work on the derivation of the Boltzmann 
equation ([10-12], cf. also [21]), namely to develop the correlation functions in 
a perturbation series and to estimate the norm of every term of the series 
uniformly in R. Therefore, in order to prove the convergence of the rescaled 
correlation functions for R--r0 it is sufficient to show the convergence of every 
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term of the series. In substantiating this scheme in the present case of Brownian 
motions some stochastic flavour comes in related to the Wiener sausage as 
indicated above. In Sect. 9 we sketch some additional ingredients needed for the 
proof of Theorem 2.2. Auxiliary results of a technical character, which are 
needed in the proofs given in Sects. 5-8, are collected in the last section. 

Finally we mention briefly other work on related stochastic models: After 
the pioneering work of M. Kac [7] propagation of chaos was proved for 
different stochastic models, e.g. in [14], [1]. In these cases however the collision 
rule is purely stochastic, which is not so in Smoluchowski's model. Problems of 
coalescing and annihilating random walks on the lattice 2g d, where the passage 
to the Boltzmann-Grad-limit is not necessary, are treated in [2, 3]. 

Acknowledgement. We thank Hans Engler who helped us very much to understand the problems in 
partial differential equations raised by this work. 

2. Result 

We begin with some basic notation. 

(i) Initial data. 
Let two numbers ,t > 0, D > 0 be given, fixed for the rest of the paper. To 

every n ~ N there corresponds a positive number R > 0 by the relation 

(2.1) 4 ~ R D n = 2 .  

2 -1 means the mean free time, called by Smoluchowski "coagulation time" (cf. 
(1.9) with V=I) .  When we write n-~o~ in the sequel this implies always R ~ 0  
according to (2.1) and vice versa. Suppose further that we are given a symmetric 
probability density ~(,R)(xl,..., X,) (n ~N ,  x i ~IR 3) such that 

(2.2) ~ dx  1...dxnzr ..., xn)=0 for all i~=k (i, k<n) .  
]xi - x k l  <- R 

(m will be denoted by E (R). Expectation with respect to the initial distribution ~zn 

(ii) Time evolution. 
Starting with n particles, each of them moves according to a Brownian 

motion with diffusion constant D, independently of all other particles as long as 
it is at a distance > R  away from them. At time t = 0  each particle has 
multiplicity 1; at the first time ~ when the distance between a pair of particles, 
say particle i and particle k, is R, the following happens (notice that triple and 
higher collisions do not occur with probability 1): with probability 1/2 the 
particle k is annihilated, the multiplicity of the particle i is augmented by the 
multiplicity of particle k, and particle i continues to describe a Brownian motion 
with the same diffusion constant D as before. With probability 1/2 the analogous 
event happens, with the role of k and i interchanged. For simplicity we assume 
that D and R remain constant after collisions, an assumption which is not 
unreasonable according to [18, 5]. The notation (x 1 . . . .  ,x j ;  k 1, ..., kj) means 
that the particle at x i has multiplicity k i ~ N  (1 <i<j) .  



Smoluchowski's Theory of Coagulation in Colloids in the Boltzmann-Grad-Limit 231 

(iii) Correlation functions. 
Analogously to (1.10) where the multiplicities of the particles are disregarded 

we define for labeled particles 

(2.3) N(t; A, k)=number of particles with multiplicity k, 
which are at time t in the Borel set A (k e N). 

The fh correlation function p~)(t;x I . . . . .  x~; k 1, ...,kj) for labeled particles 
(Xx,...,xfi kl, ..., kj)E(1Ra)Jx N ~ can be defined by 

(2.4) • "" ~ S S d x l ' " d x j p } m ( t ; x l , , x j ; k l , ' " , k J )  
klel kj~lAx...• 

=E(m[( 2 N(t;A, kl))( ~ N(t;A, k2 ) - l ) ' " (  2 N(t;A, k j ) - j+l )]  
kl e l  k2e l  k j ~ l  

for all Borel sets A ~ IR 3 and all subsets I ~ N (1 =< j =< n). 

This is sufficient for the definition of p~R)(t; X, k) for almost all x~lR 3j and all 
k E N  j because of the symmetry of the moment measures under permutations of 
the coordinates (cf. [15], p. 299). The jth correlation function p~a)(t; x~, ..., x j) for 
unlabeled particles (Xx, ..., x j) is defined similarly by the special choice of I = N  
in (2.4). In particular p~m(t; x, k) and p~)(t; x) are related by 

(2.5) k). 
k~NJ 

Especially for t=O the correlation function p~)(O; x) can be expressed easily in 
terms of the initial density _(R) by the relation 

(2.6) p}R)(0; Xl, ..., Xj) 

=n(n-1)...(n-j+l)~dxj+a...dx,~c(,R)(xl, ...,x,) (1 =<j<n). 

Since n tends to infinity it is reasonable to rescale the correlation functions: 

~n-Jp~m(t; x), j <=n (xe IR 3j), (2.7) f) R,(t; X) ~ 
to j>n 

{; J p}R'(t,x,k), j<n  
( 2 . 8 )  f ) R ) ( t ;  x ,  k ) =  - " " - j>n (x elR3J)" 

(iv) Norms. 
The L~-norm of a function fj: (IR3)J~IR is given by 

(2.9) [[fill = inf{M: [fj(x)i<M for almost all xe lR 3j} ( jeN).  

Given a positive number z, define on the space 

(2.10) Y = {f - - ( f l ,  f2,..-): fj  is a measurable function 
on the space IR 3j into IR+} 
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the norm 

(2.11) 
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[]f[l~=sup z-j II fjll. 
j>_-i 

Now we are ready to formulate the theorems. We assume two conditions on 
the correlation functions to be fulfilled at time t = 0 :  

Assumptions 

(C1) there exists a number z > 0  such that sup Ilf(m(0)l[~< Go 
R 

(C2) there exists a function Po" IRa~IR+ such that 

J 
lim f)m(0; xl ,  ... , x j)= 1-I po(xi) 
R ~ 0  i =  1 

almost everywhere (j e N). 

Theorem 2.1. Under the conditions (C 1) and (C2) the following holds for all t >0:  
(a) N(t; A ) / n ~  dxp(t, x) in probability as R~O (AcIR a bounded Borel set), 

A 

where p(t, x) is the unique solution in L ~176 of the kinetic equation 

(2.12) ~ p ( t , x ) - - D . A p ( t , x ) - 2 ( p ( t , x ) )  2 with initial condition Po. 

(b) propagation of chaos, i.e. 

J 
lim f)R)(t; Xl, ... , Xj)= 1~ p(t, Xi) almost everywhere (j eN). 
R ~ O  i= 1 

Theorem 2.2. Under the conditions (C1) and (C2) the following holds for all t_>0: 
(a) N ( t ; A , k ) / n ~ d x p ( t ; x , k )  in probability as R~O (AclR 3 bounded Borel 

A 

set, keN), where the functions p(t;x,k), k e n  are the unique solution in L ~ of the 
system of kinetic equations 

(2.13) ~ p ( t ; x , k ) = D . A p ( t ; x , k )  

+2(  ~ p(t;x, i ) .p ( t ; x , j ) -2  ~ p(t;x, k).p(t;x, i)) 
i + j = k  i > 1  

with initial condition p(O;-,k)=po for k= 1 and p(O;',k)=O for k > l .  
(b) propagation of chaos, i.e. 

J 
lira f)R)(t; Xx, --., x j; k 1,---, k j) = I ] P  (t; xi, ki) 
R ~ 0  i =  1 

almost everywhere (kieN; jeN).  
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Remark 2.1. To realize condition (C2), let be given a bounded domain A c ] R  3 

with volume V which remains fixed. Distribute n particles in the domain 

A with Ixi-xkl>e for i+k in such a way that N(O;A)/n~SdxPo(X ) 
A 

stochastically as n ~ o e ( A c A  Borel set). If V=I ,  then the number of particles 
per volume is n/V= n, thus 2 -1 in (2.1) can really be interpreted as the mean free 
time (cf. (1.9)). However in order to get the spatially homogeneous case, i.e. to 
realize (C2) in such a way that the limit function Po is constant on the whole 
space IR 3, the volume V has to tend to infinity at the same time as n tends to 
infinity, in such a way that (n/V).R remains constant. Regrettably the proof of 
the Theorems does not work in this case because of technical reasons. In the 
proof of the norm estimate given in Proposition 3.3 we have to use the 
inequality R__<constn -1, which we cannot replace by R<const(n/V) -1 if V 
tends to infinity (see (7.31), where we use (7.30) and (7.21)). However the 
statement of the Theorems should remain true also in the spatially homo- 
geneous case; in this case the functions p(t) and p(t; k) are independent of x and 
one can solve explicitly - this is the result given originally by Smoluchowski - 
the Eqs. (2.12) and (2.13) by 

P0 (2p0 t) k- 1 
(2.14) p(t)=l+Rpot , p ( t ; k ) = P O ( l ~ k - + l  (k> 1). 

Remark 2.2. In this paper we restrict ourselves to the case of dimension d =  3. 
For  the norm estimate in Proposition 3.3 we need an estimate of (cf. Lemma 7.1, 
(7.11) and (10.4)) 

d 
- -  dxf(t ,x),  where f( t ,x)  solves the problem (2.15) dt ixl~> R 

0 
~ f ( t , x ) = D . A f ( t , x )  t>0 ,  [x I>R 

(2.16) f(t ,x)-+l Ixl+e 

f ( 0 , x ) = 0  [x l>R 

(2.16) has a simple explicit solution in the case d= 3 (cf. Lemma 10.1), whereas 
the formulas do not look so pleasant for d4:3. Therefore we do not know 
whether the proof of the theorems goes through in the case d4:3 without 
essential change. 

3. Notation and Formulation of the Main Propositions 

In this section we state the Propositions 3.1-3.4 on which the proof of Theo- 
rem 2.1 is based. To avoid cumbersome notation we consider only the case of 
unlabeled particles in Sects. 3-8 and sketch in Sect. 9 the ingredients needed in 
addition for the proof of Theorem 2.2 in the case of labeled particles. 
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Continuation of the list of basic notations, begun in the last section: 

(i) Sets. 

(3.1) Dj(R)--{x=(xl,.-- .., x~) ~ (IR3)~; Ixi--XkJ> R for i+k; i,k<j} (j~N), 

(3.2) (R) _ B~. - U { x = ( x l  . . . .  ,xj)e(iR3)~: Ixi--Xkl <=RI=IRaJ\D~ R) (je]N). 
i,k<=j 
i=k 

If the context is clear we omit sometimes the indices R and j. 

(ii) Brownian motion. 

(3.3) (coi(t))o<_t, i~N are the paths of a sequence of independent Brownian 
motions on IR~, each of them with diffusion constant D. 

coa ..... ~(t)=(coz(t),...,coj.(t)); if the context is clear we write sometimes only 
co(t) instead of col ..... j(t). The path co shifted by t > 0  is denoted by co+, i.e. cot+(s) 
=co(s+ t)(s >0). 

(3.4) (~(t))o<=t is the path of a Brownian motion on IR a with diffusion constant 
2D. For x=(xx,  ...,xj)~IR 3~ denote by 

(3.5) P~=P~ ....... J the probability measure corresponding to the Brownian mo- 
tion (co~ ..... j(t))0__< ~ starting at time t = 0  at (xD...,xj); define /~ similarly for 
Brownian motions with diffusion constant 2D. 

(3.6) p~(t;x,y)=(4~zDt)-3J/Zexp(-lx-yl2/4Dt) (]~N, xEIR3j, y~IR 3j) 

is the transition density of coa ..... i(t), whereas 

(3.7) y~q}m(t; x, y) (x,y~iR 3j) denotes the (appropriately defined) density of the 
measure K~Px(co 1 ..... j(t)sK, B} R) is not hit during [0,t]). We will make use of 
the following four properties of q~)" 

(3.8) q}a)(t; x, y)=q}R)(t; y, x), 

~(m is continuous in every point (t;x, y)~(O, 0o)• D~) • D~ g), (3.9) ~j 

(3.10) q~m(t; x,y)~O if y converges towards a point yo~B~ R), 

(3.11) q~)(t;x,y)--*O if [yl~oQ 

(for (3.8) and (3.9) see [16], Theorem 4.3; (3.10) follows because all points in B}. R~ 
are regular, see [16], Proposition 3.3). 

(iii) Hitting times. 
Denote by T~ the first hitting time of a set K. Special abbreviations: 

(3.12) T~R{.,j= Trip, (sometimes simply T 1 . . . . .  j or T), 

J 
(3.13) T(1R!.d/j+I =T~: for K =  Q) {Ixl-xj+al<e}, 

i = 1  

(3.14) T~R = Tfx~,a:lx[<R }. 
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(iv) Special measures�9 
Define for j e N ,  t > 0 ,  x~(lR3) j+l ,  h > 0 ,  R > 0  the following measures:  

(3.15) p}h;~)(t;x, dy) 

= (8 n RD) - 1  h - 1  px(T(a~!.,j+l ~(t, t + hi, 01 ..... j+l (t + h)ed y) 

(measure on (IR3) j+ 1), 

�9 (3.16) epz])(t;x, dy) 

=(8 n R D ) -  X h -  l px( T(R!.,j+ l ~(t, t + h ], COl ..... j(t + h )~d y) 

(measure on IR3J), 

(3.17) #~) l ( t ;x ,  dy), e}~l( t;x ,  dy  ) are the weak limits of #}h'R)(t;x, dy) respec- 
tively e~_])(t; x, dy) as h ~ 0  (the existence of these limits will be shown in Sect. 5). 

(v) Operators.  
Given k e N ,  0 < tl < t 2 < . . .  < t~ < t, define the opera tor  A(kR)(t; t l , . . .  , tk) on 

functions fj+keL~ j+k) by 

(3.18) (A(kR)(t;t 1 . . . .  ,tk)f~+k)(X) 

= S dxCk)fJ+k(XCk)) ~ e(R)j+kk(t i ' "x (k ) '  dx(k-1)~ 
IRa( j+k)  ~.3 (a + k -  1) 

AR) ( t 2 _ t l  .X(k-1),dx(k-2)) 
~ j + k - -  1 

~ 3 ( j + k  2) 

�9 .. ~ e~)l(tk--tk_l;X(1),dx(O))q~R)(t--tk;x(O),x). 
~x3 J 

Fur the rmore  define for j e N ,  t > 0  the operators  

(3.20) (S j ( t ) f ) ( x )=Sdy fAy)p j ( t ; y , x )  (fj~L~0R3J), x~IR3~), 

(3.21) (S~)( t) f ) (x)=Sdyf j(y)q~R)(t;x ,y)  (f~eL~ (1R3~), x ~IR3J). 

C j+ 1 : Lee( ]R3(J+ 1))--~LOO(]R3j) is defined by 

(3�9 (Cj+lf~+l)(x) 
J 

= ~ f j +  1 (Xa . . . . .  x j, xl) (fj+ 1 e L  ~ (IR 3(J+ 1)), X = (X 1 . . . . .  X j ) ~ ] R 3 J ) .  
i = 1  

(3.18)-(3.22) give rise to operators  A~m(t; tl, ..., tk), S(t), S(R)(t) and C acting on 
the space of sequences Y into Y by the formulas 

(3.23) (A~R)(t ; t l ,  . . .  , tk) f ) j =  A(kg)(t ; tl, ... , tk) f j +k 

(S(t) f) i=Sj(t) f~,  (S(R)(t)f)j=S~)(t)fj ,  

(Cf)~=C~+if~+ 1 ( f e  Y,,jelN). 

This ends the list of the nota t ion basic for the rest of the paper and we can 
now state Proposi t ions 3.1-3.4: 
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Proposition 3.1. Let t>0 ,  R>0 ,  xelR 3(j+~), j e N  be given. Then the weak limit 

(3.24) lira eT+] )(t; x, d y) = e}~ I (t; x, d y) 
h ~ 0  

exists. 

