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1. Introduction 

Let #"* denote the n:th convolution of a positive measure # on IR. Put 

~(a) =~ e "x #(dx) (1.1) 

and 

s (x) = inf (log ~b (a) - a x), (1.2) 
a s A  

where A denotes the interior of the set of a for which ~b(a)< c~. Let furthermore 
re(a) and v(a) stand for the meanvalue and variance of the probability measure 
#,, where 

e a x  
#,(dx)= ~-(~ #(dx). (1.3) 

We have m'(a)=v(a) and hence the mapping A--+a-+m(a)~m(A) is one to one 
unless v(a)=0 i.e. # is concentrated at a single point. Let us write c~ for the 
inverse mapping, ~ = m-1 

Cram6r 1938 showed that if 0~A (and v(0)>0) then 

#"*(Ix, oo)) [ ( ~ n ) ]  1+O (1.4) 1_ 4)(2~_= qS(0), e~, ,~ ,  2 

for 1 < 2  =o ( l / n  ). Here 2 = ( x - n m ( 0 ) ) / n ] / ~ ,  ~(x)=(21r)- 1/2 i exp ( -y2 /2 )  dy, 
- c o  

and 2 is a certain power series. (Cram6r's error term was slightly worse 
because the Berry-Esseen theorem was not known at that time.) He also 
showed that if, in addition, # has a non-vanishing absolutely continous com- 
ponent with respect to the Lebesgue measure, then for fixed c satisfying 

0044- 3719/79/0049/0105/$02.60 



106 T. H6glund 

m(O)<c~m(A) 

#"*([-nc, oo))=]/2nnv(a(c))d(c) 2 1+O . (1.5) 

Blackwell and Hodges 1959 showed that if the support of # is contained in a 
coset of a discrete subgroup of IR, then (after a suitable normalization) 

= e "s(e) 1 [1+O (~)] 
#"*([nc, oo)) ]/2"nnv(d(c)) 1-e-~(c) (1.6) 

where again c is fixed and m(O)<cem(A). 
Bahadur and Ranga Rao 1960 pointed out that (1.5) holds (with O(1/n) 

replaced by o(1)) in all cases not covered by (1.6). (We are still excluding the 
case v(0)=0.) Petrov 1965 showed that the convergence in (1.5) and (1.6) is 
uniform when c stays away from m(0) and the boundary of A. 

The object of this paper is to give a unified formulation of these results, and 
to give conditions under which our approximation holds not only when x/n (or 
c) belongs to compact sets but also when x/n is close to oo. 

Related results can be found in the book [8-] of Ibragimov and Linnik and in 
that of Petrov [10]. See for example Ch. 14 of the former. A k-dimensional result 
which is related to ours in the continuous case was given by Borovkov and 
Rogozin 1965. 

2. Results 

We shall need two functions namely 

~(2) = e~/2(1 - ~(1/2)) (2.1) 

and 
1 i e x p [ 2 ( e i r  d~. (2.2) 

P(2' s) = 2nn _ ~ l_seir 

z is completely monotone ( ( -1)"  z(")(2)> 0) and satisfies ~(0)= 1/2 and 

1 
1 - ~ < ~ ( 2 ) 1 / 2 n 2  < 1, 2>0.  (2.3) 

For p the following is true 

l imp ,e  -la = r(I~ a2), (v>0,  a > 0 )  (2.4) 
l + O  

and for fixed 0 < s < 1 as 2--* oo 

p(2, s)-(l_s) 21/~ 1 + 0  . (2.5) 

Some of these statements will be proved in Sect. 5. 
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Let G(#) stand for the smallest closed subgroup of IR containing all the 
differences of the numbers in the support of #. Then either G(#)=IR, G(#)=17/ 
for some 0 < I < o% or G(#) = {0}. 

Theorem A. (i) I f  G(#) = IR, then 

#"*([x, oo)) = e "s(x/") z(n v(~(x/n)) ~t(x/n) 2) [1 + o(1)3 (2.6) 

uniformly in x when ?t(x/n) stays within compact subsets of An[0,  oo). The error 

o(1) may be replaced by O(1/]/n) if Condition 2.1 below is satisfied. 

