
Z. Wahrscheinlichkeitstheorie verw. Gebiete 
4t, 221-239 (1978) 

Zeitschriff fur 

Wahrscheinlichkeitstheorie 
und verwandte Gebiete 

�9 by Springer-Verlag 1978 

The Spectrum of Dynamical Systems 
Arising from Substitutions of Constant Length 

F.M. Dekking * 

Laboratoire de Probabilites, E.R.A. 250 du C.N.R.S., Avenue du G6n6ral Leclerc, F-35031 Rennes 
C6dex 

Summary. Minimal flows and dynamical systems arising from substitutions 
are considered. In the case of substitutions of constant length the trace relation 
of the flow is calculated and is used to determine the spectrum of the dynamical 
system. Several methods are indicated to obtain new substitutions from given 
ones, leading among other things to a description of the behaviour of powers of 
the shift homeomorphism on the system arising from any substitution. 

In the domain of topological dynamics, minimal flows play an important role as 
building blocks for more complicated flows. A large class of examples of minimal 
flows are given by those arising from substitutions. The systematic investigation of 
substitution minimal flows began with Gottschalk [5], and has been extended more 
recently by Coven and Keane [2], Martin [9, 10] and Kamae [7], the goal being 
topological and measure-theoretic classification of these objects. 

In the first part of the paper we synthesize, extend and simplify the known 
results on topological classification and give a complete spectral classification in 
the case of substitutions of constant length. An interesting side result is that if 
(X, T,/~) is a dynamical system arising from a substitution of constant length then 
T" is minimal if and only if T" is ergodic. (This implies for instance that if T has a 
rational eigenvalue, then the eigenfunction corresponding to this eigenvalue can be 
chosen to be continuous.) 

The second part is concerned with substitutions of non-constant length. We 
analyse the behaviour of T n in this case and display a class of flows (generated by 
substitutions of non-constant length) which are topologically isomorphic to 
constant length flows, thus reducing the structure problem (both measure- 
theoretical and topological) to one that can be handled by the results of the first 
part. In general, the measure-theoretic structure of substitution dynamical systems 
of non-constant length is unknown, and seems to be difficult to determine (see [12]). 
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I. Definitions and Preliminaries 

1. Symbols, Blocks and Sequences 

Let I be a finite alphabet with r symbols, r_>_2. We usually suppose that 
I = {0, 1, .. . ,  r -  1 }. Elements of 

I * =  U Ik 
k > l  

are called blocks (over I). If  

B - - b o . . . b n _ l e P  

is a block we call N(B)= n the length of B and we denote by N/(B) the number  of 
times the symbol ie I  appears in B. It is sometimes convenient to write B(k) for the 
symbol b k. Elements of I Z will be called sequences. If  

X - ~ - . . . X _  I X o X 1 . . .  

is a sequence, then x [k, n] denotes the block Xk Xk + 1." X,. If  (Bk)k~Z is a sequence of 
blocks, then we can form in an obvious manner a sequence 

x . . . .  B_l13oB1... 

where the dot over Bo indicates that x[O, N ( B o ) - 1 ]  =Bo.  

F.M. Dekking 

2. The Space, the Topology and the Homeomorphism 

Provide I z with the metric d defined by d(x, x) = 0 and d(x, y) = 1/(min {Ikl: Xk ~ Yk} 
+ 1) if X 4: y. If B is a block, the set 

[B-1 = {xelZ: x[0, N(B) - 1] =B} 

is called a cylinder. Let T be the shift homeomorphism on IZ; i.e., if x e I  z then (TX)k 
= Xk + 1 for all k e2g. The collection of cylinders and their translates under T form an 
open and closed base for the topology induced by d. The orbit ofx  under T is the set 

Orb(x) = Orb(x; T)--  { Tkx: k~TZ}. 

3. Substitutions 

A substitution 0 is a map 0: I --+ I*. Many of its properties can be obtained from the 
O-matrix 

L(O)--(l ~r- 1 ~, ij]i,j=O 

defined by llj = Nj(0 i). The length of a substitution is the vector (l o . . . .  , lr_ 1), where l~ 
= ~ lo=N(Oi ). If all l~ are equal then 0 is of constant length. 

jeI 
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The map 0 extends to I* and I Z by defining 

OB=OboObl...Ob, i fB=bobl. . .bn is a block, 

Ox . . . .  O(x_ 1) O(Xo) O(xl)... if x is a sequence. 

In this way we can consider the substitution 0 n defined by O"i= 0 R- 1 (Oi) for each 
n > 1, and we see that 

L(O")= L(O) n. 

Throughout  this paper  we shall assume that 11 n) = N(Oni)> 2 for some n > 1 and all 
i~I. We call a substitution 0 primitive if L(O) is a primitive matrix (i.e., if L(O)" is 
strictly positive for some n >  1). 

