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Summary. Let {Y/} be iid with EY I =0, EY( = 1. Let {Xi} be iid normal mean 
zero, variance one random variables. According to Strassen's first almost 
sure invariance principle {X~} and { Y~} can be reconstructed on a new proba- 
bility space without changing the distribution of each sequence such that 

[ q  

Yi- ~ Xi=o(n logzn) '/2 a.s., thus improving on the trivial bound ob- 
i - 1  i ~ l  

tainable from the law of the iterated logarithm: ~ Y/- ~ Xi=O(n log 2 n) 1/2 
i=1  i=1 

a.s. In this work we establish analogous improvements for symmetric {Y/} 
in the domain of normal attraction to a symmetric stable law with index 
0<c~<2. (We make this assumption of symmetry in order to avoid messy 
details concerning centering constants.) Let {X~} be iid symmetric stable 
random variables with index 0<~<2.  Then, for example, hypotheses are 

stated which imply for a given 7 satisfying 2 > y >~ that ~ Y/- ~ Xi=o(n'/' ) 
i--1 i=1  

a.s., thus improving on the trivial bound: ~ Y/- ~ X i=o(n (1/~)+~) a.s., e> 0. 
i=1  i=1  

1. Introduction 

Let {Y i} be independent identically distributed (lid) random variables with EY~ 
=0 and EY(=I. From the viewpoint of this paper, Y1 is in the domain of 
normal attraction to the normal law. (See [2] p. 180 for a discussion of normal 
attraction.) Let {Xi} be iid normal random variables with mean zero and 
variance one. According to Strassen's first almost sure invariance principle [8], 
there exists a probability space with {X~} and { Y~} redefined on it such that each 
sequence has the original distribution and that 

• Yi- ~ Xi=o(nlogzn) 1/2 a.s. (1.1) 
i=1  i=1  
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This improves the trivial bound obtained from the law of the iterated logarithm 
when {Xi} and {Y/} are say independent of each other: 

• Yi- ~ Xi=O(nlog2n) 1/2 a.s. (1.2) 
i = l  i = 1  

It is the purpose of this paper to establish results analogous to (1.1) for random 
variables in the domain of normal attraction to a stable law with index 0 < c~ < 2. 
In Sect. 2 as a preliminary step we establish results which yield bounds anal- 
ogous to (1.2) for 0 < c~ < 2. The results of Sect. 2 may be of independent interest. 
In Sect. 3 we establish almost sure invariance principles analogous to (1.1) for 
0<c~<2. 

2. The Strong Law for Random Variables Outside the Domain 
of Partial Attraction to the Normal Law 

Throughout Sect. 2 and 3, all random variables are assumed to be outside the 
domain of partial attraction to the normal law unless specifically stated other- 
wise. (See [2], p. 183 for a discussion of partial attraction.) Further, in order to 
avoid messy details about centering constants, all random variables are assumed 
to be symmetric. Similar results can be obtained when the assumption of 
symmetry is dropped. 

Let {Yi} be such a sequence of lid random variables. Let 0<a,] 'ov. The 
following theorem is a restatement of a result of Heyde [3]. 

Theorem 2.1. We have that 

Yi=o(a.) a.s. or 
i = l  

according as 

l imsupi=l  =oe a.s. 
a n 

(2.1) 

P[lY1]>a,]<oo or ~ P[lY, l>a,]=c~ (2.2) 
n = l  n = l  

(see also Feller [1] for a closely related result). 

Definition. Let {Xi} and {Y/} each be sequences of lid random variables. 
Suppressing subscripts, we say that X and Y obey the same strong law of large 
numbers if for each 0 < a,]'oo either 

(i) ~ Xi=o(a,), ~ Y/=o(a,) a.s. 
i = 1  i = 1  

o r  

(ii) lim sup ~ Xi/a,= o% lim sup ~ Yja,= oo a.s. 
i = 1  i = 1  

When (i) holds for {Xi} we say that the strong law holds for X. 
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Theorem 2.2. X and Y obey the same strong law of large numbers if and only if 

P[!rt>x:  
P[IX l>x]  41  as x ~ o o .  (2.3) 

(Here ~ is a convenient substitute for the "big 0" notation.) 