(ii) I f  G(#) = 17s then 

#n*(Lx, oo))=enS(x/") p \ 12 ' 

uniformly in x when ~(x/n) stays within compact subsets of Ac~[0, oo) (and x 
belongs to that coset of G(#) that contains supp #"*). 

The theorem remains true if we replace #"*(Ix, oo)) by #"*((-- ~ ,  x]) and 
Ac~[0, oo) by A n ( - o o ,  0] (this is why we used the absolute value sign to the 
right in (2.7)). Note that we formally get (2.6) from (2.7) if we let I ~ 0  and use 
(2.4). Note also that we have not assumed that # has finite total mass (the left 
tail may be infinite). We may write O(min(n -1/2, (ngt(x/n))-l)) instead of 

O(1/1~ ) in (2.7). The same remark applies to (2.6) under the additional Con- 
dition 2.1 below. Also, the error o(1) in (2.6) can be replaced by the smallest of 
o(1) and O(max(n-1/2, x/n-m(0))) .  

Condition 2.1. lim sup I~b(a + i~)1 < 4(a) for some a~A. 

It follows from Lemma 4 in [1] that the inequality in Condition 2.1 holds for 
all a~A if it holds for some. This was pointed out to me by R.N. Bhattacharya. 

Corollary. All the results described in the introduction follow from Theorem A, 
provided we replace the errors in (1.4), (1.5) and (1.6) by o(1). They follow as they 
stand if we use the modified error terms mentioned above. 

We already known that the results of Section 1 hold so we will only sketch a 
proof. 

Proof. Define 2 in (1.4) by z 3 2 ( z ) = s ( m ( O ) + z v ] / ~ ) + z 2 / 2  and note that s'(x)= 

-el(x), c~'(x)= l/v(c~(x)), x / n = m ( O ) + Y l ~ ) / n ,  and hence that nv(~(x/n))~(x/n)= 

=(1 + O(2/]/n)). When G(#)=IR (1.4) now follows from the inequality I-c(2(1 +e)) 
-~(2)1 <Const.  le] r(2) valid for 151 < 1/2 and 2>0.  When G(#)=ILZ we need in 
addition a refined form of (2.4) namely Ip(2, e -b) -r (2bZ) t<Cons t . (b  
+2-1/=) ~().b=) valid for b >0  and ).>0. 

The remaining results of Sect. 1 follow via (2.3) and (2.5). Note that Con- 
dition 2.1 is satisfied if # has a non-vanishing absolutely continous component 
with respect to the Lebesgue measure. The normalization mentioned just before 
(1.6) is l=  1. 
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If #(dx)= e x2 dx then (2.6) holds not only when x/n belongs to compacts but 
uniformly for x/n>m(O). It can also be verified that the same is true when # is 
concentrated on (0, ~ )  and there defined by #(dx)=e-~dx .  A similar remark 
applies to (2.7). There are more measures with this property, namely measures 
satisfying the following condition. 

Condition 2.2. The support of # is bounded to the right, sup supp # = r < o% and; 

(i) G(#) =IR. 

For some a > 0 and some L that varies slowly at 0 

#(Ix, ~ ) ) = ( r - x ) ~ L ( r - x ) ,  for x<r .  (2.8) 

(ii) G(#) = 12~. 

# ( r - l )  >0. (2.9) 

Theorem B. Suppose that Condition 2.2 is satisfied and that O<=b~A. Then the 
approximations (2.6) and (2.7) hold uniformly in x when x/n > re(b). 

Here again the error terms can be improved. We interprete the right hand 
side of (2.6) and (2.7) as 0 when s ( x / n ) = - o s .  The letter b occurs in the 
formulation of the theorem just to cover cases where 0•A. 

3. The Discrete Case 

We are now going to prove Theorem A and B when G(#) = 12g, and shall assume 
that l = 1 and that supp#  is a subset of Z itself. This is just a normalization. 

In Theorem A we consider only values of x for which x/nsm(A), but in 
Theorem B it may happen that x/n>r.  Let us first point out that if Con- 
dition 2.2 holds, then s(x)= - o o  for x>r ,  s(r)=log#(r) and 

p(n v(~(r)), e -~(')) = p(n v( oo ), e-  ~)= p(0, 0) = 1. 