Proposition 3.2. The rescaled correlation functions f jcn)(t) (j6N, t > O) have a series 
expansion of the following form: 

(3.25) fj(R)(t; X) = (S~ R)(t)fj (R)(O))(x) 

+ Z (--2) k ~ ~ dtl  "'" dtk(A~R)(t;tl, " " , t k ) f ( R ) ( o ) ) j ( X )  �9 
k~-. 1 O < t l  < . . . < t k < t  

Proposition 3.3. Let z>O be given. There exists a universal constant c< ~ and a 
positive number to, which only depends on D, 2 and z, such that the following 
estimate holds uniformly in R: 

(3.26) 112k ~ ..~ dt 1 (R) . . . . .  d t k A k (t, t 1 .. . .  , tk)f(g)(O) II 2~ 
O < t l < . . . < t k < t  

_-<c ~ !  IIf(R)(0)ll~ ( k e N ; 0 < t < l ) .  

Proposition3.4. Assume condition (C1) and denote by f(~ the function in Y 
which is given by 

J 

f j (O ) (O ;x1  . . . .  , X j )  = [Ipo(x3 UeN, x,elR~). 
i=1  

Then for all k e n  and j e N  

(R) t" t (3.27) lira ~'"S  d t l ""d tk (Ak  ( ,  1,"',tk)f(R)(o))j(x) 
R ~ O  O < t l < . . , < t k < t  

= ~ ... ~ dt I ... dtk(S(t--tk)CS(tk--tk_l) C ... S( t2-  tl) CS(tl)f(~ 
O<tl <.. .  <tk <t 

almost everywhere. 

4. Proof of Theorem 2.1 by Means of Propositions 3.1-3.4 

Let the rescaled correlation functions f(g)(o) be given. Suppose that the con- 
ditions (C 1) and (C 2) are satisfied. Assuming furthermore that Propositions 3.1- 
3.4 hold, we prove Theorem 2.1 in this section. There are two reasons why it is 
possible to prove Theorem 2.1 for all times t > 0  in contrast to the Boltzmann 
equation (for the latter case, cf. [10-12]). Firstly the kind of convergence to be 
proved for t > 0 is the same as supposed in (C 2) at time t = 0, namely almost-sure 
convergence. Secondly the following Lemma 4.1 shows that also condition (C1) 
still holds for t > 0, and in fact with the same parameter z. These two facts enable 
us to extend Theorem 2.1 successively to all positive t, after having it proved for 
small times t. 
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Lemma 4.1. Let R > 0  be given. Then 

(4.1) Hp~R)(t)H ___% llp~R)(0)ll for all jeN,  t>=O. 

Proof Compare the system of coalescing particles with a corresponding system 
of particles which start with the same initial distribution but move according to 
independent Brownian motions without coalescing. Then we get 

(4.2) 

and therefore 

p~R)(t; X) __--< (S s(t) p~R)(0))(X) a.e. (t > 0) 

(4.3) qtpSR)(t)ll ~ IlSs(t)p~R)(0)lk ~ IIpSR)(0)ll (t ~0). 

The proof of Theorem 2.1 consists of three small steps. 

Step 1. It is sufficient to prove the statement (b) concerning the propagation of 
chaos: We repeat here the simple argument, given in [10], p. 108/109, because it 
shows the basic role of propagation of chaos. According to the definition of the 
rescaled correlation functions (cf. (2.5), (2.7)) we have for Borel sets A c P ,  3 

(4.4) E(a)[N(t; A)]=n j dxlfffc)(t;Xl) 
A 

and 

(4.5) E(R)[N(t; A)23 =E(R)[N(t; A). (N(t; A ) -  1)] +E(R)[N(t; A)] 

=n 2 ~ dxl dx2f(2R)(t;Xl,X2)+n ~ dxtf(1R)(t;xa) 
A x A  A 

and therefore 

(4.6) E (a) [N(t;  A)/n3 = ~ d x l f~R)(t; X l) 
A 

E(R)[(N(t; A)/n)2] = ~ dxl dx2f(2m(t;xl, x2)+ l/n S dxl f~R)(t;xl) �9 
A x A  A 

By (4.1) condition (C1) holds also for f(R)(t), so, if we assume the statement (b) 
about the convergence a.e. of the f)R)(t), we can apply Lebesgue's theorem and 
this leads to 

(4.7) lim E (a) [N(t; A)/n] = ~ d x p (t, x) 
n ~ o o  A 

limE(m[(N(t; A)/n)2]= ~ dxl dxzp(t, xl) p(t, Xz)=(~ dxp(t,x)) 2 
n ~ o o  A x A A 

which implies statement (a) of Theorem 2.1. By the way, a similar argument 
given in [10] shows, that conversely if we assume the convergence almost 
everywhere of the f)m(t) as R--+0 as well as sup Nf~R)(t)H~<oe (t>0), then (a) 

R 

implies (b). 
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Step 2. Proof of (b) for small t. 
Let t o be as in Proposition 3.3 and choose ?o <min{()-z) -1, to}. 
(i) As suggested by (3.27) and (3.25) we define for j e N  

(4.8) fj(~176 
+ Z (--)c) k ~ ' " ~  d t l  ""dtk(S( t - - tk)  C " "  S ( t z - t l )  

k>=l O<t l<. , .<tk<t  

CS(tl)f(~ 

That this series is well defined at least for t<(2z)  -a is shown by 

Lemma 4.2. There exists a universal constant c < ~ such that 

(4.9) ][ 2k ~ "'" S dt  1 ... d tkS(t-- tk)  C ... S ( t z - t l )  CS(tl)f(~ 
O<tl < . . .<tk<t  

<=c.(2z)ktkllfm)(O)]l z (t>=O). 

(rlf(~ oe by (C1) and (C2)). The proof is much simpler than that of the 
corresponding estimate (3.26) in Proposition 3.3, so we omit it. 

(ii) Since the estimate (3.26) is uniform in R we get from (3.27) and (4.8), (4.9) 

(4.10) limfJR)(t)=f)O)(t) a.e. (jeN, t <to) 
R ~ 0  

(iii) the series (4.8) factorizes, i.e. 

J 

(4.11) fJ~ xl . . . . .  xf l= F[f~~ ( t < ( 2 z ) - l ; x i e I R 3 , j e N ) .  
i = 1  

To prove this multiply the series for f(l~ by that for f~~ (for 
t < (2z) -1 there are no problems of convergence because of (4.9)) and get just the 
series for f2~~ x l, Xz). The computation is based on the following three facts: 
factorization of fJ~ according to (C2); 

sj(t) g, = | (& (t) gO 
i i = 1  

for functions gieL~176 the operator Cj+ 1 is by Definition (3.22) the sum of i 
operators acting on pairs of coordinates. 

(iv) f(l~ is the unique solution in L ~176 of the kinetic Eq. (2.12) on the interval 
[0,to]: (4.8) and (4.11) imply 

t 

(4.12) f }~176  S l t t - t , )  C2(f(l~174176 
0 
t 

= S 1 (t)f}~ - 2i'd t 1 S 1 (t - q)(f}~ 
0 

Considerations from the regularity theory of partial differential equations, which 
are more or less standard and therefore omitted here, show that (4.12) has a 
unique solution which is moreover in the class C1'2((0, ~ ) •  IR3). This implies 
that f~!~ agrees on the time interval [0,to] with the unique solution in L ~ of 
the kinetic Eq. (2.12) with initial condition Po. 
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Step 3. Extension to all t>0 .  
Define for tE[0,3o] 

(4.13) f~~176 

+ ~ ( - 2 )  k S"'~ dtl""dtk(S(t-- tk)  C"" 
k ~ l  0 < t l <  . . . < t k < t  

...S(t 2 -  (o) tl) CS( t l ) f  ( o))j" 

From Lemma 4.1 it follows sup [qf~R)(~o)/l~< 0% hence condition (C1) is satisfied 
R 

at time 30, and in fact with the same z as assumed at time t=0 .  Moreover, 
according to what is proved in s tep2 we have limf)R)(3o)=f}~ a.e. and 

R ~ 0  

f}~ factorizes. Therefore condition (C2) is also satisfied for f(~ and we can 
apply Theorem2.1 proved so far for tE[0,3o] (Notice that the number of 
particles at time 3 o is no longer fixed, i.e. the situation at time 30 is slightly 
different from that assumed at time 0, where we started with the initial 
distribution _(R) of n particles. However this circumstance does not cause any 7t~ n 

essential change in the proof.). Observing that 30 depends only on D, z, 2 it 
follows that the conclusion of Theorem 2.1 when applied to the initial cor- 
relation functions f(R)(30) holds in the same time interval [0,30]. 

This implies that the L~ 

. .  (f~~ 0_<t_<t 0 
(4.14) g(t)=~f(ao)(t_3o) ' 3o<t<23o  

solves (2.12) with initial condition Po in the time interval [0, 230]. But (2.12) has 
a unique L~-solution. Therefore Theorem 2.1 is proved for all t~[0, 23o-1. In this 
way we can extend the result to the whole positive time axis. Hence Theorem 2.1 
is proved. 

5. P r o o f  of  Proposit ion 3.1 : Existence of  the Measures  e (R) (t; x, d y) 

The aim of this section is to prove Proposition 3.1. Thereto it is sufficient to 
show that the weak limit of the measures t~}h'R)(t; X, dy) as defined in (3.15) exists 
as h tends to zero. The proof of the following lemma will be given in Sect. 10 
(here and in the following sections we state a series of computational or merely 
technical lemmas, the proofs of which are postponed until Sect. 10. They will be 
numbered by (10.i) with 1 < i < 8  according to the order in which their proofs 
appear in the last section). 

Lemmal0 .2 .  Let t>0 ,  x~IR 3j, R>0(j=>2) be given. Then the measures 
{#~h'R)(t; X, d y): 0 < h < 1} have a uniformly bounded total mass and are tight. 

Because of this lemma we have to prove that all convergent subsequences of 
u (h'R) have the same limit. The idea to attack this problem is the measures , j  

similar to that of I t6-McKean [6], Chap. 7.7, where the convergence of the 
charges dzh-lP~(TRNh, TR(CO])= oo) to the equilibrium charge is shown (with 
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zslR 3 and T R as defined in (3.14)). The Green function of the domain IR 3j is 
denoted by 

oo 

(5.1) G(a,b)= ~dspj(s;a,b). 
0 

For  the rest of this section, j and R are fixed, so they can be dropped (B 
=B~R) #(h)=#Jh, R)). Assume for the moment the following two lemmas being 
proved: 

Lemma 5.1. For all a, xEIR 3J the limit 

(5.2) lim ~ #(h)(t; X, d y) G (a, y) 
h ~ 0  

exists. 

Lemma 5.2. Let # be a measure on IR 3j and hk(k~N ) a sequence of  positive 
numbers such that hk ~O and t~(hk)--* #. Then 

(5.3) lim S#(hk)(t;x, dy)G(a,y)=~#(dy)a(a,y)  for all a(~OB. 
k ~ o o  

Then the proof of Proposition 3.1 is finished because a finite measure on IR 3j 
is uniquely determined by its Newtonian potential, more precisely: let # and v 
be finite measures on IR 3J such that 

(5.4) S #(d y) G(a, y) = S v (d y) G(a, y) 

almost everywhere, then # = v  (see [16], Chap. 3, Prop. 1.1). So it remains to 
prove Lemma 5.1 and 5.2. 

Proof of  Lemma5.1. In the course of the proof we write e.g. P~(co(t+h) 
= y; T~(t, t + hi) instead of the correct but cumbersome 

d u q}R)(t; X, U) {pj (h; u, y) - q}R)(h ; u, y)}. 

Using time reversal (cf. (3.8)) we get then 

(5.5) 8rcRD~#(h)(t;x, dy)G(a,y) 
oo 

= h - t  ~ d y Px(OO(t + h ) =y ;  T~(t, t + h ]) S dsP~(co(s)= y) 
0 

oo 

= h  -1 ~ dsf  d y Pa(Og(S)= fl) Py(og(t-}-h ) = x; T ~ h, T((D +) >t )  
o 
oo 

=h -1 ~dsP~ (B is hit during Is, s+h],  
0 

but not during (s + h, s + h + t] ; co(s + t + h) = x). 

To handle this expression more easily we define the "t/2-escape-times from B" in 
the following way (notice that the usual escape time from B corresponds to the 
case t/2 = oo): 

(5.6) T (1) = inf{s __> 0: TB(CO +) > t/2} 

T("+l)=inf{s>T{")+t/2:TB(co+)>t/2} (n> 1). 



(5.11) 

(5.12) g(b) = lim gk(b) 
k ~ o o  

Then we have to show 
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Observe that T{')+t/2 is a stopping time (but not T ("t itself). To write (5.5) in a 
more appropriate manner we use 

Lemma 10.4. Let a~lR 3j, xEIR 3j. 7hen 

co 

(5.7) J'dsP, (B is hit during [s,s+h], 
0 

but not during (s+h,s+h+t];co(s+t+h)=x) 
oo 

= ~ d s ~ ~P~ (T (")e Is, s + hi;co (T (n) + t/2)~d u)q~)(t/2;u, x)+ o (h). 
0 n>~l 

Pro@ In Sect. 10. 
Furthermore, given xelR 3J fixed, define the function F: [0, oo)-+[0, oo) by 

(5.8) F(s)= ~ SP~(s<T{")<o~;e)(TI~)+t/2)sdu)q}m(t/2;u,x). 
n>= l 

Then we get from (5.5), (5.7) and (5.8) 

oo 

(5.9)8nRDS#th}(t;x, dy)G(a,y)=h-l Sds(f(s)--f(s+h))+O(h) (a,x~IR3J). 
0 

Since the function F is decreasing and vanishes at infinity we get from (5.9) 

h 

(5.10) lim8~RD~p(h)(t;x, dy)G(a,y)-=limh-l~dsF(s)=F(O). 
h ~ 0  h ~ 0  0 

So Lemma 5.1 is proved. 

Proof of Lemma 5.2. Given h~-,0, /x(h~)--+#, define for belR 3j 

gk (b) = ~ #{h~)(t; X, d c) q (b, c), 

(the limit exists by virtue of Lemma 5.1). 

(5.13) g(a)=(#(dc)G(a,c) for all ar 

For the proof we use the following 

Lemma 10.5(a). The function g defined by (5.12) is continuous in every point 
b(~B. 

Proof. Postponed until Sect. 10. 
The function c~G(b, c) is not bounded, so we cannot pass immediately from 

(5.11) to (5.13). However for z >0  the smoothed function c-+Sdbp(z;a , b)G(b, c) 
is continuous and bounded. This suggests the following trick: let z >0  and a(E~B 
be given and consider 

(5.14) ~ d b p (z; a, b) g (b) = Sd b p (z; a, b) lira gk(b). 
k~oc~ 
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Proceeding formally - the justification is given in Lemma 10.5(b) - we get 

(5.15) ~dbp(r;a,b)g(b)= lim ~dbp(v;a,b)~p~h~)(t;x, dc)G(b,c) 
k ~ o o  

= lim ~/~Ch~)(t; X, d c)~d b p (-c; a, b) G(b, c) 
k ~ o o  

= ~#(d c)j'db p(z;a, b) G(b, c) 
=~dbp('c;a,b)~#(dc)G(b,c). 

Here we have used the above remark and the weak convergence #(h~)_+/~. By 
Lemma 10.2, # is a finite measure, hence the right hand side of (5.15) is finite. If 
z--+0 in (5.15), the left hand side converges to g(a) by the continuity o fg  at a(~OB 
(Lemma 10.5), and the right hand side converges to 5#(dc)G(a,c) because the 
function b--+~#(dc)G(b,c) is an excessive function (cf. [6], p. 244). So (5.13) is 
proved, and the proof of Proposition 3.1 is finished. 