Proof Assume (2.3). Choose a,]'oo. Then ~ P[rXl>an]<oo if and only if 
n = l  

P[I YI >a , ]  < oo. Apply Theorem 2.1 to obtain the desired conclusion. 
n = l  

Now assume (2.3) fails. Then P [ I Y l > x ] / P [ I X l > x ]  has either 0 or oo as a 
limit point. Because of the interchangeability of X and Y it suffices to consider 
the case where oo is a limit point. By Theorem 2.1 it suffices to construct 

0<an]'oo such that ~ P[IXl>a~]<oo,  ~ P[tgl>a~]=oo.  By assumption 
n = l  n = l  

there exists x i'f 0% b i >= i and i s < Yi'~ oo such that P [IXI > xl] = 1/Yi, P [I Y J > x~] 
= b]yz. We will choose the first few a, to be some constant, the next few a, to be 
some other constant, etc. Let the first ([ .  ] denotes the greatest integer function) 
[3,1/12] of the a, equal xl,  the next [y2/22] of the a, equal x2, ..., the j t h  [yjj2] 
of the a n equal x j, etc. Thus 

~ [ j y ~ ]  1 
PKIXI >an] = 1 < - - <  oo 

n = l  j = l  Yj j l J  2 

and 

-- P [ t Y ] > a J -  - -=oo.  [] - [Y,I bJ__> J 
,= 1 j= 1 [ T J  y; 7 1  y; 

If Y is in the domain of normal attraction to a stable law with index c~ we write 
Y~N(~). 

Corollary 2.1. Let X and Y satisfy X6N(~x)  , Y~N(~y) for indices c~x<2, :~y<2 
respectively. Then X and Y obey the same strong law if and only if c~ = ~y. In 
particular X stable with index ct <2 and YeN(Ctx) implies X, Y obey the same 
strong law of large numbers. 

Proof By a result of Gnedenko, ([21, p. 181) it follows that (2.3) holds if and only 
ifct x=c~y. [] 

Corollary 2.1 raises the question whether a random variable Y can fail to be 
in the domain of normal attraction to a stable law X and yet obey the same 
strong law of large numbers as X. The answer is "yes": 

Example 2.1. Let X be Cauchy and F r for large x be given by 

2 + sin (log x) 
1 - f A x ) -  

X 



26 W.  S t o u t  

Note that Fy is a distribution function and that (2.3) holds. Thus X and Y obey 
the same strong law of large numbers. According to a result of Gnedenko ([2], 
p. 181), Y is in the domain of normal attraction to a Cauchy distribution only if 

A +/3(x) 
PEIYI>x] 

X 

for some A>0,  f l(x)~0 as x ~ o o .  Thus Y is not in the domain of normal 
attraction to the Cauchy distribution. 

Recall that the purpose of Sect. 2 is to obtain a bound analogous to (1.2) 
with {Xi} being l id stable with index c~<2 and {Y~} being l id and in the domain 
of normal attraction to X~. Since X and Y obey the same strong law of large 
numbers, it follows from the results of this section that when 

P E l Z t l > a . ] < o o  (equivalently ~ P [ lY~ l>aJ<oo)  we have for {Xi} and 
n = l  n = l  

{ Y~} independent say of each other 

f f  24t 
i = 1  i = l  

It is the goal of Sect. 3 to construct {Xi}, {Y~} such that (2.4) is improved just as 
(1.1) improves (1.2) in the ~=2  case. It should be noted that (2.4) is the proper 
analogue to (1.2) in the sense that there is no analogue to the L I L  for random 
variables in the domain of normal attraction to a stable law with index c~ < 2. 

3. Almost Sure Invariance Principles 

In order to improve (2.4) we make use of the concept of the quantile transform, 
so successfully exploited by the Hungarian school of probabilists (see [4] for 
instance). 

Lemma 3.1. Let Y~N(~) with index 0< c~ < 2, Then there exists A >0, fl(x)--+O as 
x-* oo such that 

P [ Y > x ]  A+fi(x) ,  x>0 .  (3.1) 
X c~ 

Let W have a distribution function F w which is strictly increasing and continuous. 
and 

A 
P [ W > x ] = ~ ,  x large. (3.2) 

Then, as Y ~  oo 

[ Y - F w  1 Fy(Y)I "~ YIfi(Y)I. (3.3) 

Moreover F~ ~ Fr(Y ) has the same distribution as Wprovided Y has a continuous 
and strictly increasing distribution function. 
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Proof. (3.1) is Gnedenko's result ([2], p. 181). We have for some w o, 

Fwl(w) = \ ~ ]  ' l > w > W o .  