So the conclusion of Theorem B is true for x/n>r.  It therefore suffices to 
consider values of x for which fi(x/n) is finite. 

By Fourier inversion 

1 
#"*(y) = ~ ~ e -(~+i~)y d?(a + i c~)" dc~. (3.1) 

Sum both sides of this identity over y from x to o% put a = d(x/n), note that 

s (x) = log q5 (fi (x)) - ~ (x) x 

and thus conclude 

#"* ([x, ~))  = e "~(xl") I,(~(x/n)). 

Here 

I,(a) = 2 ~  i 'a(c0" d~ 
- n  1 - - e  - a - l n  

(3.2) 

(3.3) 

(3.4) 
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where 

(o(a + i 0:) e_i~m(a) - ei~(x_m(a) ) 
G(~) = ~(ai - S  t6(dx) �9 (3.5) 

The usual approximation here is to replace G(c0 by exp(-e2v(a)/2).  This 
approximation is a good one provided v(a) stays away from 0. Theorem B 
covers, however, eases for which this is not true. We will instead approximate 
G(~) by exp q(~), where q(0:)= v(a)(e - i ~ -  1 +io O. 

This will be done using the following standard estimates: 

Iyn--enq]<=n max(17l,[eq])'-llT--eq], ]eq--I--ql<=�89 e M, 

and Iq[ <v(a)0:2/2. Hence (with obvious notation) 

[y"--enqI<=nmax(l'?,, ]eql) "-1 [I] 2 -  1--qlq (vet2); ew2/2 ] 
- . ( 3 . 6 )  

2 
But 1 - cos ~ =>~2 0:2 for [0:[ < ~, and hence 

leql<e ~ ~(~)~2 (3.7) 

and 

[1 --se-i~12>=(1 --s)Z+s 0:2. (3.8) 

The following proposition is a consequence of the definitions of I, and p and the 
estimates (3.6), (3.7) and (3.8). 

Proposition 3.1. Define I,(a) and G(0:) as in (3.4) and (3.5). Let 0 < 6 < 2 / ~  2. I f  

] G(~)[ __< e- 6~(,)~2 (3.9) 

and 

lT~(c~)- 1 -v(a ) (e  - i ~ -  1 + i 0:)1 __<B v(a)3/2 fc@ (3.10) 

for I~1<~, then 

( ~ n ~  1 ) ( 1  1 ) (3.11) 
I I,(a) - p (n v (a), s)] < C + ~nn rain i / s ,  1/~ n v (a) (1 - s) 2 

for n > 2 +  1/~. Here s=e  -~ and C is an absolute constant. 

Proof of Theorem A. The moments S [x-re(a)] k #~(dx) are never 0 or ~ and they 
are continuous functions of a and hence bounded away from 0 and oo when a is 
bounded away from the boundary of A. The estimate 

~2 0:2 
] 7 - 1 - q l  < 7 - 1 + ~ v  +v e - / ~ - I  + ic~+~-  

<,~3 [x_m(a),3 iG(dx)+~_v(a)  (3.12) 
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therefore shows that for each compact K c A  there is a constant B = B ( K )  such 
that (3.10) holds for all a e K .  The minimum to the right in (3.11) is by 
Lemma 5.2 dominated by ~5- 1/2 p(n v(a), e -a) max e "/2 and hence Theorem A will 

aeK 

follow from the following lemma. 

Lemma 3.2. Let  I~ be a measure with G(#)=2g. Then, for  each compact K c A  
there is a positive constant (3 = 6(K) such that 

]/~a(~)L < e -  ~ ) ~ 2  (3.13) 

for a e K  and Ic~l <Tz. 

Proof. By a standard estiamte 

I~&) l  < e- ~ ~<.)/3 (3.14) 

for [~L<c(a)=v(a)/~[x-m(a)l  3 #a(dx) (see Ch. XVI of [5]). So (3.14) holds for 
[c~l<c=minc(a)>O. The function (a,~)~/~,(c~) is continuous, the set C 

aeK 

={(a ,c~) laeg  , c<lc~[<rc} is compact, and [/2a(~)<l for (a,c~)eC (see [5], 
Lemma 4, p. 501). Therefore max I~a(~)l = q <  1, and hence (3.13) holds with 

(a, ~)eC 

6 = m i n [ � 8 9  (3.15) 
/ aeK 

Proof of Theorem B. Let us start with a lemma that can be proved in a similar 
way as Lemma 1 of [7]. 