6. Proof of Proposition 2 : Derivation of the Perturbation Series 

a) Heuristic Derivation of the BBGKY-Hierarchy 

We begin with a heuristic consideration. The change c~ p}R)(t, X) during ~ t is due 
to free Brownian flow on the one hand and to the collision of one of the 
particles at x, .... ,xj with an additional particle on the other hand: 

(6.1) 3 p~'(t; x)= D . A p~)(t; x). fi t + �89 6oo,,pSm(t; x). 

To find 6collp}g)(t;x) we write the diffusion equation ~p(t ,x)=DAp(t ,x)  in the 

form of a continuity equation 

0 
(6.2) ~ p (t, x) + div ( - D grad p (t, x)) = 0 

giving to the term - D  gradp(t, x) the meaning of the density of the particle flux, 
i.e. the flux of particles which streams through a surface element d o- during the 
time interval c~ t is given by 

(6.3) -Dfi.gradp(t,x)d~r.6t (~ is the normal vector at the point x~da). 

Apply this consideration to our system of j particles x 1 . . . .  ,xj. The surface at 
which a collision with an additional particle x~+ 1 can happen is 

J 
(6.4) S(xl . . . .  ,xj)=i~=l{Xj+le]R3: [xj+~ -xkl  =>R(1 <k<j), ]Xj+ 1 - - X i l  =R}. 

Observing that both colliding particles move according to a Brownian motion 
with a diffusion constant D, we have to replace D by 2D in the formula (6.3) and 
get 



Smoluchowski 's  Theory of Coagulat ion in Colloids in the Bol tzmann-Grad-Limit  243 

(6.5) ~ ) c o l l P ~ ) ( t ; x ) = - - 2 D  S a(dxj+l) f i 'gradj+l  Pa+,,(m'(t'x,, . . . .  ,xj, x j+ l ) . a t  
S(xl ..... x a) 

where a=surface  measure on S(x I . . . .  , x  j) 

fi = normal vector at S 

grads+ 1 =gradient  with respect to the variable x j+ 1. 

Inserting (6.5) into (6.1) we arrive at the so called BBGKY-hierarchy (this is the 
usual name for the corresponding hierarchy in the case of deterministic dy- 
namics given by Newton's equations, see for example [10]): 

8 
(6.6) ~p}R)(t;x) 

= D ' A p ~ ) ( t ; x )  - D  ~ a(dxj+l)f i 'gradj+lff~+)l(t;xl  . . . .  ,xj+a) 
S(xa ..... x j) 

(jeN). 

Having (6.6) we could pass to the corresponding integral equations for all j e N  
which would give us a series similar to that desired in Proposition 3.2. However 
there are analytical difficulties to derive (6.6) rigorously, in particular one has to 
be sure that the normal derivative of p}R+)l(t ) exists on the boundary 8D}~ 1. One 
can formulate this problem in terms of partial differential equations, but 8D}R+) I 
is not a smooth manifold and it does not seem to be easy to overcome the 
difficulties caused by the corners. 

So we prefer a purely probabilistic procedure, giving first a combinatorial 
derivation of a series for p}R)(t) involving first hitting times and then transform- 
ing this series into the desired one with the help of Proposition 3.1. 

b) Derivation of  the &Series 

Let R >0  be given, fixed in this section (and therefore omitted sometimes). We 
use the abbreviation 

(6.7) 8j+l(dt;x ,  dy  ) 

= P x ( T 1  ..... j >  Zl  ..... j / j+ 1; T1 ..... j / j+ t ~dt, co 1 ..... j(T 1 ..... JH+ 1 )~dy) 

(x~lR3(j+ 1); the 8j+ a(. ;x,  .) are therefore measures on [0, ~ ) x  IR3~). 

Proposition 6.1. p}R)(t) can be developed in a series of  the following form 

(6.8) p~)(t;x)=(s}R)(t)p}g)(o))(X) 

-~- E ( - 1 ) k 2 - k  I dx(k) P}R+)k(O;x(k)) ~ ~Oj+k(dtl;X(k), dX(k-1)) 
k> 1 N3(J +k) (O,t) 

j j e j + k _ l ( d t 2 - - t l ; x ( k - 1 ) , d x  (k-2))  
{tl,t) 

... j" ~Oj+l(dtk--tk_l;x(1),dx(~176 
(tk - 1,t) 
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Proof  In the following we write pj simply for p}.m, py(T 1 ..... j > t ;  0)1 ..... j ( t )=x)  for 
q}g)(t;y, x) etc. and we use the explicit definition (2.6) of pj(O). Furthermore, in 
order to avoid a formal contradiction, we think of a particle which is annihilated 
as being "coloured" and use this new terminology. A particle, after being 
coloured, is allowed to move on freely without interruption, but ceases to 
interact with other particles. It is disregarded from this time on. 

A subsystem of { 1,..., n} is regarded as if it were coloured if and only if one 
of its members is coloured. 

For  abbreviation we define the following: 

SK= the first time at which the system K is coloured (K ~ {1,..., n}), 
SKI 2 = the time at which K is coloured by the particle i (i(~K), 

Py = the probability measure induced by the process of coalescing (colouring) 
Brownian motions, starting at y~IR 3". 

P = ~  = ~ d y n . ( y ) ~ ;  
g =  {1, ...,j}, 
F =  ( T 1 ..... j>  t, o) 1 ..... j(t)= x}, 

(n )k=n(n -  1)... ( n - k +  1) for k<n.  

We work with the following definition of pj(t) which turns out to be equivalent 
to the definition (2.4) (with I = N) 

(6.9) pj(t; x )= (n)jlP(F; J is not coloured 

by any other particle i f  J during 1-0, t]) 

=(n)jP(F; S 1 ..... j >  t). 

The main idea of the proof is the decomposition (6.11) below, which is first 
applied to the last term of (6.9). 

Let for i = j  + 1 . . . .  , n 

(6.10) A i - , { F  ; t >= S 1 ..... j / i ,  S 1  . . . . .  j,i ~- S 1  . . . . .  j / i } .  

A i is the event that in the stream of {1, ..., n} the system J is coloured for the 
first time by the (still living) particle i. It therefore depends on the other particles 
outside J • i, whereas, for instance, the event {t > S~ ..... j/i} alone, by our conven- 
tion, does not depend on k r J w i. Then we have 

(6.11) P(F; S 1 ..... j > t ) = P ( F ) - P ( F ;  J is coloured by a particle i(~J) 

= P ( F ) - P  (Fc~I=~+ Ai ) 

= P ( F ) -  ~ P(FmAi)  
i = j + l  

= P(F) - (n - j )  P(F c~ A j+ 1) (symmetry of nn). 

In our original language (6.11) means roughly speaking that the probability of 
surviving of a subsystem J is equal to the probability of the free motion of J 
minus the probability that J is destroyed by a particle not in J. 
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Now, we apply the same argument  to the last term in (6.11) and then 
successively to all terms in which events of the form 

{S1 ..... j+k  = $1 ..... j+k  - 1/ j+k} 

are still present. We get for example 

(6.12) P ( F ; t > S  1 ..... j u+l ,S1  ..... j + l = S 1  ..... j/j+1) 

= P ( F ;  t > $1 ..... Ju+ 1 ) -  ( n - j -  1) P(F;  t > $1 ..... Ju+ 1 > 

S1 ..... j+ l / j+ 2, $1 ..... j+ 2 = $1 ..... j+ i / j+ 2) 

= i f ( F ;  t ~ S 1 ..... j / j+ l ) - ( n - j - 1 )  / ~ ( F  ; t >  

$1 ..... j / j+ 1 ~ $1 ..... j+ 1/j+ 2) 

+ (n-- j  - 1)(n - j -  2) P(F; t > S 1 ..... j / j+ 1 ~ $1 ..... j+ 1/j+ 2 ~  

S1 ..... j+ z/j+ 3, S1 ..... j + 3 = S 1  ..... j+ 2/j+ 3), 

etc. By inserting (6.11), (6.12) etc. into (6.10), we obtain 

(6.13) pj(t;  x) = (n)j.  P ( F ) -  (n)j+ 1" P ( F  ; t > $1 ..... Ju+ 1) 

AV (n) j+ 2 " P(F ; t >= S 1 ..... j / j+ 1 ~ S1 ..... j+ 1/j+ 2) 

In view of the fact that 

and 

(n)j P ( F )  = (n)j- ~ d y  ~z. (y) Py(T 1 ..... j > t; 0) 1 ..... j(t) = x) 

= (S~( t )  p j(0))(x) 

(n)j+ 1 ' 16(F; t__> S 1 ..... j/j+ 1) 

= 2 - 1  (n)j+ 1 �9 ~ dyzc,(y) P~,(F ; t > T a ..... ~/j+ l) 

= 2  -1 ~dypj+l (O;  y)Py(T 1 ..... j > t ;  co 1 ..... j ( t )=x ,  t=> T 1 ..... j/j+ 1) 

etc., the identity (6.13) is exactly the desired series (6.8). 

c) Passage f rom Proposition 6.1 to Proposition 3.2 

Observing the Definitions (3.16), (3.18) and (2.1) and the rescaling given by (2.7) 
it is, in view of Proposi t ion 6.1, sufficient for the proof  of Proposi t ion 3.2 to 
show 

Proposition 6.2. Let  j, k e N ,  t>O, U ~  3j be given. The measures ~R+) 1 are defined 
by (6.7). Then 
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^(R) t (6.13) ~dx(k)p}~k(O; x (k)) ~ ~ej+k(d ~ ;X (k), dx  (k-l~) 
(o , t )  

~ ~R+)k- , (dt2 -- tl ; X Ck-1), dx(k- 2)) 
(ti, t) 

... ~ ~ R ) l ( d t k - - t k _  1 ; X (*), dx(O))q)R)(t--tk; X (~ U) 
(iN - -  1, t) 

t t 

=(8 RD) idt Sdt .. dt SS 
0 tl tk- i 

f dx(k) o(R) [ 0 "  X (k)) e (R) *t " x (k), dx  (k-*)) �9 " "J I - ' j + k k  ~ j + k  ~, 1 , 

. e ( R )  . .  j +  l ( t k - - t k _ l  , X (1), dx(O))q}R)(t--tk; X (~ U). 

Proof  We proceed by induction, beginning with the integration with respect 
to the variable t k. To this purpose we need the following two lemmas: 

Lemma6.1. Let e>0,  ~>8, j e N .  We consider functions q0: [e, a] xlR3J~IR+ 
which have the following three properties 

(6.14) 

(6.15) 

(6.16) 

q) is uniformly continuous, 

qo(t,y)=0 if yEB~ R) and tE[e ,a] ,  

lira max (p(t,x)=0. 

Then for all s e [0, ~ -  8] 

(6.17) ~ ~ % + l ( d t - s ; x ,  dy)~o(t,y) 
(e+s,a) 

= 8 n R D  i d t S e j + l ( t - s ; x ,  dy)~~ (xelR3(J+l)) �9 

Proof. At the end of this section. 

Lemma 10.6. Let e>0, ~>8, j e N ,  given a function (p: [%a] xlR3J~]R+ which 
satisfies the properties (6.14)-(6.16) in Lemma 6.1.  Then the function 
(~: [e, ~ - 8 ]  x N3(J+I)~IR+, defined by 

(6.18) qS(t, x )=  i d s S e j + a ( s - t ;  x, dy)(p(s, y) 
t - t -g  

has again the properties (6.14)-(6.16). 

Proof. In Sect. 10. 

To prove Proposition 6.2 with the help of Lemma 6.1 and Lemma 10.6, we 
first change slightly the domain of integration in (6.13). We replace 
{ 0 < t l < . . . < t k < t  } by the domain 

(6.19) {(tl, ..., tk): tk_ 1 d-~<tk < t - -  G tk_2-[-g<tk_ 1 <t- -2e ,  

�9 , . , 8 < t l < t - k s }  ( e < t / ( k + l ) )  

and prove (6.13) with this new integration domain on both sides. Then letting 
e~0,  we are finished. 
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To prove (6.13) in this modified form, we begin with the last integral 

(6.20) ~ Sej+l(d tk- - tk_ l  ; X (1), dx(~ ;x  (~ u). 
( t k -  t + e , t - e )  

Setting 

(6.21) (p(z ,z)=q}n)( t -z;  z,u), e = t - e ,  z~[e,  ~], 

we see that (p satisfies the properties (6.14)-(6.16) if we notice that v__<e implies 
t -v_>e and if we use the properties (3.9)-(3.11) of ,,(R) So we can apply _ ~/j �9 

Lemma 6.1 to q0 and get for s =tk_ , (tk_ x < t - - 2 e = ~ - - e  according to (6.19)), that 
(6.20) is equal to 

t e 

( 6 . 2 2 )  ~ dtkjej+l( tk-- t~ 1 X ( 1 ) ,  (0)  (R) ; dx  )qj ( t - t  k ; x  C~ 
t k l q - g  

We continue inductively by setting 

(6.23) ~5(z,z)= i d s S e a + l ( s - r ; z ,  dY)cP(s,Y), "ce[e, c t -e] .  
"c-t- e 

Because of Lemma 10.6 we can again apply Lemma 6.1 to this function ~, and 
proceeding step by step in this manner we finally get the desired formula (6.13). 
So Proposition 6.2 is proved. 

We end this section with the 

Proof of  Lemma 6.1. To save notation, we give the proof of formula (6.17) for 
s = 0 only. 

Step 1. For fixed t E [e, c~] the following holds' 

(6.24) 8 rc RD ~ ej+ ~ (t; x, d y) (p(t, y) 

= l i m h  -1 ~ Px(co 1 ..... j(t + h) ~ d y; 
h ~ 0  

T 1 ..... j>  Ta ..... j/j+1, T~ ..... j/j+~ e(t, t+h])q)(t,y).  

To prove (6.24) it is sufficient to assume j = 2 and to show 

(6.25) lim h -a ~ P ~ ( c o ( t + h ) ~ d y ;  T~, 2 ~(t, t+h] )  q~(t, y)=0.  
h ~ 0  

Because of (6.14) (p is uniformly continuous, i.e. given t />0 there exists 3 > 0  
such that 

(6.26) 

Furthermore 

(6.27) 

]Yl -Y21 < R + 6  implies (p(t, Yl, Y2)=r/ 
for all t~[e, c~] (notice (6.15)). 

l imh -1 SPxlx2(co(t+h)~dy; Te( t ,  t ~-h])(p(t, y) 
h ~ O  

= l i m h  -1 ~ Pxlx2(co(t+h)edy; r e ( t ,  t+h])~o(t, y) 
h~O [yl y z l<R+3  
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(a detailed proof can be given along the lines of (10.16) (see the proof of Lemma 
10.2)). 

By (6.14) and (6.17), cp is bounded, and therefore we get from (6.26) and (6.27) 

(6.28) l i m h - l  ~ P ~ , ~ ( 0 ) ( t + h ) ~ d y ;  T l , z ~ ( t , t + h ] ) ~ o ( t , y  ) 
h ~ O  

__<r/. lim h - 1 P x ~ ( T 1 , 2 ~ ( t ,  t + h ] ) .  IIq~ll _-< const �9 t/; 
h ~ 0  - 

in the last inequality we have used the explicit computation done in Lem- 
ma 10.1. 

Step  2. 
fixed. Then 

Passage in (6.24) from 0)(t+h) to 0)(T  1 . . . . .  j / j + l ) :  Again let t ~ E e , ~ ]  be 

( 6 . 2 9 )  h - 1  ~ P x  . . . . . . .  j + l ( ~  . . . . .  j ( t  + h ) e d y ;  

7"1 ..... j >  T1 ..... j/j+ l ~(t ,  t + h]) ~o(t, y) 

= h - l ~  ~ Px(T1 ..... j > T 1  ..... j / j + l e d v j  
( t , t+h] 

o)a ..... j ( T  1 ..... j/j+ a )6du)"  Sdyp~( t  + h -  z; u, y) q)(t, y). 