Hence, there exists yo>O such that for Y>Yo, 

{A + fl(Y)} I /~-A 1/~ 
Y -  F~ ~ Fy( Y) = Y 

{A + fi(Y)} 1/a 

An application of the mean value theorem now yields 

[Y-Fw1Fy(Y)]< Y[fi(Y)[. [] 

We no can state the improvement (2.4). 

Theorem 3.1. Let c~<2. Let Y~N(~), Y thus satisfying (3.1). Let X be stable of 
index ~,, with X scaled such that 

A + y(~) 
P [ X > x ]  - , x > 0  

X a 

where fi'(x)~O as x ~  oo. Let g( . )  be non-decreasing and satisfy 

g(x)>x3(x), x large 

where (~(.) is computed from fi(.), fi'(.) and satisfies 0 < f i ( x ) ~ 0  as x---,oo. Let 
0 < ant oo be such that the strong law of large numbers holds for X (hence for Y). 
Suppose 

g(a,)/nl/rToo for some r < 2 and that {g(G)/n} (3.4) 

is either non-decreasing or non-increasing. 

Then there exists a probability space with {Xi} and {Y~} sequences of iid random 
variables defined on it with distributions F x and Fy respectively such that 

Yi-  ~ Xi=~ a.s. (3.5) 
i = 1  i = 1  

Moreover,/f0<x~(x)Too and (3.4) is satisfied for g(x)=x6(x), 

Yi-  ~ Xi=o(a,  5(a,)) a.s. (3.6) 
i = 1  i = 1  

Remark. Note when we can take g(y)= sup x a(x) that (3.5) and (3.6) are 
O_<x_<y 

stronger than (2.4) since F(G)--*O and hence g(a,)/a,~O. 

Proof. Let 3(x)= Ifl(x)[ + Ffi'(x)[. We shall only prove 

Yi-  ~ Wi=o(g(G)) a.s. (3.7) 
i = l  i = 1  
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where W~ are iid with distribution (3.2). For, the same argument can then be 
used to yield, on a possibly different probability space, that 

X i -  ~ W/=o(g(a,)) a.s. (3.8) 
i = i  i = I  

We can now construct {X~, Y~, Wi} on the same probability space in such a way 
as to preserve the joint distributions of {Y~, W~} and of {X~, Wi}. This is done by 
first constructing {W/} and then constructing { Y~} and {X~} conditionally inde- 
pendent given { Wi} and moreover with { Y/} given { W/} and {Xi} given { W//} each 
having the required conditional distributions. Then (3.7) and (3.8) can be 
combined to yield the desired (3.5). 

We now prove (3.7). By (3.4), it follows that 

~ -  ~ ~=o(g(a.)) 
i = 1  i = 1  

if and only if 

a . s .  

(Yi + Z i ) -  ~ Wi=o(g(a,) ) a.s. 
i = 1  i = 1  

where {Z~} is a sequence of i id random variables independent of { Y~} with EZI 

=0, EZ2<oo. For, ~ Zi=O(nlog2n) 1/2 a.s. by the law of the iterated loga- 
i = 1  

rithm. But Y~=Y~+ZIEN(~) and thus satisfies (3.1) with the same A, but a 
different /~(') determined from the fl(-) of Y1 and the choice of distribution of 
Z 1. Moreover, the distribution function of Y~ is continuous and strictly increas- 
ing; whereas, the distribution function of 171 may not be continuous and strictly 
increasing. Thus, in order to prove (3.7), we first construct Y~ lid and, if the 
distribution function of Y1 is not continuous and strictly increasing, we then con- 
struct Y/= Y/+Z i and finally construct W/=F w 1 Fy,(yi,). Hence, by an in essen- 
tial modification of the fl( ') (that is, the modified/~(x)---,0 as well), we assume 
without loss of generality that Y~ has a continuous and strictly increasing 
distribution function. Let 

W~ = Fw ' Fy( Y~) (3.9) 

define W//, where F w is given by (3.2). 