Lemma 3.3. Let  # be a measure on 7Z such that /~(r)>0 and # ( r - t ) > 0  (t=> 1) but 
/z(x)=0 for  r=t=x > r - t .  Then for  each b e A  there is a constant C =  C(b) such that 

m ( a ) _ r + t  g ( r - t )  e-m, <Ce-at t+l )  
~(r) = 

(3.16) 

re(a)) k #o(dx) - ( - t) k ~ )  e -  a~ < C k e -  ~ + 1) (x 

for  all a>b .  Also 

~ - 1 - 2 ~ e ~ + O(e -a(t+ 1)) 

(3.17) 
~ ( + t ) -  ~ ( r -  t) e ~ + O ( e -  a. + 1~) 

~(r) 

for  a >= b. Here 

%a(X)= Y~ ~a(Xl) ~a(X2). (3.18) 
X l - - 1 2 = X  

Lemma 3.4. Let  t~ be a measure on 2~ such that max s u p # = r <  o% and let beA .  
Then there is a constant c = c(b)> 0 such that 
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I fia(c01 < e-  c~ (,) ~ (3.19) 

for all a > b  and 1<<7c/f and only if # ( r -  1)>0.  

Proof  We have 

1 -]/~(c~)l 2 = ~ (1 - cos c~ x) ~ 
(3.20) 

> (1 - cos c~) 2 0#a(1 ) > (1 -- COS C~) 2 #,(r) #a(r -- 1). 

But 

#,(r) #a ( r -  1)=#(r )  # ( r -  1) e-~(ear/~(a)) 2 (3.21) 

and ea"/~(a) increases with a. Also, 1 - c o s  ~x~20~2/rc 2 for Icd < m  Hence 

(2)2 
1 - I  fia(c~)f 2 > c~ 2 #(r) #(r - 1) (ebr/4(b))2 e -a (3.22) 

for a>b .  A glance at (3.16) now shows that  1-l~a(c~)12>2c~2v(a), and hence 
that  (3.19) holds for some constant  c > 0 ,  provided # ( r - 1 ) > 0 .  

Conversely, with t as in Lemma  3.3 

1 -I~(~)l  2 = (1 - c o s  c~ t) 2 ~ + O(1 - ~  ~ - % o ( -  t)) 

1 - cos c~ t 1 +k (3.23) 
- t2 v(a)+O(v(a) ') 

contradict ing (3.19) unless t = 1 (put c~= 2 x/t  and let a ~ oo). The lemma follows. 
The relation (3.16) with t = 1 implies in exactly the same way as in [7] p. 176 

that 

17a(~)-  1 q-v(a) (e  - i ~ -  1 + ic~)[ =< Const. tc~l 3 v(a) 2 (3.24) 

for a > b  and ]c~l<rt. Also v(a)e~<Const ,  for a>b.  Proposi t ion3.1  is thus 

applicable with B = Const. ] / ~ a )  and a = the c of L emma  3.4. Hence  (note that  s 
=e-~=<l )  

< Const.lfn [1 1 [ I , (a ) -p(nv(a) , s ) [= + ~ ]  min /1, ! 
\ l / n v ( a ) ( l _ s ) ~ )  (3.25) 

for a>b.  So Theorem B follows from Lemma  5.2 and the following remark:  
F r o m  (3.16) (with t =  1) 

n(r - re(a)) = n v (a) + O(n v (a)2). (3.26) 

But 

n (r - m(~(x/n))) = n t - x ~7s + (3.27) 

and hence nv(a(x/n))>=c>O for b < a ( x / n ) < c ~  and n large. Also, if 
nv(a(x /n))<2 o then nv(a(x/n)) differs from one of the integers 1, 2 . . . .  ,2  o by at 



112 T. H~Sglund 

most O(1/n) and hence (see (5.5)) 

p(nv(~(x/n)),s)> rain p(k,s)+O (1) 
k= 1, ..., 2o 

> man p ( k , O ) + O ( ~ ) > c > O  
k~ 1, . . ,20  

for large n. 