By virtue of the assumptions (6.14)-(6.17) there exists to any given q > 0  a 3 > 0  
such that for all h < 6 ,  all z e ( t ,  t + h ] ,  all u~]R 3J 

(6.30) ]~dyq~(t, y )p j ( t  + h - z ;  y, u ) -q~( t ,  u)l < e .  

By (6.24), (6.29), (6.30) we obtain 

(6.31) 8 r c R D ~ e j + l ( t ;  x,  dy)~o( t , y )  

= l i m h  -I~Px(T1 ..... j >  T1 ..... j / j+1; T1 ..... j/j+1 e( t ,  t + h ] ,  
h ~ O  

0)1 ..... j(T1 ..... j/j+ 1) e dy)  (p(t, y). 

S tep  3. Passage from ~ d t e ( t )  to ~ ( d t ) .  
Due to (6.16) and its uniform continuity, ~o can be approximated in the sup- 

norm by finite sums of the form 

(6.32) ~ cql li,(t) 1K~(u) (I i c [e, ~], K l ~ IR 3i compact rectangles). 
i, l 

In view of (6.31) and (6.32) it is therefore sufficient to show 

(6.33) ~ d t l i m h - l ~ P x ( T 1  ..... j > T  1 ..... j / j + l e ( t , t + h ] ; 0 ) l  ..... j ( T  1 ..... j / j + I ) e K )  
I h ~ O  

=~ P~(T1 ..... j >  r l  . . . . .  j/j+ 1 ~ d t ;  0)1 ..... j (T1  ..... j / j + l )  ~ K )  
I 

for rectangles I c [ e , e ]  and K c l R  3j. 

(6.33) follows from the fact that 

t--, P~(T1 ..... j>T1 ..... j/j+ a < t; 0)1 ..... j(T1 ..... j/j+ l ) e  K)  

is the distribution function of a measure which is absolutely continuous with 
respect to Lebesgue measure. The measure I~P~(T 1 ..... j>7"1 ..... j / j + t e l )  is ab- 
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solutely continuous because it is majorized by 

J 

i = 1  
and each measure 

I--+Px,x,+l(Ti, j+~ ~I) 

is absolutely continuous with a density given by Lemma 10.1. 
Hence Lemma 6.1 is proved. 

7. Proof of Proposition 3.3: Estimate of the Norm, Uniformly in R 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

Then 

(7.6) 

In this section Proposition 3.3 is proved. The operator A(kR)(t; t~ . . . .  , tk) as 
defined by (3.18) is essentially a product of k operators of the form e}R+)~(tk_~+~ 
--tk_Z; X, dy) (1<iNk). In Lemma 7.1 we give the basic norm estimate for one 
such operator, and in Lemma 7.2 we iterate this estimate. Then we are ready to 
prove (3.26) by integrating over the set {0<t  1 < ... < t k < t  }. During this section 
we use the notation 

(7.11 h ( s ) = l / 2 ] / 2 ~ s  (s>0). 

Lemma 7.1. Given j E N  let F: IR3J~IR+ be a function which satisfies the follow- 
ing four conditions: 

F is uniformly continuous, 

F(y)=0  for y~B}  R) (we will also write B = B ~  ) for simplicity), 

IIFl[ < o0, 

F ~ LI (IR 3 J, d y), where d y denotes Lebesgue measure on IR 3 j. 

~dxS,(R) (t; x, dy)F(y)<=j(1 + R .  h( t ) )SdyF(y)  (t >0). ~j+ 1 

Proof�9 Since F has the properties (7.2)-(7.4), the arguments given in the proof of 
step t in Lemma 6.1 ((6.24)-(6.28)) are applicable to F leading to 

(7.7) ~ej+l(t; x, dy )Fqy)=(8~RD)  -1 lira h -1 ~Px(a~(t+h)~dy; 
h~O 

T1 ..... j > r l  .... .  j/j  + 1 ~ ( t ,  t + h i )  F(y)  

hence we can estimate (notation ~ means that the i th coordinate is missing) 

J 
(7 .8 )  ~ej+l(t; x, dy)F(y)<=(8~RD) -1 ~ lim ~dy~...c~y~ 

i=  1 h~O 

�9 . . dy jp j -a ( t+h;  x l  . . . .  , xi . . . .  , x j; Yl ...Yl...Y~) 

�9 h-1 ~dyi~dzPy,,~(o~i,j+a(t+h)=(xl, xj+l); 

Ti, j+ 1 =<h, Y / , j +  I ( ( D ~ - ) >  t ) - F(y) 

(we have used time reversal, cf. Lemma 10.1 (10.4)). 
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Integrate both sides of (7.8) with respect to dx and interchange ~ dx with lim 
h ~ 0  

on the right hand side (we indicate at the end of the proof why this interchange 
is allowed) and get 

J 
(7.9) ~dx~ej+l(t;x, dy)F(y)<(8zcRD) -1 ~ l imh- l~dy l  ...~fy~...dy; 

i = 1  h ~ 0  

�9 ~dyi[dzPy~,~(Ti,j+ 1 <=h, Ti,j+l(CO~)>t).F(y ). 

The main effect of the integration over dx is that (recall the conventions (3.5), 
(3.4) and (3.14)) 

(7.10) h-1 S dzPy,,z(Ti,j+ l ~ h, T / , j +  1 ( 6 0 : )  > t )  

=h  -1 ~ dz~,_~(TR <h, TR(CS+)>t) 
1R 3 

=h -I  l dz~(TR <h, TR(CS+) > t) 
N3 

is independent of y~. Moreover letting h ~ 0  we can compute the limit of (7.10) 
explicitly with the help of Lemma 10.1" 

(7.11) limh -1 ~dz~(Te<h,  Tg(CS~)>t)=87rRD (1-~ R ) .  
h ~ O  IR 3 

So we get from (7.9), (7.10) and (7.11) 

(7.12) ~dx~ej+ 1 (t; x, dy) F(y) <=j. (1 + R/]/2 ~zD t)~dyF(y). 

Therefore Lemma 7.1 is proved. It only remains to say a few words about the 
above interchange of Sdx and lim. It is justified by Lebesgue's theorem, if we 
can show h~O 

(7.13) sup h-lSdyl~dzP~., ,z(o(t+h)=(xl,  xj+O;T<__h,T(co~)>t) 
0 < h < l  

�9 ~d Y2 ... d yjp~_ 1 (~ -~- h; x 2 , . . .  , x j;  Y 2 , . . . ,  Y j) F(Y) ~L1 ( 1R3(i+ 1), d x 1 ... d x j+ 1). 

(7.13) can be proved by the same arguments as given in the course of the proof 
of Lemma 10.6 (10.58), which we therefore omit here. 

Lemma 7.2. Let j, k s N  and f~+k~L~(1Ra(j+k)). Then for all R > 0  and all times 
tl, ...,tk, t such that 0 < t  1 < ... <tk <t the following estimate holds: 

(7.14) []A~R)(t;t 1 .. . .  ,tk)f~+gll 
k - - 1  

<j( j  + 1)... (j + k -  1)(1 + R.  h(tl) ) ~ (1 + R- h (ti+ i - ti)) [1 f~+k II. 
i = 1  

Proof. For fixed x~lR 3(J+k) we can write with a certain function F (k-~) 

(7.15) (A~m(t;t 1 . . . .  , t k ) f ~ + k ) ( X  ) 

= ~ dx(k)fj+k(X(k)) ~ e}u+)k(tl;x'k),dx(k-1))v(k-1)(X(k-*)) 
~p~3 ( j  + k) ~3(j+k 1) 

=< [[fj+k[] ~ d x(k ) ~ e(~+)k ( t x ; x(g ), d x(g -1)) F(k -1) ( X(k -1)) �9 
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By Lemma 10.7, F (k-~) satisfies the conditions (7.2)-(7.5), so we 
Lemma 7.1 and get 

(7.16) (A(km (t; t l  . . . .  , t k ) f j + k ) ( X  ) 

_-<(j+k- 1)(1 + R .  h(tx) ) ~ dx(k-1)F(k-1)(x(k-1)). 
~ 3 ( j + k - -  1) 

Since F (k-~) can again be expressed in the form 

(7.17) F ( k - 1 ) { Y ( k - 1 ) ] - -  fo  (R) it  - - t l  ;X(k-1),dx(k-2))F(k-2)(x(k-2)) 
\~  ] - -  J ~ j + k _  l L~2 

can apply 

we can apply Lemma 7.1 successively and after ( k - l )  steps the last factor is 
given by 

(7.18) ~ dx(1)~ e}R+)l(tk--tk_l;X(1),dx(O))q~R)(t--tk;X(O),x ) 
]~x3 ( j  + 1) ]R3J 

<j(1 + R  co) (R) x) "h(tk--tk_l))~dx qj ( t--tk;X (~ 

=<j(1 + R.  h(t k -  t k_l)) 

(we have applied Lemma7.1 
possible by (3.9)-(3.11)). 

Altogether we have shown 

to the function x(O)--+q}R)(t--tk;X(~ This is 

(7.19) A(g)(t; t , ~ "",tk)fj+k(X) 
k - 1  

< IIf~+kl[(J + k -  1). (j + k - 2 ) . . . j - ( 1  + R .  h(t~)) I ]  (1 + R .  h(ti+ 1 - t i )  ) 
i = l  

for all x~lR 3(~+k). Therefore Lemma 7.2 is proved. 

Proof of  Proposition 3.3. By the definition (2.11) of the norm 11 ]]z~ we have 

(7.20) IIAL k ~...~" dta,.,dtkA(kR)(t;ta . . . . .  tk)f(m(O)ll2= 
O<tl<,. ,<tk<t 

= sup {(2 z) -Jl[ 2 k ~ ... ~ dr1 ... dtkA(kR)(t;ta . . . . .  tk)f)+R)k(0) [1 }. 
j>- i O<tl<.. .<tk<t 

In the case k > n  we have f)R)k(0)=0 for a l l j e N  (cf. the convention (2.7)), we can 
therefore assume without loss of generality 

(7.21) k<n .  

Because of (7.14) in Lemma 7.2 we can further estimate (7.20) by 

(7.22) sup ((2z) -J 2kj(j + 1)... ( j + k -  1)II f)+R~(0)]l 
j = > l  

k - - 1  

~...j" dt  1 . . . d t k ( l + R . h ( t O ) I ] ( l + R . h ( t i + l - - t i ) ) } .  
O<tl<.. .<tk<t i = 1  
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Given  k e N ,  consider the function j ~ F g ( j ) = 2 - J j ( j + l ) . . . ( j + k - 1 ) .  F k has its 
m a x i m u m  at j = k + 1, and Stirling's fo rmula  shows 

2 - ; j ( j  + 1).. .  ( j + k -  1) 
(7.23) sup sup kk 

k>__l j_->l 

= < sup k - k sup F k (j) = sup k - k 2 - k - 1 (2 k) ! = c < oo. 
k > l  j > l  k > l  k !  

Inser t ing (7.23) in (7.22) and using fu r the rmore  NfJR)k(0)]l <=Z j+k llf(R)(O)N~ we can 
es t imate  (7.20) by 

(7.24) c.  (2z) k Nf(u)(o)N~_ 
k--:L 

"kk Y '"S  dtl  " " d t k ( l + R ' h ( t O ) ~ ( l + n ' h ( t i + l - t i ) )  �9 
O < t l <  ,.. <tk<t i= 1 

By (7.21) and (7.24) it is sufficient for the p roof  of  (3.26) to show: there exists a 
constant  c a < 0% which depends only on D, ), and z, such that  

k--1 

(7.25) kk S ' "S  dtl  " " d t k ( l + R ' h ( t l ) ) " [ I ( l + R ' h ( t i + l - t i ) )  
OKtl <. , ,KtkKt  i = 1  

<=(c3t) k12 (R>O, kNn, O<=t<l). 

To prove  (7.25) mul t ip ly  out the p roduc t  

k--1 

(1 + R. h(tl) ) �9 I]  (1 + R. h(ti+ , - ti) ). 
i = 1  

To a given i (O<=i<k)there exist exactly (ki) terms containing i t imes the 

factor  1, and ( k - i ) t i m e s  a factor  of  the form R.h(.) .  Each of these (ki) terms 
can be es t imated by 

(7.26) {R.ydsh(s))  . !d t  1 1.~dt21 ... j dt, 1 
\ 0 1 tl t i-  1 

[for the p roof  of  (7.26) use es t imates  of  the type 

t t t 1 

( 7 . 2 7 )  ~ d tp +1 h (tp + 1  - -  tp) ~ d t p  + 2 1 ~ S d s h (s) S d tp + 21 
tp tp + 1 0 tp 

(0 < tp < t)]. 
The compu ta t i on  of (7.26) gives 

(7.28) R k-i ( 2]/ t  ]k-i t i 
k ~ ]  f l  (notice t =<I/t=< 1) 

1 = m a x { 1 , ~ } )  < = R k - i ( ~ )  k-i. t k/2 .~. (setting c 1 

<= ck 1 tkl2 Rk_i l .  
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By (7.26) and (7.28) we can therefore estimate the left hand side of (7.25) by 

(7.29) k k ~  (k i )c] tk /2Rk- i l .  
i = 0  

Because of (2.1) there exists a constant c 2 depending only on D and 2 such that 

(7.30) R=C2 <_ c2 for k<_n. 
n - - ] s  

Taking into account the assumption (7.21) we can insert (7.30) into (7.29) and get 
the upper bound 

<(clc2)kt k/2 ~, (k] ki- (use ki/i!<e ~ for all ieN) 
i=o \i l i! = 

=_ (C 1 C 2 e) k t k l  2 . 2 k. 

Setting c 3 =(2eclc2) 2 we get the inequality (7.25), and therefore the proof of 
Proposition 3.3 is finished. 

8. Proof of Proposition 3.4 : Almost Sure Convergence 

The core of the proof of the almost sure convergence (3.27) is the following 

Proposition 8.1. Let FCm: IR3-,N§ (R=~/4~Dn; n = l , 2  .... ) be a sequence of 
functions with the following properties 

(8.1) F ~I~) is continuous for all R, 

(8.2) limF~R)(x)= .'F(x) exists almost everywhere, 
R ~ 0  

(8.3) there exists a function ff ELI(IR 3) such that F(R)(x)< ff(x) a.e. for all R 

(8.4) sup [I F(m [I < oo. 
R 

Then it follows for all t > 0: 

(8.5) lim S e~2 m (t; x, d y) F (m (y) = S d y P2 (t; x, (y, y)) F (y) 
R ~ O  1R 3 ~3 

for all x=(x l ,  Xz)~]R 3 x ] ~  3 with x 1 :~ x 2. 