We have ~ P[I YI >a , ]  < oe. Thus noting that g is non-decreasing, we have 
that "= ' 

P[g(I Y]) >g(a.)3 < oo. (3.10) 

By Lemma 3.1, as Yi ~ o% 

I Y~-F~ 1 FAY31 ~ r~ IB(r31 _-< g(r3. 
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Thus, for some C > 0  by (3.9), (3.10) and symmetry 

i P U I g l - w l l > C g ( a n ) ] < ~  
n = l  

(3.11) 

Unfortunately we cannot now apply Theorem 2.1, because 171- W1 may not be 
outside the domain of partial attraction to a normal. However, according to a 
result of Feller (see [6], p. 132), the conclusion of Theorem 2.1 holds for all iid 
random variables (that is, even those not outside the domain of partial attrac- 
tion to a normal) provided the normalizing constants {b,} satisfy bjnl/r T for 
some r < 2 and {bn/n} is either non-decreasing or non-increasing. Thus applying 
this result of Feller's to bn= Cg(a,) in (3.11), (3.7) follows. The proof of (3.8) is 
now obvious, noting that F x is continuous and strictly increasing. [] 

Remarks. It should be emphasized that when 171 does not have a distribution 
function which is continuous and strictly increasing that the fi(.) in a(x)= ]fl(x) 
+lfi'(x)l is the fi(-) associated with the distribution of 171 +Z1. Of course, in 
applications, the distribution of Z~ can be conveniently chosen, say normal or 
uniform with a small variance, such that the fi(.) associated with the distribu- 
tion of Y1 + Z ,  is "close" to the fi(.) associated with the distribution of I71. 

With the method of this paper, {Y~-Xi} is an lid sequence. Hence the best 

possible result, using this method, would be ~ Y/- ~ Xi=O(n  log 2 n) 1/2 a.s. Hence 
1 1 

an assumption of the character of (3.4) is clearly needed. For, otherwise, the 
conclusion of (3.5) would be stronger than possible with the method used. 

Since finding an acceptable g(.)  requires knowledge of the behavior of a(.)  
which in turn requires knowledge of the behavior of fl'(.), it is very useful to 
know that there are asymptotic expansions for P [ X > x ] ,  x large. Indeed (see 
[6]) for c~ # 1, as x ~ oe 

A + B x-~ + O(x - 2~) 
P [ X > x ]  = X ~ 

where B # 0. Thus 

l~' (X) = B x -  o: _}_ O ( x -  2~x). 

When . = 1, 

fl'(x) = B x -  2 + O(x- 3) (3.12) 

is easily seen. 

Example 3.1. Let P l Y > x ]  = 1Ix for x large and X be Cauchy and scaled such 
that P [X >x]  = (1 + fl'(x))/x. Then, by (3.12), Ifl'(x)[ < C x -  2 for some C > 0 and 
all x>0 .  Hence a(x)< Cx -2 for x large. Let a ,=n  2. Define, for some 7<2, x>0 ,  

g ( x )  = X  1/(2y). 
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Clearly g(.)  satisfies the hypotheses of Theorem 3.1. Hence, one can construct 

Yi-- ~ Xi=~ a.s. 
i = 1  i = 1  

for each 7 < 2. 
In the ~ = 2 case for a given 7, under the assumption that higher moments are 

finite, a sharpening of (1.1)to ~ Yi- ~ Xi=o(nil ')  a.s. is possible using a more 
i = l  i = 1  

sophisticated approach (see 1-5] for example). By analogy, in the ~ < 2 case it is 
interesting to ask when one can conclude for a given 7 that 

i Y i -  ~ Xi = ~ a.s. 
i = l  i = 1  

Theorem 3.2. Let c~ < 2. Assume Y~N(c O, Y thus satisfying (3.1), assuming without 
loss of generality (as explained in the proof of Theorem 3.1) that Y has a 
continuous and strictly increasing distribution function. Let X be stable of index c~ 
with X scaled such that 

A + p'(x) 
P [ X > x ]  - - -  

X c~ 

where f f (x)~O as x ~  ~ .  Let (referring to (3.1)) nl-~/~fl*(n 1/~) be non-increasing 
for fixed 2 > 7 > e  and large n, fl*(.) be continuous, non-increasing, and p*(x)--+0 
and fl*(" ) satisfy 

fi*(x)__> Ifl(x)l + Ifi'(x)l, x large. 