(3.28) 

4. The Continuous Case 

Our starting point is again (3.3), but we shall here use the representation 

I,(a)= ~ e -a( . . . .  (a))#,,,(dx) (4.1) 
nm(a) 

which is a direct consequence of the definition of #a. Make the substitution 

x ~ n re(a) + x l/-n v (a) in (4.1) and define D,(a, x) by 

#"a * (( -- 00, n re(a) + x ~ ) )  = ~(x) + 7 ~(3)(x) + Dn(a, x) 

where 

(x - m(a)) 3 #a(dx) 

~= 6 V ~ 3  

Then I.(a) = I',,(a) + I'.'(a), where 

I~,(a)= ~ e - t x~ (dx)+7  e -'x~(3)(dx) 
0 0 

I~'(a) = ~ e-t:'D,(a, dx). 
0 

Here we used the abbreviation 

Some calculations show that 

r.(a) = ~(t 2) (1 + ~ O(t)), 

where 

O(t )  = t 3 
1 - - t  2 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

It is easy to see that 0_<__0(0<=4 for 0 < t < l ,  and the inequalities 
1 - - t  - 2  ~'c(t2) 2 ] / ~  1 --t -2 q- 3t - 4 >  11/12 (see [4] p. 179) applied to (4.7) yields 
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O < _ _ O ( t ) < 3 t - l ( 1 - t 2 + 3 r 4 ) - l < ~ t  -~ for t__>l. Hence 

0 < O(t) < 4 rain (1, l/t) (4.8) 

for t>0,  and thus in particular 10(t)l <4. We conclude: 

I',(a)=z(nv(a) a a) [1 +u ~ lx-m(a)[ 3 #,(dx)], (4.9) 

where Ivl <2/3. 
By a partial integration 

I2(a ) = -Dn(a, O) + t ~ e ~XD,(a, x) dx (4.10) 
o 

and hence 

I'(a) < 2 sup [Dn(a, x)[. (4.11) 
x 

Lemma 4.1 

ID,(a, x)l < ck4(--a)~+O,(T)" log T (4.12) 
TVn 

for 1 < T < l fn  and all x. Here C is an absolute constant, 

k~ (a) = ~ Ix - m (a)] ~ #a (d x) v (a)- ~/2, 

and 

Oa(T ) = max I/~a(e)l. 
1 _-< I~lk~ (a) vV'b2m _- < T 

Proof. The letter C denotes absolute constants in this proof. By Essen's lemma 
(see [5] p. 538) 

ID.(a, x) t< ,~_  I~1 = S 

for S > 0 and all x. Here 

[1 + k3 (a)] M(a)=maxx r#'(x)+v#('~)(x)[ < C [ l /n  J' (4.15) 

By a variant of the estimates in Ch. XVI.5 of [5] 

I/)n(a, c~)t _-< C k4(a) e-~/3 e4(1 + ~2) (4.16) 
F/ 

for 1~1 <I~/G(a) .  It is clear that 

[ 1 k3(a ) \ 
ID~(a, cc)l<O~(T)~+e7 ~/a ( 1 +  1~I3)<O.(T)"+C t~+l~nn) (4.17) 
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for ] f  n/k3(a) <= I~1 ~ Z~/k3(a). Put, S=  Tl/~/k3(a)in (4.14) and split the integral 
to the right into two parts: I~1 <l/n/k3(a) and l~/k3(a)< [c~l <=S. The lemma now 
follows from the estimates above and the moment inequalities 1 __<k3(a)2__ < k4(a ). 

Let us sum up (note that r (2)>c/1/2+ 1). 

Proposition 4.2. Define 1,(a) as in (4.1) and O,(T) and kv(a ) as in Lemma 4.1. Then 

II , (a)-z(n v(a) a2)l 

<Cz(n v(a)a z) [k3~(~a)+ (k4~(a~)+ O,(T)" log T)]/nv(a)a2+l ] (4.18) 
k i ln  \ rl /n .1 

for 1 <_ T <_]/n, and aeA. Here C is an absolute constant. 