To show Proposition 3.4 we proceed in the following way: in Sect. a) we 
prove Proposition 8.1, in Sect. b) we explain how the general problem (3.27) is 
reduced to Proposition8.1 and in the final Sect. c) we give some error 
estimates needed for the reduction. 
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a) Proof of Proposition 8.1 

(i) Setup of the proof: 
The idea of the proof is to split up 

(8.6) e(2e)(t;x, dy)=~q~2R)(t--z;x, du)e(2R}(z;u, dy), z small 

and to approximate the right hand side of (8.6) by q(2m(t-z;x, dy). We make 
precise this consideration by firstly letting R ~ 0  and after that letting v~0:  For 
all z~(O, t) we can write (using occasionally the notation e(2~'R)(t;x, y)dy instead 
of e(2 h'R)(t; x, d y)): 

(8.7) ~e(2R)(t; X, d y) FCm(y) = lim ~e(2 h' R)(t; X, d y) F(R)(y) 
h ~ O  

=lim~duq(aR)(t - z;x, U'f-(h'g)D';u, 2 ~,~ 

h ~ O  

=lim~dyF(R)(y) ~ due~h'R)(v;u,y)q(zR)(t--'C;X,U) 
h ~ O  u l - - y  <11 

A u 2 - - y  <~ 

+limldyF(R)(Y) ~ due~2n'g)(z;u,y)q~2m(t--z;x,u), 
h ~ O '  -y >=~ 

where t/is a positive number. 
For the proof of (8.5) it is sufficient to show the following three estimates: 
For all t/> 0 

(8.8) lira lira lim fdyF(g)(y) ~ due~2h'R)(z;u,y)q~2R)(t--z;x,u)=O. 
z ~ 0  R ~ 0  h ~ 0  u l - y  >t/ 

,4 u 2 - - y  >--r I 

To every e > 0 there exists t /> 0 such that 

(8.9) lim lim lim(dyFCR}(y) ~ dud2h'R)(z;u,y)q~m(t--z;X,U) 
z ~ O  R ~ O  h ~ O  ] u l - y  <r/ 

A U2--y ~ 

< ~d y F(y) P2(t; x,(y, Y)) + 8. 
And finally: to every 8 > 0 there exists ~ > 0 such that 

(8.10) lim lira lim~dyF(R)(y) ~ due(h'm(Z'u,y)q(2R)(t--z;X,U)2 t , 
z ~ 0  R ~ 0  h ~ 0  ua- -y  ~1  

A u 2 - - y  <mtl 

>=~dyF(y) p2(t;x,(y,Y))-8. 
(ii) Proof of (8.8). 
Since q(2R)(t--z;X,U) is hounded uniformly in x, u, R and ~(0, t /2)  we have to 

show 

(8.11) lim lira lim Sdxff(y) ~ due(~h'm(z;u,y)=O 
z ~ 0  R ~ 0  h ~ 0  u l - -y  =>q 

V u 2 - - y  ~ 1  

(F as given by (8.3)). 
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However  by means of spatial homogeni ty  the term 

(8.12) ~ dUe(zh'R)(z;u,y) 
us y >r/ 

v u 2 - - y  >rl 

= ~ due~'R)(z;(u~--Y, u2--Y),O) = ~ dve(ah'm(z;v,O) 
lUl y gY] 1/31 ~/ /  

v l u 2 - y  >~/ v v2 >rl 

is independent  of y. Hence  (8.11) follows from L emma  10.8. 
(iii) P roof  of (8.9). 
Let  e > 0 be given. The function (s, v)~p2(s; O, v) being uniformly continuous,  

say in It/2, oo)x ]R 6, there exist z o > 0  and q > 0  such that  

(8.13) max max{pz(t-z;  x,u): [u 1 -Y]  <t/, ]u2-y [ <~} 
Z--<17 o 

<=pz(t;x,(y,y))+e for all y. 

With this t / and  r o we get for all z < z 0 

(8.14) lim~dyF(m(y) ~ due~'m(z;u (R) ,Y)qZ (t--z;X,U) 
h ~ O  u t - y  <~l 

A u z - y  <_~l 

< lira t d y F (R) (y)(p2 (t; x, (y, y)) + e)- ~ d u e~' m (z; u, 0) 
h ~ 0 '  

< { ~ d y F (m (y) p 2 (t; x, (y, y)) + e. ~ d y ff (y)}. (1 + R/2 I~D z) 

by L e m m a  10.1. 
Lett ing first R ~ 0  and then z-+0 we get (8.9). 

(iv) P roof  of (8.10). 
Let zE(0, t) be given. By L e m m a  10.3 

sup sup sop sup e(h'R){"C" 2 t ,u,y)=c<oo. 
R O < h < l  u y 

So we can estimate 

(8.15) lim lim ~dyF(R)(y)~due(2h'R)(z;u,y){p2(t--z;X,U)--q(2R)(t--z;X,U)} 
R ~ O  h ~ O  

<c. ~dy F(y)lim Px~,x2(T1,2 Nt--z) 
R ~ O  

=c. ~d y F(y) lim Px~-x2(TR < t-- z) =0 
R ~ O  

because, by assumption, x 1 + x  2 and l im~(TR<t--z)=O for any a + 0 ,  aelR 3. 
R ~ 0  

As a result of (8.15) we can derive (8.10) if we can show 

(8.16) lira lim lim~dyF~R)(y) ~ due(2h'R)(z;u,y)p2(t--z;X,U) 
~ 0  R ~ 0  h ~ 0  u l - - y  __<r/ 

A u 2 - - y  ~ t  1 

>__ ~d y F(y) p2(t; ~, (y, y ) ) -  8. 
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Analogously to (8.14) one finds 7 > 0  and % > 0  such that for all z__<% 

(8.17) lim lim lim~dyF~R)(y) ~ due~"g)(z;u,y)p2(t--z;x,u) 
~ 0  R~O h~O' 

- y  <__q 

>- lira lira lira Id y F (R) ( y )  ( p 2  ( t  - -  z ; x ,  ( y ,  y ) )  - -  E) 
z ~ 0  R ~ 0  h ~ 0 '  

d u e(2h'R)(z ; u, O) 

^ u2 <-n 

=~dyF(y)(PE(t;x,(y,y))-e).lim lira lim ~ due(ah'R)(z;u,O). 
io l .o  

Again by Lemma 10.8 the second factor is equal to 1 and hence (8.10) follows, 
and the proof of Proposition 8.1 is complete. 

b) Reduction of Proposition 3.4 to Proposition 8.1 

Definition. Let j~N.  Denote by ~j  the set of sequences {F) m} (R=2/47zDn; n 
=1,2 , . . . )  of functions F) R)" IR3~IR+ satisfying the following five properties 
(8.18)-(8.22): 

(8.18) 

(8.19) 

(8.20) 

every F) R) is uniformly continuous 

Fj!R)(x)=O f o r  x ~ D j "  _,(R) (for all R) 

lim F)m(x)=F~(x) exists a.e. 
R ~ 0  

(8.21) 

(8.22) 

there exists a function ffeLl(IR 3j) such that FJR)<ff for all R 

sup IIFj(R)]I < (30. 
R 

We now reduce Proposition 3.4 to Proposition 8.1 in three steps. 

Step 1. Reduction to pairs of particles. 
We would like to use Proposition 8.1 in a more general form as follows: if 

{F) R)} E~j ( jeN) then 

(8.23) lim S e}R+)l(t;x, dy)F)e)(Y) 
R ~ 0  ~3j  

J 
= 2 S dypj+l(t;x,(y,  yi))vj(y) 

i = i  1R 3J 
for X=(XI , . . . ,X j+I )~  3(j+l) 

such that xi4=x k for i4=k. 

To prove (8.23) we note that the same arguments as given in (6.24)-(6.28) are 
applicable to F) R) (observe (8.18), (8.19), (8.22)), and we get 
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(8.24) jCe(R).j+, ( t ;x ,  d y) F) R) (y) 

= (8 ~RD)- I  lim h -1 ~d y Fff )(y) P~ (co t ..... j(t + h) = y, 
h~O 

T t ..... j >  T t ..... j / i+lE(t,  t + hi). 

We would like to replace the right hand side of (8.24) by the following upper 
bound 

J 
(8.25) (8~RD) - t  ~ l i m h - ~ d y F ) m ( y ) P ~ ( c o l  ..... j ( t + h ) = y ; T ~ , j + t e ( t , t + h ] )  

i = t  h~0 

J 
=(8~RD) - t  2 l i m h - t ~ d y F ) R ) ( Y )  

i= 1 h~0 

�9 S d z P y ,  z ( c o ( t + h ) - - x ;  T/,J+ 1 ~ h ,  T/, j+ 1 ( co ; )  > t) 
IR 3 

(use time reversal in the last equality). 

The error caused by the replacement of (8.24) by (8.25) actually tends to zero in 
the limit R ~ 0  in view of the following 

Proposition 8.2. Le t  x = (x t , . . . , x j + I )G]R.  3 (j +1)  s u c h  that xi # x k for  i # k. Then 

(8.26) l im(8nRD) -1 l = ~ h - l ~ d y F ) R ) ( y )  
R~0 h~O 

�9 ~dzPy~(co( t+h)=x;  Ti,s+ t =<h, Ti,j+ t (co~-)> t, Tk3(co+)<=t)=O 

for  all i < j and all k, l such that 1 < k < l < j + 1. 

Fur thermore  

(8.27) lim(8rcRD) l l=~h- t~dyFff ) (y)  
R~0  h~O 

�9 ~dzPy:(co( t+h)=x;Ti , j+t<-_h,T~, j+t(co])>t ,  Tk.j+t<=h) = 0  

for  all i <-_ j and all k # i such that k # j + 1. 

Proof. Postponed until Sect. c). 
To compute (8.25) in the limit R-*0 we can apply Lebesgue's theorem using 

(8.21) and Lemma 10.3. By Proposition 8.1 we get just (8.23). 

Step 2. Convergence of Ap)(t; t t . . . .  , tk) gR+)k(O). 
(R) 0 Let 0 < t  t < ... < t k < t  be fixed and consider A(R)(t " k  ~ , tl,  . . . ,  tk)fj+k ( ) as defined 

by (3.18). 
Begin with the last integration with respect to d x  (~ and apply (8.23) with 

F)R)(y )=q~m( t - - t k ;y ,x )  (x~lR 32 fixed). 

Proceed inductively by considering in the next step 

(8.28) F)+m~ (x) = ~ e}~ t (t k - t k - x ; x, d y) F) R) (y). 



258 R. Lang and Nguyen Xuan Xanh 

Lemma 10.7. {F)R)I} , defined by (8.28), belongs to the class q~j+~, if {FJR)}s~;. 

Proof. (8.20) is just given by (8.23) in step 1. The remaining properties (8.18), 
(8.19), (8.21) and (8.22) are verified in Sect. 10. 

Back to the proof of the convergence of A(kR)(t;t~, t ~'(R)(o~' Applying �9 . . ,  k J d j + k  ~, ]" 
Lemma 10.7 step by step, we end with 

(8.29) fd x (k) ~c(R) 10. XCg),~ F(RI E~(k)~ (R) , , ,  

Because of (8.21) and condition (C1) Lebesgue's theorem is applicable, and we 
obtain by (8.20) and condition (C2) 

(8.30) lira Sd x ( k ) f j ( R ) ( o ;  X (k)] F (R) { x  (k)h - -  fd x (k) 'c(~ lO" x (kh F ( X  (k)'l 
! j + k ~  ] - - J  d j + k \  ~ ] j + k ~  ]" 

R ~ O  

Thus we have proved the existence of the limit 

lim(A~m(t; tD.. . ,  tk)f)+R~(0))(X) for all xMR 3~. 
R ~ 0  

Proceeding inductively, this time beginning with (8.29), we can apply the explicit 
formula for F;+ k = lira F)+R~ as given by (8.23). Using notation (3.20) and (3.22) we 

R ~ 0  

identify in this way the limit as 

(8.31) (Sj(t--tk) Cj+ 1 Sj+l(tk--tk_l) Cj+ 2 ... C3+l, Sj+k(tl)fj(~ 

Step 3. Application of Lebesgue's theorem. 
By (7.14) and assumption (C1) we have 

k - 1  

(8.32) []A(kR)( t ;  t 1 . . . .  , tk)f)mk(0)][ _--<(1 + h(tl) ) I~ (1 + h(ti+ ~ - t i )  ) N fj(R) (0)][ 
i = l  

k - - 1  

<cons t ( l+h(G))[ I ( l+h( t~+~- t~)  ) for all R. 
i = 1  

The right hand side of (8.32) is integrable over the set {0< G < . . . < t ~ < t } ,  
therefore we can use Lebesgue's theorem to conclude (3.27) in Proposition 3.4. 
What remains to do is only to give the 

c) Proof of  Proposition 8.2. 

(i) Reformulation of the problem. 
Because of (8.21) there exists ~ L I ( I R  3j) such that FJR)<~ for all R. So 

replacing F) R) by /~  in (8.26) and (8.27), and using Lemma 10.3 we are sure that 
we can apply Fatou's lemma to (8.26) and (8.27). To prove (8.26) and (8.27) we 
have therefore to show 

(8.33) lim l i m R - l h  -1SdzPy._(co(t+h)=x; . . . )=0  
R ~ 0  h ~ 0  ip.3 

where Y=(Yl . . . .  ,yj)MR 3j is a given point such that Yi+Yk for i+k.  
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Moreover using the technique of decomposition of the time interval [0, t + hi 
by appropriate intermediate time points (it is demonstrated for example in the 
proof of Lemma 10.3, so we omit the details here) we can get rid of {og(t+h) =x} 
in (8.33). Therefore it is enough to prove that, given a point Y=(Yl, Y2)~(~3) 2, 
Yl @Y2, (8.34)-(8.36) hold: 

(8.34) lim limR-lh-l~dzPyl,y2,z(T~,3<=h, T1,3(O)~-)>t; T1,2(co+)~t)=0, 
R~0  h~0  

(8.35) lira limR-~h-l~dzPyl,y2,z(T~,3<h, T1,3(c~-)>t; Tz,3(co~-)<t)=0, 
R ~ 0  h~0  

(8.36) lim limR-lh-l~dzPyl,y2,z(T~,3<=h, Ti,3(og~)>t; r2,3=<h)=0. 
R ~ 0  h~0  

(8.36) can be shown quickly: let ~=ly~-y21/3 and consider only R such that 
R < t/. Then 

(8.37) limh-a~dzPy~,y~.(T1,3<h, T1,3(co+)>t; Tz.3__<h ) 
h~0 

=l imh  -1 ~ dzPy~,y~,,_(T1,3<=h, T1,3(co2)>t; T2,3_-<h) 
h~0 i~_yll__<~ 

< l imh  -~ ~ dzPy,,=(T2.3<h) 
h~O Iz yll <r/ 

=l imh  -1 ~ dzPy~_~( rain I~(s)I__<R)=O 
h ~ O  [z --Yll <=r/ O<-s<-h 

because Iz-Y~l<tl implies lyz-zl>=R+tl and 15o( max 1~5(s)l>tl)=o(h). 
O<_s<h 

Therefore it remains to show (8.34) and (8.35). The proof of (8.35) is quite 
similar to that of (8.34), so we omit it and give the details only for (8.34). 

(ii) Proof of (8.34). 
For all re(0,  t) an upper bound of (8.34) is given by Ii(z)§ where 

(8.38) I i ( r ) = l i m  l i m R - l h  -1 
R ~ 0  h~0  

�9 ~dzP,~,y2,~(TL3<_h, T1,3(o3+)>z; T1,2(co~-)=<z) 

(8.39) I2(z)=l im l i m R - l h  -1 
R~O h~O 

�9 ~dzPr~,y~,~(T1,3<=h , T1,3(r >'c; 
rl, 2 (r "c, T1,2(CO+h)<=t--z). 

We have to show lira 11 (z)= lira I2(z ) = 0. The proof is based on the following 
r ~ 0  z~0 

Lemma 10.8. For all ~ > 0 

(a) lira lira l i m R - l h  -1 ~ dzP.( max Ic~(s)l_>__r/; 
* ~ 0  R ~ O  h ~ O  ~,3 h < s < r + h  

G_-<h, G(og)>~)=o. 