Suppose that x fl*(x) is strictly increasing as x~ oo and that 

~ fl*(nl/r)r/n ~/~ < oo. (3 .13)  
n = l  

Then the conclusion of Theorem 3.1 holds with (3.5) replaced by 

• Yi-  ~. Xi=o(nile) a.s. (3.14) 
i = 1  i = 1  

Remark. If {Xi} and { Yi} are independent of each other, then of course 

sup i=i " Xi 
lira n l /2 = 9(3 a . s .  

Thus (3.14) is an improvement over what can be trivially obtained. 

Proof Let Y* be a random variable satisfying 

A +/~* (x) 
1--Fy,(X)-- x ~ , x large. 
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Note for x large that Y* has "fatter tails" than Y and fl*(x)$O. Now, for some 
C>O 

E IY*I 7 fi*(l Y* [)7 = ~, ElY* 17 fl*(] Y*I) 7 I(n <] Y*I 7 < n + 1) 
n = 0  

< ~ (n+l)fi*(nl/')'P[n<lY*rT<n+l] 
n = 0  

( 1  1)377 ) <2AC.=o (n+l)fl*(nl/7)7 n ~/7 ( n + i  

+ 2 C ~ (fl*(rtl/7) 7 {rt  1 - ~ / ' / ~ * ( n  1/7) - (n + 1) 1- ~/7 fl*(n + 1)1/~)} 
n=O 

R.inllT'ff 
+ 2 C  V " "" ' fl*(n~/7) 

.~=o n~/~ 

But the second sum is bounded by a collapsing sum. Hence, by (3.13), 
E[Y*[Tfi*([Y*[)7< oo. Hence, for some {b,}, C>0,  and C '>0  

oo > ~ P[lY*l fi*(lY*l)>n ~/7] 
n = i  

= ~ PEIY*I>bJ 
n = l  

>c ~ P[IYl>bn] 
n = l  

= C ~ P El YI r162 YI) > n ~/'] 
n = l  

> C' ~ P[-I YI fi(lYl)>nl/~]. 
n = l  

Thus, for some C > 0  using (3.3) and symmetry 

P[l g i -  wll> Cnl/7] < ~. 
n = l  

Hence, E f Y1-W~IT< oo and by the Marcinkiewicz strong law of large numbers, 
noting that 2 > 7, 

K - ~  W~=o(n 1") a.s. 
i = l  i = 1  

As in the proof of Theorem 3.1, this suffices to establish the desired 

Yi- ~ Xi=o(nl/7) a.s. [] 
i = i  i = 1  
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Example 3.2. Let us see how Theorem 3.2 applies to the situation of Example 3.1. 
That is, let P[Y>x]=l/x for x large and X be Cauchy and scaled such that 
P[X>x]=(l+[3'(x))/x. As before, Ifi'(x)l<Cx -2 for some C > 0  and all x >0 .  
We take /~*(x)= C(logx)x -1 for x large. Clearly ]~*(') satisfies all hypotheses 
for each 7 <2. Hence, one can construct 

i Yi-iXi=o(nl/~) a.s. 
i=1 i = i  

for each 7 <2, the same conclusion obtained from Theorem 3.1 in Example 3.1. 

References 

1. Feller, W.: A limit theorem for random variables with infinite moments. Amer. J. Math. 68, 257- 
262 (1946) 

2. Gnedenko, B.V., Kolmogorov, A.N.: Limit Theorems for Sums of Independent Random Vari- 
ables. Reading, Massachusetts: Addison Wesley, 1954 

3. Heyde, C.C.: A note concerning behavior of iterated logarithm type. Proc. Amer. Math. Soc. 23, 
85-90 (1969) 

4. Koml6s, J., Major, P., Tusn~tdy, G.: An approximation of partial sums of independent RV's and 
DF.I.Z. Wahrscheinlichkeitstheorie verw. Gebiete 32, 111-131 (1975) 

5. Philipp, Walter, Stout, William: Almost sure invariance principles for partial sums of weakly 
dependent random variables. Amer. Math. Soc. Mem. 161, (1975) 

6. Skorokhod, A.V.: Asymptotic formulas for stable distribution laws. Selected Translations Math. 
Statist. Probab. 1, 157-161 (1961) 

7. Stout William: Almost Sure Convergence. New York: Academic Press (1974) 
8. Strassen, V.: An inyariance principle for the law of the iterated logarithm. Z. Wahrscheinlich- 

keitstheorie verw. Geb. 3, 211-226 (1964) 

Received May 4, 1978 