4. Flows 

A pair (X, T) with X a non-empty, compact  metric space and T a homeomorphism 
will be called a flow. A non-empty, closed T-invariant subset of X is called minimal 
if it contains no proper closed T-invariant subsets. It is well known that X is 

minimal iff O r b ( x ) = X  for all x ~ X  iff all x e X  are almost periodic. 
Recall that an element xEI  z is almost periodic if any block B~I* which appears 

in x occurs with bounded gap. 

5. Flows Generated by Substitutions 

With any substitution 0 we can find two symbols p and q and an n __> 1 such that the 
last symbol of Onp is equal to p and the first symbol of Onq is equal to q ([5, 3]). We 
call pq a cyclic pair for 0. Any cyclic pair generates a sequence w = w pq defined by 

w[--N(O"kp),N(Onkq)--l]=OnkpOnkq for k=0 ,  1,2, .... 

Among the cyclic pairs there is always at least one such that w = w pq is almost 

periodic ([5, 3]). In this case we call the minimal flow (Orb(w), T) the flow generated 
by 0 (and pq). It  can be shown ([3]) that with no loss of generality (since we are only 
interested in minimal flows) we may assume 0 to be primitive. If 0 is primitive then 
all cyclic pairs pq (such that w pq is almost periodic) generate the same flow, which 
we denote by (X(O), T). We shall repeatedly use the fact that in this case X(O) 
= X (0 n) for any n ~ 1, so that we may replace 0 by a power of 0 without changing the 
flow. 

The minimal flow (X(O), T) will be called the substitution flow generated by 0 
(0 a primitive substitution), and we adjoin the words "'of constant length" if 0 has 
constant length. 

Note that this flow may be finite since it can happen that the sequence generated 
by 0 is periodic. In this case we call 0 periodic. A simple characterization of periodic 
substitutions of constant length is given in 2.9 (iii). 
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6. Dynamical Systems and Spectra 

A triple (X, T, #) where (X, T) is a flow and # a T-invariant probability measure is 
called a dynamical system. If # is unique then (X, T, #) is called uniquely ergodic. 

Given two flows (X, T) and (Y, T'), a continuous map ~b from X onto Y such that 
4) o T= T'o 4) is called a homomorphism. If 4) is also one-to-one ~b is called an 
isomorphism. If(X, T, #) and (Y, T',/~') are uniquely ergodic dynamical systems then 
any homomorphism is measure preserving and therefore a measure-theoretic 
homomorphism. 

The homeomorphism T induces a unitary operator in L 2 (X,/~) by f ~ f o Z The 
spectrum of this operator is an invariant for measure-theoretic isomorphism and is 
called the spectrum of (X, T, #). 

7. Dynamical Systems Generated by Substitutions 

If 0 is a primitive substitution, then the flow (X(O), T) admits a unique T-invariant 
Borel probability measure g ([11]). We call the triple (X(O), T, #) a substitution 
dynamical system, and call the spectrum of (X(O), T,/~) the spectrum of 0. 

II. Minimality and Ergodicity of Powers of the Shift (Constant Length) 

In the first part of this section, we shall give some definitions and simple results for 
an arbitrary minimal flow (X, T). 

Definition 1. A cyclic partition of X is a partition ~tXcuV~-l= o of X into disjoint 
subsets such that 

X u + I = T X u  for 0 = < u < m - 1  and T X , , _ I = X  o. 

Let n>  1. A T~-invariant partition of X is a partition of X whose elements are all 
closed and T'-invariant. A T'-minimal partition of X is a partition of X whose 
elements are all T'-minimal. 

Lemma 2 ([7, L. 15]). Let (X, T) be a minimal flow and n a positive integer. There 
exists a cyclic T'-minimal partition. This partition is unique up to cyclic permuta- 
tions of its members. 

In the sequel the number of elements of a cyclic T"-minimal partition will be 
denoted by v(n) for each n > l .  The equivalence relation whose classes are the 
members of the cyclic T"-minimal partition will be denoted by A,. 

Lemma 3. The .function 7( ' )  and the relation A, have the following properties 

(i) l<?(n)_-<n and 7(n) divides n. 
(ii) A~(,) = A,  and thus 7(?(n))=7(n). 

(iii) I f  m divides n then Am~A, ;  moreover if 7(n)=n then 7(m)=m. 
(iv) I f  (m, n)= 1 then Am, =AmebA. and 7(ran)=7(m) 7(n). 
(v) I f  7(n)>1 then there is an m > l  dividing n with 7(m)=m. 