(b) lira lira l i m R - l h  ~ ~ dzP~,l,=( max l e h ( s ) - y l l = t / ;  
~--*0 R ~ O  h ~ O  N3 h<=s<=z+h 

r l , a < = h ,  Zl ,  2 ( ~ h - )  > 'C)  = 0 ( y l  f f lR3) .  
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To apply this lemma, choose t/= lY1-3'21/3. We begin with 11 (-c) and decompose 

(8.40) R-~h-t~dzP~,~,y~,~(T~,3<__h, T~,3(co+)>z; T~,2(co~-)_->z) 

=R- lh  i ~dzP,,.y~,~(T1,3 <h, rl,3(co~-)>z; 

T1,2(c02)<z; max Io~l(s)-yll>t/)  
h<_s<_z+h 

+ R-~ h -~ f dz P,~,y:,~(T1,3 <__h, L,3(c02)>z; 

T1,2(c02)<z; may [c~(s)--yal<tl). 
hK_sN'c+h 

The first summand on the right hand side of (8.40) is handled by Lemma 10.8(b). 
Since 

(8.41) {T1,2(co~)=z, max IoJ~(s)-y~l<=~}~{ max IoJ2(s)-y21>~} 
h < s < , : + h  h<--s<-':+h 

(R<tl;  recall l y l -y2 l=3 t l ) ,  

the second summand in (8.40) is estimated by 

(8.42) R-lh-l~dzPyl,y2,~(T1,3<h, T1,3(o~;)>z; max I(Dz(S)--y2l>q) 
h<_s<_z+h 

=R-lh-lSdzPyl.z(T1,3<h, T~, 3(c02) > z) 

�9 Py2( max Ic02(s)-Y2[>t/) 
h<=s<=r+h 

because co 2 is independent of co~ and o) 3. Letting h--+0, R ~ 0  the first factor 
tends to a finite constant by virtue of Lemma 10.1 and becomes in the limit 
independent of "c. After that, letting z--,0 we see that the second factor tends to 
zero. So l im i t ( z )=0  is proved. 

z ~ 0  

In order to handle I2(z) similarly, decompose 

(8.43) I2(z)~l im l imR- lh - lSdz  ~ dv~dv2Pyl.ya,~(col,2(z+h)=(vl, v2); 
R ~ 0  h ~ 0  Iv~ - y l [  >~/ 

r~.3<=h, L,3(co+)> 0 

+ l i m  l imR-~h-~dz  ~ dvldv2Py~,,~,~(co~.a(z+h)=(vl,v2); 
R ~ 0  h~O Iva_y2l >r/ 

T1,3<h, Wl, 3 ((D~-) > "c) 

+ l i m  l imR- lh- l~dz  ~ dvtdvzPy,,y2,:(cO,,z(z+h) 
R ~ 0  h ~ 0  {Ivl --Yll--<q, Iv2--Y2I--<t/} 

=(/)1,/;2); T~,3<=h, L,3(o~+)>z)'Pv ..... (T1,2 < t -  z) �9 

The first term on the right side of (8.43) can again be treated by Lemma 10.8(b), 
the second is already handled by (8.42). To estimate the third term observe that 
]y l -Y2l=3t l ,  Ivl-yll<=q, It)2-Y2lNt I imply [v l -va l> t l ,  and hence, if we 
choose a fixed point ae lR 3 such that lal=t/, we have 
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(8.44) Pv .... (T1,2<----t--z)<----Fa(TR < t - z )  for all @1, v2) such that Iv,-y~l~t/ 
for i=1, 2. 

Therefore the last term on the right hand side of (8.43) is bounded by 

(8.45) lim l imR-~h -1 ~dzPy~.~(T~,3<=h , Tx.3(COh+)>Z). fia(TR<=t--z ) 
R ~ 0  h~O 

= lira R -1 8zcRD(1 + R / 2 1 / ~ ) .  Pa(TR~t-z) (by Lemma 10.1) 
R~0 

__<8rcD(lim P~(TR<=t--z)+ lim R / ~ ) = 0  for all -c>0, 
R~O R~O 

w h e n c e  l im  I2 (-c) = 0. 
~:~0 

This ends the proof of (8.34). 

9. Additional Ingredients for the Proof  of  Theorem 2.2 

a) Heuristics and Statement of Proposition 9.I 

In order to give a heuristic derivation of the BBGKY-hierarchy in the case of 
labeled particles, we proceed much as in Sect. 6a. Now the change 
6oollp}R)(t; X, l) consists of two terms: a positive one representing the increase of 
p}R)(t; X, l) due to formation of/-fold particles, and a negative one representing 
the decrease of p~g)(t; X, l) due to destroying/-fold particles. Hence the following 
hierarchy seems to be plausible: 

3 CR" (9.1) ~ p j l ( t ; x , l )  
J 

=D.Ap~R)(t;x,I)+2D Z {�89 Z ~ a(dx~+l) 
i= 1 p+q=l i  Si(Xl,.. . ,xi) 

(R) (t; ..., fi 'gradj+lp~+l,  x, x j+l ; l l ,  li_x,p, li+ 1,... ,l~,q) 

"a(R) ( t"  ; l, p ) }  - ~ ~ a(dXj+l)h'gradj+lvj+lt  ,x, xj+ 1 
p > l  S,(xl  . . . . .  xj)  

where 

Si(Xl . . . .  ,xj)={Xj+lelR3: Ixj+l--Xkl>R for l<-k<], Ix~+l-x~l=R } 

a =  surface measure of Si(Xl,.. .  , xj) 
h=normal vector at Si(Xl . . . .  ,x~). 

In view of the result for unlabeled particles we expect that the rescaled 
correlation functions f)m tend in the limit R ~ 0  to functions f)o) satisfying the 
following hierarchy (recall that fiR) is defined by (2.8) and 2 by (2.1)) 

o (9.2) ~ f )  )(t)=D.Af)~ 

J 
+22 Z {�89176 C j - + l , i f j ( ~  (j@]N), 

i = 1  
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+ act on functions g:]R_3(J+I)• in the where the operators C j+l,/ 
following way: 

(9.3) + .. lj) (Cj+ l,/g)(x~, . . . ,x~; 11, ., 

= ~ g ( x l , . . . , x ~ , x / ; l l , . . . , l i _ l , p , I / +  1 . . . .  ,l~,q), 
p+q=l~ 

(9.4) ( C j + l , i g ) ( X l ,  . . . ,  x j ;  11 . . . .  , lj) 
= ~ g(xa, . . . , x j ,  xi; la . . . .  , l j ,  p) ( l i eN ,  l < i < j ) .  

p>-i 

Furthermore, the form of the limit hierarchy (9.2) suggests that propagation of 
chaos holds since one can check that product functions 

J 
g~(t;x, 1)= []  p(t;x/ , l l )  ( j e N )  

i = 1  

satisfy the hierarchy (9.2) if and only if p(t) satisfies Eq. (9.2) with j = 1. 
However, for the same reasons as in the case of unlabeled particles we do not 

derive (9.2) via the hierarchy (9.1). Instead of that we work again with an 
appropriate series for f)m(t;  x, l). Our aim is to prove 

Proposition 9.1. Let t o be as in Proposition 3.3. Then the limit 

(9.5) lim f )m(t;  x, l)=f)~ x, l) 
R ~ 0  

exists for almost all x e lR 3j, all l e N  j, all t e l-0, to/16) and satisfies 

t 

(9.6t s (t-tO 
0 

J 
�9 Z { � 8 9  1,i f j+l(t l)--C~+l,i fr176 ( j eN) .  

/ = 1  

The proof is sketched in the next section b. 
As before in the case of Theorem 2.1, Proposition 9.1 implies Theorem 2.2 

first for te[0,to/16): Iterating (9.6) we can express f)~ in the form of a series; 
multiplying out two such series we can derive propagation of chaos similarly as 
before. Furthermore, observing that 

(9.7) ~ fl(~ x, 1)=p(t; x), 
1=>1 

where p(t) is the unique L~176 of the kinetic Eq. (2.12), one can show that 
the solution of the Eq. (9.6) for j = 1 is the unique L~176 of the system of 
Eqs. (2.13). Finally, one can proceed quite analogously as before to extend these 
results to all times t_> 0. 
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b) Sketch of  the Proof  o f  Proposition 9.1 

The basic ideas of the proof of Proposition 9.1 are the same as were used for the 
proof of Proposition 3.1-3.4. We only need some additional ingredients in order 
to handle the complications caused by the correct counting of the multiplicities. 
Therefore, we only sketch the proofs and omit the details. 

First we have to develop p~R)(t; X, l) in a perturbation series similarly to the 
way it was done in Proposition 3.2 for p~R)(t; X). For this purpose we again work 
with the following definition which can be seen to be equivalent to that given in 
(2.4) 

(9.8) p ~ ( t ;  x l  . . . . .  x~; l )dx I . . . d x j = n ( n -  1 ) . . . ( n - j +  1)~dy~z,,(y) 

/], (the particles 1, . . . , j  survive in the time interval [0, t]; 

co 1 ..... j ( t ) ~ d x l . . . d x j ;  coi(t ) has multiplicity l i for l <=i<j), 

where, as previously defined, Py denotes the probability measure induced by the 
coalescing Brownian motions starting in yMR 3" (in particular, /~ respects the 
collision rule that after a collision between two particles p, q, the particle p resp. 
q disappears with probability 1/2). 

Let j e N ,  l ~ N  j and x~lR 3j be given. We use the notation 

J 
(9.9) 1/] = ~ lz, 

(9.10) r e = I l l - j ,  

(9.11) J={1 ,  .. . ,j}, S = { j + I  . . . .  , j+m} ,  

S k = { j + m + l  . . . .  , j + m + k }  (k>O). 

In order to compute p~)(t; x, l), we first define all the streams leading to the 
right multiplicity l at time t, then we compute the probability of their surviving 
in the time interval [0, t]. We notice that such a stream survives as long as it 
does not meet any other particle. A special case of this is the following stream, 
which is defined by the particles 1 . . . .  , j + m  as follows: 

(9.12) F = {First particle j +m collides with another particle i < j  + m  and disap- 
pears, then j + m - 1  collides with another one and disappears, ..., and lastly j 
+ 1 collides with a particle i t  J and disappears; T 1 ..... j > t, co 1 ..... j(t) = x and ~o~(t) 
has multiplicity I i for 1 <=i<j}. 

Because of the symmetry of To, we obtain 

p}R) (t; X, l) = (n)j (n --j). . .  (n --j  -- m + 1) ~ ~R)(d y) ~, (F ; S F > t), (9.13) 

where 

S F-- sup {s > 0: the stream F survives in the time interval [0, s] }. 

We need some further definitions for the formulation of Proposition 9.2 as well 
as for the norm estimate. 
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(9.14) F k= set of those permutations 7 of S •S k which satisfy: 

if 7p, 7q ~ S resp. yp, 7q ~ S~ then p < q imply 7p < 7q. 

(9.15) Bi~ (?;~Fk, O<_i<_k) are the events described by the following four 
conditions (during the time interval [0, tl)" 

(i) The particles collide in the order 7~+m+k, " ' ,  7j+ 1 (i.e. first particle 7j+m+k 
collides with one of the other particles i < j + m + k  and disappears, then 
7j+m+k-1, and so on). 

(ii) Any particle 7p~S is restricted to collide only with particles of the set 
JwS .  

(iii) The particles inside the system J u S  form the right stream F (see (9.12)). 

(iv) There are exactly i collisions between particles p and q with p ~ J w S and 
q ~ Sk, with other words there are exactly i collisions with the stream F. 

After these preparations we can formulate the analogue to Proposition 6.1. 

Proposition 9.2. Let j ~ N ,  16N j, m= I l l - j .  Then 
k 

(9.16) p~m(t; x, l)= ~ (--1)kSdyp~R+)m+k(O;y) ~ ~ 2 i~Py(s~).' 
k=>0 ?erk i=o 

Proof. We proceed as in the proof of Proposition 6.1 by using the same 
argument given there. In the first step the stream F is destroyed by the particle j 
+ m + 1. This happens at the collision time TF/j+ m + 1 of the particle j + m + 1 with 
one of the yet living particles in the stream F. In the second step the system 
( F , j + m + l )  is destroyed by the particle j + m + 2 ,  at the collision time 
TF, j+m+ 1/j+m+ 2, with 

TF, j + m +  1/j+m+ 2 ~ TF/ j+m+ 1' 

and so on. 
In this procedure two points are to be observed. On the one hand, the times 

of collisions caused by the particles j + m + l , . . . , j  + m + k are well ordered as 
just described. However, they are not ordered with respect to the times of 
collisions between the particles inside the stream F. All arrangements are 
possible. These possibilities are classified by the elements 7~Fk. On the other 
hand the system (F , j+m + I, . . . , j + m + k - I )  is destroyed with probability i if a 
collision happens between j + m + k and F, and it is destroyed with probability 
1/2 as in the case of coalescence if the collision happens between j +m + k with 
one of the particles j + m + i, ..., j + m + k - I. Therefore, in view of the definition 
of 16, we have to multiply by a factor 2 at every collision with F. If k => I, there 
exists at least one collision with F, i.e. i>__ i. This explains the weight 2 ~ of Py(B~)̂  i 
in the Proposition. Hence Proposition 9.2 is proved. 

We formulate the perturbation series (9.16) in terms of the rescaled cor- 
relation functions f)m. 

Corollary 9.3. We denote by 
k 

(9.17) l ~R)t*'j,kt~, x, l)=(1/47zRD)m+kSdy f)R~+k(O; y ) ~ y" 2 ~ ~Pr(B~) 
7~Fk i=O 

( j e N ,  k>O). 
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Then f)R)(t) can be developed into the following series 

(9.18) JJR)(t; x, l)= ~ (--1)k 21~l-J+k I}R~(t; X, l). 
k>O 

Proposition 9.4. Let t o be as in Proposition 3.3. There exists a universal constant 
F< oe such that the following estimate holds uniformly in R: 

�9 ( t ~  k/2 

(9.19) ~ ,  ", l) l ] <~" \to/l~ ] Hf(R)(0)I[z'(2Z) j 

for all j e N ,  k ~ N  and t<to/16. 

Pro@ Denote by 

(9.20) B={ the  particle j + m + k  is the first to collide in the time interval [0, t] 
with another particle in J • S w S  k and disappears; then the particle j + m + k  
- 1  . . . .  ; lastly the particle j +  1; the particles 1, . . . , j  are still alive at time t and 
COl ..... / t ) = x } .  

From the symmetry of the initial distribution % we get for all 7 ~ Fk (k > 0) 

k 

(9.21) fdyf)R+~+k(O; Y) E 2i~'(B',)<2kSdyfj~)m+k(O; y)•(B), 
i - O  

and by using the notation (3.18), we can write the right hand side of (9.21) in the 
form 

(9.22) 2k'(4rrRO)m+kidtlidt2. . .  i dtm+k 
0 t 1 t m  + k - -  1 

(R) . ~g) 0 ( A , n + k ( t  , t~ . . . . .  t~,+klfj+m+k())(X). 

(9.21), (9.22) and (3.26) imply 

( t  ],,~,-J+k)/2 
(9.23) 2 J'l-J+k ][1}R,2(t; ., l)[ I < 2  k. IFk[ �9 c. ~o!  ][f(R)(O)H~(2z)J 

for all R, j, k, l and t < 1. 

The cardinality IFk[ of F k is just the number of the different possibilities for 
placing k indistinguishable balls in m+ 1 cells (namely the m +  1 "cells" which 
are built from the time intervals between successive collisions in the system 
J w S :  (0, tl), (t 1, t2) , . . . ,  (tin, t)) so that 

[m +1 + k -  1 ]_ (m +k)! 
(9.24) ~rk~ 

k ] re!k! ' 

which can be estimated as in (7.23) by 

(9.25) [Fkl<const2 m+k (msN,  k~N) .  



266 R. Lang and Nguyen Xuan  Xanh 

By inserting (9.25) into (9.23) we get with a universal constant g< oe- 

(9.26) 2 tll-j+k I(R)It" 4k 2 m ( t t (m+k)/2 j,k~ , ' ,  I)N < c '  " k~o/ ]lf(R)(o)[[z" (2z)J 

=c \to/4! " \toll6 ! ILf~R)(O)]L~- "(2z) J. 

From the summation of (9.26) over m>_0 together with the fact that \to~4] --2 

for t<to/16 we get (9.19). 
Now we are ready to give the 

Proof of Proposition 9.1. 