Proof of Theorem A. Choose the compact K~An[O, oo). In the same way as in 
the proof of Theorem A in the discrete case one finds that k~(a) and v(a) are 
bounded away from 0 and oo when aEK. Also, the function (a, c0~/~,(c 0 is 
uniformly continuous on K xlR and I~,(c~)l<l for ~+0  (see I-5], Lemma 4, 
p. 501). Hence sup O,(T) < 1 for each T< o% and if Condition 2.1 is satisfied then 

a s K  

also sup 0~(oo) < 1. Theorem A follows. 
a ~ K  

Proof of Theorem B. Theorem B is a consequence of Proposition 4.2 and the 
following two lemmas. Note that it suffices to consider large a, Theorem A takes 
care of the remaining values. 

Lemma 4.3. Suppose that lz satisfies Condition 2.2 (i). Then 

s~(~) 
~(x-m(a)) # , , ( d x ) ~ - ,  k=2,  3, ... (4.19) 

as a ~ oo, where 

k 

Proof. Put v(y)=y~L(y), y>0.  Then (Theorem 2, p. 283 of [-5]) 

(4.20) 

x 

yk v(dy)~a_ ~ xk+O L(x) 
0 

and hence (Theorem 2, p. 445 of [5]) 

~ e-ay Yk v(d Y) ~ ak +~ 
0 

as a ~ c~. The lemma now follows from the identity 

(x-m(a)) k # , (dx)=(-  1) k ~ ( y -  ~ tlv~(d~l)) k v,(d y) 

=( -  l/kj~ ~ ~ / ~~ I ~~ ~-~ 

(4.21) 

(4.22) 

(4.23) 
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where 

e -~y v(dy) 
v.(dy) = o~ (4.24) 

e -~  v(dt/) 
0 

L e m m a  4.4. Suppose that # satisfies Condition 2.2(i). Then 

sup sup I~(ac~)[ < 1 (4.25) 
1~1>6 a > b  

for any c5>0 and some beA. 

Proof Again  using the fact that  v varies regularly at 0 one finds that  G(dy/a) 
converges weakly  to y ' -  1 e -y  dy/F(a) as a -+  oo, and hence that  ~ ( a c  0 -+ 1/(1 - i~) 
uniformly in c~. Bu t /~ (~ )  = e  i~= ~ ( - ~ ) ,  and hence (4.25) holds for all large b. 

5. The Functions T and p 

By the definition 

oo 

.c(2)=ea/2 ~ e_X2/2 dx 
VT ] ~ "  

The  subst i tut ion x 2 --,x + 2  therefore gives 

~ 2 ~  ~176 e -  x/2 

and hence 

( - 1) ~ z(")(2) ( -  1)" e x/2 dx 

- o ( x + ~ O  "+~/2  >0. 

The inequalities (2.3) are (1.8) p. 166 of [4]. 
It  follows f rom (2.2) that  

p(2, s )=  e -x  s m 

= Z Z e  ~;~~ s m sin ~ ( n + m - 2 )  
n! ( n + m - 2 )  

and hence in par t icular  that  

2" 
p(2, s )=  X e- ; ' - - sm 

n+m= 2 n [ 

when 2~N.  

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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Lemma 5.1. limp(v~12, e- l~)=z(va2)for  v > 0  and a > 0 .  
l ~ O  

Proof Make the substitution ~ ~ l~ in (2.2). Then by dominated convergence 

lira p (/~, e - l ~  = 1 ~  +~ ~~ e-~2/2 
t~o l 2n -oo  a - i ~  d~=~(va2)" 

Here we also used Parseval's relation. 
We will not take space to prove (2.5). 

Lemma 5.2. There are positive numbers c and 2 o such that 

for )~>2 0 and 0 < s < l .  

Proof Put 

/~()~,s)=2~ i e-~2/2 
_~ 1 - - s e  i~ do~ 

and note that 

Const. 1 
Ip(,~,s) p(2, s)l< 1/~ m i n ( ~ )  

We may replace (1-sei~) -1 in (5.8) by 

1 - s  
Re (1 - sd~) - 1 > (1 - s) 2 + 2s (1 - cos ~)" 

But 1 - cos c~ < c~2/2 and hence 

1 

where 

g/"( t )=27 ~ e_~2/2 t 2 +t ~2 dot>c_ min 

for some c > 0, provided L > 1. 

T. H6glund 
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