Step 1. lim f)R)(t)= f)O)(t) exists a.e. (t <to/16). 
R~O 

By virtue of (9.18) and Proposition 9.4 it is enough to show that every term 
of (9.18) converges a.e. in the limit R-+0: When we have j, k e N ,  l ~ N  ~, t<to/16, 
the limit 

(9.27) lim I Cm~, kt~,C~" X, l) = It, k (t ; X, l) 
R~O 

exists for all N E ] R  3j with xv~ex q for p=~q. 
The proof of (9.27) is the same as already given for Proposition 3.4. We only 

have to notice the following point: Because of (ii) in the definition (9.15) of B!~ - 
for the sake of simplicity, we only consider the special case that 7 is the identical 
permutation - the particles j + l ,  . . . , j+m cannot be killed by one of the 
particles j + m + 1, . . . , j  + m + k. Therefore in the case that a particle j + 1, . . . , j  
+m collides with another we have slightly to change the definition of the 
measures e~+~l(t; x, d y). The existence of these new measures is proved in a way 
similar to the proof of Proposition 3.1. We only have to work with the Greenian 
domain 

{x~]e3tj+m+k): IXp--XqI>R for p = j + l  . . . .  , j+m; 

q = j + m + l ,  . . . , j+m+k} 

instead of the whole space ]R 3(j+m§ a s  used before, 

Step 2. Transformation of the series ~ (--1)k~tm+klj, k(t;x,l) into the desired 
k_->O 

form (9.6). 
The idea is to split up every I j, k (k > 0) into two parts according to what 

happens at the last collision time. 

(9.28) Ij.k(t; X, 1)=I+k(t; x, l)+ ISk(t; X, l), 

where I~k indicates that the multiplicity of the particles 1 . . . . .  j inside the stream 
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F becomes the right multiplicity l not before the last collision of F with other 
particles, whereas If, k indicates that the multiplicity of the particles 1, . . . , j  inside 
F becomes the right multiplicity l already before the last collision of F with 
other particles. 

Then one can check the following identities 

(9.29) ~ ~-t Dk2m+kI+J j, kttt', X, l) 
k>0 

• ) (0) =(Sj(t)fj(~ S j ( t - t l )  C~l, l f j+l( t l )  (x,l), 
0 i = l  

l~k2m+kI  - (t" l) (9.30) Z ( -  , x, 
k > l  

= -22! dr1 SJ(t-ta) i=1 ~ '  Cj+l'ifJ(~ (x, l). 

For the proof we have to write down the explicit series for fj(~ and to 
compare the series of the left hand side with that of the right hand side. The case 
(9.29) is straightforward, whereas in the case (9.30) we have carefully to compare 
the terms with the same number of collisions during [0, t]. The details are 
somewhat involved and are omitted. Thus Proposition 9.1 is shown and hence 
the proof of Theorem 2.2 finished. 

10. Technical Lemmas 

In Sect. a) we collect three computational lemmas. Lemma 10.1 gives explicit 
formulas e.g. for P x ( T R < t )  with xs /R  3, in particular it shows, how such 
probabilities depend on R. Furthermore we give detailed proofs for Lemma 10.2 
and 10.3 in order to demonstrate two techniques which sometimes are used at 
other opportunities without any more comment: The first is the use of the fact 
that the processes col-co 2, col+co 2 are independent (this is a characterizing 
property of normal distribution) and the second is a decomposition of the time 
interval [0, t] by appropriate intermediate times. 

Sections b), c), d) contain the remaining technical lemmas, in the order in 
which they are needed in Sects. 5, 7 and 8. 

Survey of Sect. 10: 
a) Basic computational lemmas 42 

Lemmas 10.1, 10.2, 10.3 

b) Lemmas needed for Sect. 5 44 
Lemmas 10.4, 10.5 

c) Lemmas needed for induction steps (in Sect. 6 and 8) 49 
Lemmas 10.6, 10.7 

d) Lemma 10.8, needed in Sect. 8. 51 
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a) Basic Computational Lemmas 

Lemma 10.1. Let Px(TR <t) be the probability, that a Brownian motion with 
diffusion constant D, starting from x ~ IR 3, hits the ball {y ~ IR 3 : ]Yt < R} during the 
time interval [0, t]. The following formulas hold: 

R 2 ~ due-U'-, ]xl>R 

(10.1) Px(TR<=t)= Ixl ] /~  (LxL-R)/2VD7 ( t>0) 
1, Ix l<R 

0 (Ix]-R) + 
(10.2) ~[Px (TR<t )=4 n RD . ]x] �9 (4nDt) 3/2 exp( - ( Ix I -R)2 /4Dt )  

(10.3) ~ dxPx(TR<t )=2Dt .  C(R)+4 .  (2n)-3/2(C(R))2(2Dt) 1/2 
]xt > R 

=4 n RD �9 t + 8Oz D)l/2 R 2 . t 1/2 

(where C ( R ) = 2 n R  is the capacity of a ball with radius R), 

(10.4) l i m h - ~ d x P x ( T R ~ ( t , t + h l ) = l i m h  l~dxPx(TR<h, TR(CO~)>t) 
h ~ O  h ~ O  

d 
= - -  ~ dxPx(T~<=t)=47cRD(l+R'(nDt)- l /2) .  

dt Ixl>R 

Proof. P~(TR<t ) (Ixl >R, t>O) is the solution of the heat conduction problem 

(10.5) ~ ? t f ( t , x ) = D . A f ( t , x  ) (t>0, Ixl>R) 

f ( t ,  x)--*l if [x[~R ( t>0) 

f(0, x ) = 0  (IxI>R). 

Therefore, [4], Chap. 9.10, p.247, formula (2) gives us (10.1), which in turn 
implies (10.2)-(10.4). To prove the first equality in (10.4), use time reversal (cf. 
(3.8)) and the convention on notation as used before (see for example the 
beginning of the proof of Lemma 5.1): 

(10.6) SdxPx(Ts <h, TR(CO;)>t ) 

= S S ~ dx du dv Px(co(h)=u, TR < h ) �9 Pu(co(t)= v, TR > t) 

= ~ ~ ~ dx du dv P,(co(h)= x, TR <=h ) �9 Pv(co(t)=u, TR> t ) 

=S dv Pv(TR~(t, t +h])=S dx(P~(TR <t  +h)-Px(TR <t)) 

= ~ dxPx(TR<=t+h) - ~ dxPx(Tn<t)  . 
Ixl > R Ix[ > R 

Lemma 10.2. Let j >  2, R>0,  t>0 ,  x~IR 3j be fixed. The measures 

(10.7) fl(h'R)(t; X, dy), 0 < h < l  

are tight and have a uniformly bounded total mass. 
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Proof. We first show boundedness .  Since 

(10.8) 87~RD#(h'R)(t; X, dy) 

<h -1 ~ Px .... (co~,k(t+h)edy~dyk; Ti, ke(t, t + h J )  
l <_i<k~j  

" Px ...... ~, ..... ~ ...... , (co (t + h) e d y , . . .  d y , . . .  dyk . . ,  d y j) 

it is enough to consider the measures  

(10.9) #(h) (d y) = h - 1 Px (co (t + h) e d y; r e (t, t + hi) 

where x = ( x l , x 2 ) ~ l R  3 xlR 3, 

By (10.2) the total  mass  

T = T 1 ,  2 �9 

(10.10) #(h)(dy)=h- l P~(Te(t, t + h] )=h-  l ~,_~2(TRe(t, t + h ] )  
N6 

is bounded  uniformly in h. 
To  prove  the tightness of the #(h), 0 < h  < 1, we pass to new coordinates  in IR 3 

x 11t 3 defined by the following bijective m a p  0: 1R 3 x IR3--+IR 3 x ]R 3 

(10.11) O'(X1 , X2) = ( X  1 - - X  2 , X 1 -1- X2). 

Using a basic p roper ty  of  the no rma l  distr ibution we get that  the t ransformed 
process 

(10.12) (~(c% (t), co2(t)))o<t~(col(t)-co2(t), ~l(t)-}-co2(t))o<t 

is again  a pair  of  independent Brownian  motions,  this t ime with diffusion 
constant  2 D. 

Not ic ing that  the Jacob ian  of cr is 8 we therefore have the following 
decompos i t ion  

(10.13) h-lPx(CO(t+h)=y; T<h,  T(coh-)>t ) 

= 8 .  h -~ .  Pxx_x2(CS(t+h)=y 1 - Y 2 ;  TR<h, TR(CO~)>t) 

" Px~+x2(Ch(t+h)=Yl +Y2). 

The second factor  on the right hand  side of  (10.13) makes  no problem,  so it is 
enough to show the following: given x e IR 3, the measures  

(10.14) h-  l Px(co(t +h)edy ;  TRe(t, t + h ] ) ,  

are tight. 
Given  e > 0 we can find a c~ > 0 such that  

0 < h G l  

(10.15) h 1 S dyPx(co(t+h)=y; TRe( t , t+h] )<e  f o r a l l  he(0 ,  c5]. 
l y I~R+I  
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This can be done because 

(10.16) h ~ ~ dyP~(oo(r+h)=y; TRe(t, t+h ] )  
lyI_>R+I 

=h -~ y dy~ Py(co(h)edu; TR <h).q~m(t;u,x) 
tyl __>R+ 1 

< const h -1 ~ dYPr(TR <h ) 
lYI>=R+ 1 

(use time reversal and sup q~m(t; u, x)=cons t  < oo). 
u 

Using the explicit formula given by (10.1) one can check that the last expression 
tends to zero in the limit h ~ 0 .  Hence (10.15) is proved. 

Furthermore there exists a compact set K ~  {y: lyI-<_R+ 1} such that 

(10.17) sup 6 -1 ~ dyP~(co(t+h)=y)<=~. 
6<--h<~1 K c 

Together with (10.15) we get 

(10.18) h -1 ~ dyPx(O)(t+h)=y; TRe(t , r + h ] ) < e  for all h~(0, 1]. 
K e 

Hence (10.14) follows, and therefore Lemma 10.2 is proved. 

Lemma 10.3. Let t > 0 be fixed. Then 

(10.19) sup sup sup sup R - l h  1 
R h~(0 ,  1] xe iR 6 yl~iR 3 

�9 ~ dy2Pyl,y2(~ T(aR)2<=h, r~,a~(og~-)>t)< oo. 
N3 

Proof. 

(10.20) e -  l h -1  ~ dY2Py~,r~(c~ +h)=x;  Tff)2 <-_h, T~R, )z(o~)>t) 
IR3 

=R-- lh-- lJdy2jPxl ,y2  (CO ( 2 + h ) f f d u ;  T(1R,)2<=h, r(1R,)2(co+)>t/2) 

�9 q(zR)(t/2; U, X) (use sup sup q(2R)(t/2; U,X)=C< 00) 
uEIR 6 xe iR 6 

_ " T  (R)  < h rl(g2 ) ( c o ; )  > t / z )  < c ' R - l h - l ~ d Y z P y l , y 2 t  1,2= , , 

=c.  R - l h  l ~dy2Py,_,2(TR<=h, TR(O,+)>t/2) 

=c .  R - l h  -1 ~ dzP=(TR <h, TR(CS+)>t/2) independent o f x  and Yl" 
IRa 

By (10.4) this last expression is bounded in h e(0, 1] and R, hence Lemma 10.3 is 
proved. 

b) Lemmas Needed for Section 5 

Lemma 10.4. Let j>=2, B=B~ R), ae lR 3j, x e lR  3j. Then 
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(10.21) ] dsP~(B is hit during [s, s+h],  
0 

but not during (s + h, s + h + t] ; co(s + t + h) = x) 

=~ ds 2 ~Pa(T(n)eEs, s+h];  
0 n > l  

o) (T (") + t/2) e d u) q}m (t/2; u, x) + o (h). 

Proof. In the case x~B,  both sides of (10.21) are equal to zero. Hence we assume 
xCB.  The left side of (10.21) can be defined precisely in the following way 
(assume h < t/2; notice that T (~) + t/2 is a stopping time; write q instead of q~R)): 

o~ 

(10.22) ~ds ~, ~ SPa(T(")~dr; co(r(")+t/2)~du) 
0 n > l  [s,s+h] 

~ dv q(t/2 ; u, v) q(s + h - r ; v, x). 

Using time reversal we get 

(10.23) I~dvq(t/2; u, v ) p ( s + h - r ;  v, x ) -~dvq( t /2 ;  u, v ) q ( s + h - z ;  v, x)l 

=P,(T~(t/2, t/Z +(s + h -  j]; co(t/2 + (s + h -  z))=x) 

=~ Px(T <=s + h - ~ ;  co(s + h -  z)~dv)q(t/2; v, u) 

< const P~ (T < s + h - z) < const Px (T < h) 

uniformly in u~lR 3j, z e [ s , s + h ] .  But the assumption x(~B implies P~(T<h) 
=o(h). Hence we can replace q ( s + h - v ;  v, x) in (10.22) by p ( s + h - r ;  v, x) and it 
is enough for the proof of (10.21) to show that the following difference tends to 
zero in the limit h ~ 0 :  

(10.24) l h - l ~ d s  Z S SPo(T(")edr;c~ u,x) 
0 n>=l [s,s+h] 

oo 

- h  -1 ~ ds ~ ~ ~P~(r(n)sd'c;co(r~n)+t/2)edu) 
0 n > l  [ms+hi  

~ dv q(t/2 ; u, v) p(s + h - r ; v, x) [. 

But given ~>0 we can find ho>0  such that (use (3.9)-(3.11)) 

(10.25) [q(t/2 ; u, x ) -  S dv p(s + h - ~ ; x, v) q(t/2 ; u, v)[ < ~ 
for all h<ho, all ~e[s , s+h]  and all ue lR 3j. 

Therefore (10.24) is bounded for all h<h  o by 

(10.26) 8 .h  -a S ds ~. Pa(T(")~[s,s+h]). 
0 n > l  

With the notation 

(10.27) G(s)= ~ Pa(oo > T(")>s) 
n_>l  
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(10.26) can be written in the form (notice: G is decreasing and G(0)< oe) 

oo h 

(10.28) e. h -1 S ds(G(s)-G(s+h))=e, h -1SdsG(s)<e. G(O). 
0 0 

Hence Lemma 10.4 is proved. 

Lemma 10.5. (a) The function g: ]R3J~IR, defined by (5.2) in Lemma 5.1, or 
explicitly by 

(10.29) g(a)= lim h -1 ~ ds~dyP,(eo(s)=y)Py(T<=h, T(co~-)> t; co( t+h)=x)  
h ~ o o  0 

(x ~IR 3j fixed) 

is continuous in every point a ~ 8B ; 
(b) (5.15) can be justified. 

Proof. We introduce the notation 

(10.30) h(y)=Py(r <=h, r(cos co(t +h)=x). 

In the proof of (a) let a point a~ ~?B be given and fixed. Proceed in two steps: 

Step 1. Given z > 0, the function 

b ~ l i m  h -1 S dsldyp(s; b, y)h(y) 
h ~ O  

is continuous (this limit exists, cf. the proof of the similar fact for (10.29)). 

Proof. Given ~ > 0  there exists a compact K c lR 3i such that 

(10.31) p(z; b, u)<e exp( - lu l )  

for all u$K and all b such that ]b-a[__<l. 

We decompose the integral 

oo 

(10.32) h -1 ~ dsSdyp(s; b, y)h(y) 

09 

=h ~ ~ dsSdup(z;b,u)Sdyp(s;u,y)h(y) 
0 K 

+h -~ ~ ds ~ dup(z;b, u)~dyp(s;u,y)h(y). 
0 K c 

By (10.31) we can estimate the second term by 
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(10.33) e . h - l  ~ ds~duexp(-lu[)~dyp(s;u,y)h(y) 
0 

=e. h -~ I~dydu exp (- lul)  G(u, y) h(y) 
<e .h  l~dyPx(T~(t,t+h],co(t+h)=y) 

�9 sup~du exp(-Jul)G(u, y) 
Y 

=e. h - ~ Px(Te(t, t +hi )  - const 

(because sup ~ du exp (-lu])  G(u, y) = const < oe). 
Y 

By (10.2) there is no problem with the first factor. Therefore it is enough to 
consider the first term on the right-hand side of (10.32). To given e>0  choose 
6 > 0 such that 

(10.34) IP(Z; a, u) -p(z ;  b, u)[ <e 
for all u~K and all b with [b-al<3. 

Then we get for all b such that ]b-al<6: 

(10.35) Ih 1 S ds~dup(z;a,u)~dyp(s;u,y)h(y) 
0 K 

- h  -1 S ds ~ dup(z; b, u)~dyp(s; u, y)h(y)l 
0 K 

<e. h -~ ~ du~dy G(u, y)Py(r<h, T(co+) > t; co(t+h)=x) 
K 

< e .  (sup ~ du G(u, y)) . h- 1 px(rs(t, t +h]). 
Y K 

Because of sup ~ du G(u, y) < oe, step 1 is finished. 
Y K 

Step 2. Since ar 6B, there exists 6 >0  such that a ~D6, where 

(10.36) D6= (~ {xelR3J:Jxi--Xk]<R--6 or [Xi--XkI>R+6}. 
i , k < j  

Part (a) is proved if we can show 

(10.37) 
lim sup lim h-  1 ~ ds ~ d y p (s; b, y) h (y) = 0. 
~ 0  beD~ h ~ O  0 

Choose ~1 > 0 such that 

(10.38) U KbCD~/2, 
beDo 

where Kb={yeN3J: ly-bl<rl}. 

Decompose ~dy=  ~ dy+ ~ dy and consider first ~ dy: 
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(10.39) h-1 i ds ~ dyp(s; b, y)h(y) 
o K~, 
<~ eh -1 ~dyP~,(r<h, r(co~-)>t; o~(t+h)=x) 

for all Z<Zo, if we choose z o such that p(s; O,y)<e for all [yJ>q and all s < z  o. 
Because (10.39) holds uniformly in b, it remains to estimate the term ~ dy. Since 

Kb 

b ~D 0 implies K b c Do/2 because of (10.38), we get uniformly in b ~Do: 

(10.40) h l i d s ~  dyp(s;b,y)h(y) 
0 Kb 

<h -~ ids fdyp( s ;  b, y). sup h(y) 
0 yED6/2 

= z . h  1 sup Py(T<=h,T(o)+)>t;o~(t+h)=x). 
yED6/2 

But Pz(T~<h, TR(CS~)>t)=o(h ) uniformly on the set 

{ z e l R 3 : I z i < R - 8  or [z l>R+8} ,  

hence (10.37) is proved. 
Finally we sketch the proof of (b) omitting the details which are quite similar 

to the arguments just used for the part (a). Consider the sets D 0, 8 >0  defined by 
(10.36). Then there exist functions f~: IRS;~[0, 1] (8>0) such that 

(i) f0 is continuous, 

(ii) supp f~ ~ D 0, 

(iii) f0(x)T1 as 850, for all xE U Do. 
0>O 

One can show (the proof is omitted) that for every 6 > 0 

oo 

(10.41) sup sup h -~ ~ ds~dyp(s; b, y)h(y)< co, 
0 < h = < l  bED~, 0 

which implies 

(10.42) sup sup f~(b)gk(b)< oo (8>0). 
k >= l be~3J  

Given 8 > 0  we can apply Lebesgue's theorem because of (10.42) and so justify 
(5.15), where we replaced g(b) by fa(b)g(b): 

(10.43) Sdbp(z; a, b)fo(b)g(b)=Sdbp(r; a, b)fo(b ) lim gk(b) 
k~oo 

= lim ~dbp(r; a, b) fo(b)gk(b ) 

=~dbp(~;a,b)f~(b)~#(dc)G(b,c) (8>0). 

Letting 650 we get from (10.43) 

(10.44) Sdbp(z;a,b)g(b)=Sdbp(z;a,b)~#(dc)G(b,c) (aelR 3~, z>0).  

So part (b) of Lemma 10.5 is proved. 
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C) Lemmas, Needed for Induction Steps 

Lemma 10.6. Let e>0,  e>e ,  j e N  and a function q)" [e, ~] x IRgJ~IR+ be given 
such that cp satisfies the following three properties 

(10.45) ~o is uniformly continuous, 

(10.46) (p(t, y )=0  for all t~[e, c~] and y ~ B ~  I, 

(10.47) lim max q0(t, x )=0 .  
l x l ~  ~__<t__<c~ 

Then the function (~: [~, c~-e] x 1R3cJ+I)~IR+, defined by 

(10.48) ~(t, x )=  i d s S e j + l ( s - t ;  x, dy)cp(s, y) 
t-t-~ 

has again the properties (10.45)-(10.47). 

Proof. As sometimes before (cf. (6.11)-(6.15)) we can replace the measure 
ej+l(s- t ;  x, dy) in (10.48) by 

(10.49) e~+l(s- t  ;x,dy) 

=l imh  1Px(o~ 1 ..... j ( t+h)~dy;  T 1 ..... j> T 1 ..... j/j+l~(t, t+h]) .  
h~O 

Clearly ~ satisfies (10.46). To prove the continuity of ~5, decompose 

o~--t--e/2 

(10.50) ~(t, x )=  S dsSduqj+~(e/2;x,u)Sej+~(s;u, dy)(p(s+t+8/2, y ) 
e/2 

= ~ d u q j  + 1 ( e /2 ;  x, u) h (t, u), 

where 
c~--t--e/2 

(10.51) h(t,u)= ~ dsj'ej+~(s;u, dy)~o(s+t+e/2, y). 
~/2 

One can check that IIh[I < oo and that given q >0  there exists c~>0 such that 

(10.52) Ih(t, u)-h(t ' ,  u)l<t/ for all u e N  a(j+l~ and I t - t ' [<6  

(use the same properties of ~0 and the explicit formula (10.2) and notice that the 
integration in (10.51) is over s>e/2). Hence it follows for I t - t ' l  <,~ 

(10.53) I(~(t, x)-(o(t ' ,  x')l 

< I S du q (e/2; x, u) h (t, u ) -  S d u q (e/2; x, u) h (t', u) l 

+ I j" du q(e/2; x, u) h(t', u ) -  S du q(e/2; x', u) h(t', u)[ 

< r/. S du q(e/2; x, u) + I1 hi] S d u I q (z/2; x, u) - q (e/2; x', u)[. 

i___+ Applying Lebesgue's theorem to the last term when x x, we conclude from 
(10.53) that ~ is continuous in every point. Therefore the proof of Lemma 10.6 is 
finished if we show that ~ satisfies (10.47). Let t />0 be given. By (10.47) there 
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exists a compac t  set K ~ I R  3j such that  

(10.55) ~o(t ,y)<t/  f o r a l l  te[e,a], y e K  ~. 

Hence  

(10.56) 
~ -  ~/2 

~o(t,x)<= ~ ds ~ e-~+l(s+g/2;x, dy) . t  1 
e/2 K c 

a -  e/2 

+ ~ ds~e~+l(s+e/2;x, dy)[[q)[[ 
e/2 K 

r 

=< const r /+ 11~o I[ ~ds ~ ~s+ ~(s; x, dy) 
e K 

(t(~[-~, ~Z- -e ] ,  x e ] R 3 ( j + l ) ) .  

In the last step we have used (10.2) and  the fact that  we integrate  over  s > e/2. In 
view of  (10.56) it remains  to show 

(10.57) l im jdsJe-j+l(S;x, dy)=O (K compact) .  
I x l ~  ~ K 

For  the p roo f  we assume j = l  wi thout  loss of  generality. Using the inde- 
pendence  of  the processes co 1 - c o  2, c% +co 2 (cf. (10.11)-(10.13)) and (10.16), we 
get for any fi > R 

(10.58) l imh  -1 ~dy~dzPy, z(CO(s+h)=(xl,x2); T<h, T(co~-)>s) 
h ~ 0  K 

= l i m h  -1 ~ dy ~ dzPy.~(og(s+h)=(xl,x2); r<=h, T(co~-)>s) 
h ~ O  K ] z - - y l<6  

= l i m b  - ~ d y 8 .  ~ dzPy_=ffS(s+h)=x~-xz; TR<__h, TR(co;)>s)  
h ~ O  K [z--y[<=6 

. P,+z(CS(S + h) =x~  + x 9 

<lim8"h-X ~ dy ~ dzP,_z(~)(s+h)=x~-x2; TR <h, TR(e)[)>s) 
h ~ O  K ]z--y[<=O 

�9 sup fi2y+,(~)(s+h)=X 1 "~-X2) 

= lim h -  1 p x  I _ x2  (rR ~ (S, S ~- hi)" ff dy sup ff2y+~(cS(s) = x 1 + x2). 
h ~ 0  K lal= <6 

Using again (10.2) and  the fact that  we have to integrate  in (10.57) only over  
s~  [e, c~], we get (10.57). Hence  L e m m a  10.6 is proved.  

L e m m a  10.7. Let ~ ; (j e N)  be the class of sequences {F) m} satisfying (8.18)-(8.22) 
Then for any sequence {F) R)} in ~j the sequence of functions F)n+) 1 (R=,~/47cDn), 
defined by 

(10.59) ~j+ ~ (x) = J ~ ( R )  ~ dR)'2+. (t," x, dy) Fj (m (y) (t > O, fixed), 

belongs t o  ~j+ 1" 
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Proof. (8.19) is obvious, (8.20) is already proved in Sect. 8b (see (8.23)). It remains 
to prove the following three properties: 

(10.60) there exists/~+ l eLI(IR 3~J+ 1)) such that FJ+ml </~+1 for all R 

(10.61) lim ~-(m gx / -0  for all R, l j__ 1~ ] - -  

(10.62) sup IIF)+ml II < oc, 
R 

because (10.60) and (10.61) already imply the uniform continuity of every ~r . *j+l- 
by (10.61) it is enough to prove that ~(m *j+ 1 is continuous. To this purpose choose 
ze(0, t) and write 

u (n)  . (10.63) Fj(R+)(X)=Sduq}R)I( t - - 'C;X , )Sej+~(z,u, dy)Fj(R)(y). 

But (10.60) holds for all parameters t>0,  so we can apply it in particular to 
~e~+)i(z;u, dy)F}R)(y). Therefore we can use Lebesgue's theorem to prove the 

. . . .  (R) continuity oI rj+ 1. 
For the proof of (10.62) we again assume without loss of generality j =  1. 

Because of sup I[FJR)I] < oo we have therefore to show 
R 

(10.64) sup sup ~e(zg)(t; X, d y) < c~, 
R x 

but this fact follows from the explicit formula (10.2). In order to prove (10.61) 
and (10.60) we proceed in the same way as in the proof of (10.57) above: first 
reduce the problem to a one particle problem with the help of the independence 
of (01-(02 and (7,01"}-0)2 (cf. (10.58)). Then apply (10.2) which gives also the 
estimate uniformly in R, as needed for (10.60). We omit the details which are just 
the same as before. 

d) Proof of Lemma 10.8 

Lemma 10.8. Let ~/>0. Then 

(a) lim lim i i m R - l h  -1 ~dzP~( max 1(0(s)l>rl;ZR<h, ZR((0~)>z)=O. 
z ~ O  R ~ O  h ~ O  ~3 h<_s<~+h 

(b) lim lira f imR- lh  -1Sdzgl ,z(  max [(01(s)-y11>17; 
z ~ O  R ~ O  h ~ O  ~3 hNs<_z+h 

TI,:  < h, T1,2((0f) > T) = 0 (ylelR~).  

Proof. Using the independence of (01-(02 and (01-}-(02 o n e  can deduce (b) from 
(a) in the following way: 

(10.65) { max l(01(s)-yll>rl}c{ max l((01(s)-yO-((02(s)-z)l>rl} 
h<-s<-r+h h < s < z + h  

w{ max l((01(s)-ya)+((02(s)-z)[>17} 
h<=s<='c+h 
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~dzPy~.~( max Icol(s)-yll~lT;T1.2~h, T1,2(coff)>m) 
h<_s<r+h 

<~dZPyl_~( max 1(5(s)-(ya-z)l>~;rx,2<h, Zx,2(co~)>z) 
h<_s<~z+h 

+ ~dzPy~+~(Te <h, Te(cSf, )> z). Pyx+~( max [c~(s)-(y~ + z)l>q). 
h<_s<-z+h 

There is no problem with the last summand. It consists of two factors the first of 
which tends to a constant in the limit h~0 ,  R ~ 0  (independent of z; use (10.4)), 
whereas the second factor becomes of the form/~ ( max ] (5 (s) l > t/) which tends to 

O<_S<_Z 

zero for z--*0. 
To handle the first summand on the right hand side of (10.66) we assume 

R < t//2, and get 

(10.67) l imh- l~dz/~(  max [c5(s)-z]>~l;Te<h, Te(cS{)>z) 
h ~ O  h<-s<-z+h 

=l imh  -1 ~ dzP~( max le5(s)--zl>tl;rR<h, rR((5~)>'c) 
h ~ O  Izl<_n/2 h < - s < z + h  

<limh- ~ ~dzP~( max ]~(s)l>=q/2; Zg <=h, ZR(~5~)> ~). 
h ~ O  h<-s<-z+h 

Now we can apply (a) to this last expression, hence (b) is proved. 
Turning to the proof of (a), assume R < I /and use the notations 

(10.68) K={xelR3:lx[<rl}, L=KC={xelR3:lxl>tl}. 

By time reversal (a) is equivalent to 

(10.69) lim lim limR lh-l~dzP~(TL<z;Tes(z,z+h])=O. 
z~O R ~ O  h~O 

In order to prove (10.69) consider first 

(10.70) 
d < 

limh l~dzP~(TL <z;Tee(Z,z+h3)=~SdzP~(TR-Z). 
h ~ O  L d z  L - -  

By means of (10.2) an interchange of differentiation and integration is allowed 
and 

(lo.71) lim l imR-l  ~dzdp~(TR <z)=O. 
z~O R ~ 0  L a ' ~  

Therefore it remains to consider 

(10.72) S d z P~(Tr.~ z ; TRY(Z, V +hi )  
K 

N S dz ~ SP~(TLedt, cO(TL)~du)P~(rRE(Z--t,z--t +h]). 
K [0,~] 
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By r o t a t i o n  s y m m e t r y  we can  c h o o s e  any  p o i n t  y on  the  b o u n d a r y  o f  L, i.e. 

(10.73) l y l - - q  

a n d  wr i te  the  last  express ion  o f  (10.72) in the  f o r m  

(10.74) S SdzP~(TLedt)'Py(TR~(r-t,z-t+h])" 
[0,~l K 

U s i n g  (10.2) o n c e  m o r e  as wel l  as (10.73) we get  

(10.75) l ~ m R - 1 1 i m  ~ SdzP~(TLEdO.h 1Py(TRE(z- t ,r- t+h])  
R ~ 0  h ~ 0  [0,z I K 

= l i m R _  ~ ~ ~dzP~(TL~d d t ) ~  Py(TR < Z- t )  
R ~ 0  [0,z] K 

< l i r a  ~ ~dzP:(Ttedt).(4~zD(z-t))3/2 
R ~ 0  [0,z] K 

�9 e x p ( - -  (I/-- R)2/4D(r - t)) 

= ~ ~dzP:(Tn~dt).(47rD(z_t) ) 3/2 
[0,r] K 

�9 e x p ( - - l y l 2 / 4 D ( z  - t)) 

= ~ ~dzPz(TL~dt, cO(TL)6du)'P,(o(z--t)=O) 
[0, z] K 

= SdzP~(~o(~)=0; T~<~) 
K 

< Po(T~ < T). 

But  l im Po (TL < r) = 0, thus  L e m m a  10.8 (a) is p roved .  
r ~ 0  
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