? (nk) - 0 (vi) I f  v(n)<n then lira - . 
n k 
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,Proof Cs [7, p. 296] for proofs of (i)~(iv). To prove (v) take m = r ( n  ) and use (i) and 
(ii). We shall prove (vi). If 2(n) <n  then we can find a prime p and an a > 0  (by (iv)) 

a S such that n = p  , (p, s)= 1 and ?(pa)<pL We claim that 7(pk")<p" for all k__> 1. 
!ndeed, 7(p k~) = pb for some b > 0 (by (i)), ? (pb)= 7(7(pk,)= pb (by (ii)) and therefore 
b < a (by (iii)). The multiplicativity of 7 yields now 

~/(n k) ~,(p% ~(?) 1 
n ~ =  p k a s ~ - - <  1 ) ~ - + 0  if k--+ 0o. p(k - 

Definition 4. ([5]) The trace relation A of(X, T) is defined by A = ('-] A,. If we want 
to emphasize the dependence on T we write A =A T. n>= 1 

Lemma 5. Let  (X, T) be a minimal flow. 7hen A = 0 A, .  
n:n=?(n) 

Proof  By 3(ii), A =  (~ A , =  0 A~,)= ~ A,. 
n~ 1 n= > 1 n: n='g(n) 

We shall now turn to substitution ftows (X(O), 7") generated by a substitution 0 
of constant length I. Our aim is to determine A for any such flow. 

In the course of the proof of Lemma 7 we shall need the following combinatorial 
lemma. 

Lemma 6. Let  x e I  a~ and J (n) = { B s I *  : N (B) = n, B appears in x} for each n > 1. I f  for 
some n > 1 

Card (J (n)) < n 

then x is periodic. 

Proof. [1, Th. 2.06, 2.11]. 

Lemma 7. Let  (X(O), T) be a substitution f low of  constant length 1. Then either 7(l") 
= P for all n > 1 or 0 is periodic. 

Proof  Let 0 be a substitution of constant length I on r symbols, Let w be such that 
X(O)=Orb(w).  We shall first establish that for all n > 0  there appear at most 
r+r2(7(l") - 1) different blocks of length l" in w. 

Let Xo = 0" X. Then X0 is a T ~"-minimal set (the mapping 0": (X, T) -+ (Xo, T z-) 
is a homomorphism). Since O w = w  we have w e X o .  Therefore 

Tk~(l"IweXo~U [O"i] for all k e g .  
ieI 

Thus w is composed of overlapping blocks of the form O"i (of length P) spaced at 
intervals y(P). Since there are r blocks O~i and at most r 2 blocks O"iO"j we obtained 
the desired result. 

Let us now suppose that 2(1")<I" for some n >  1. Since x ( o n ) = x ( o )  we may 
assume n = l .  By Lemma 3(vi), limy(l")/l"=O. We can therefore find an n such 

n~oo 

that r+r2(7(l") - 1)<P. But then there are fewer than P blocks of length P in w, 
and w is periodic by Lemma 6. 

We shall now search for integers n relatively prime to 1 such that y(n)=n. 
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Definition8. (Cf. [9, 4.06]) Let (X(O), T) be a substitution flow of constant length l 

and let w be such that Orb (w)= X(0). The number 

h(O)=max{n>= 1: (n, l)= 1, n divides gcd{a: w,=wo}} 

will be called the height of 0(or X(O)). 

Remark 9. Let 0 be a primitive substitution of constant length on r symbols. Then 

(i) 1 < h(O) <__ r. 

Let k be an integer, let Sk - {a: w~+k = wk} and gk --gcd Sk. The upper bound on 
h(O) follows directly from 

{n> l : (n ,  l)= 1, n divides go} = {n> l : (n , / )  = 1, n divides gk}- 

We shall show that the set on the right contains the set on the left. (The other 
inclusion is proved similarly.) 

Let gk = gcd {a 1 . . . .  , %} where a 1 e S  k . . . . .  ar,,~S k . Choose N such that the symbol 
w o appears at some place, say p, in ONWk. It follows from ONw=w that 

klN+p~So and (k+a~)IN+p~So for s = l  . . . . .  m. 

Hence 

a~lN~So--So ( s = l  . . . .  ,m) 

and 

gcd(S0-  So) [gcd {a 1 lN, ..., % if} = 1N gk . 

Therefore if (n, l) = 1 and n divides go then n divides gk. (For any set A of integers, 
gcd A divides gcd(A - A)). 

(ii) We shall describe an algorithm to calculate h(O). 
Apply the following labeling procedure for those n = r, r - 1  . . . . .  1 such that 

(,,1)=1. 
Let wo=q. Label Oq(m) with the number m modulo n for m--= 0, ..., l -  1. If for 

some i the symbol i appears at more than one place in Oq and has obtained different 
labels then n ~- h(O). Otherwise let L i be this unique label for each i appearing in Oq. 
(For example: Lq= 0.) Label 0 i(m) with the number IL~+ m modulo n. If for somej  
the symbolj  appears at more than one place in Oi or Oq and has obtained different 
labels then n+-h(O). Now continue in this manner. If at some step, a symbol j  has 
obtained different labels, then n ~ h(O). On the other hand, if we can continue until 
Oi(m) is labeled consistently for all i and m, then n=h(O). 

(iii) It is easily seen that h ( 0 ) - r  implies that 0 is periodic. Combining this 
observation with [7, L. 5] we obtain that if 0 is one-to-one, then 0 is periodic 
iff h(O)=r. 

If 0 is not one-to-one we associate with 0 a substitution t/that is one-to-one by 
identifying i and j iff there is a positive integer k such that oki=okj. Then 0 is 
periodic iff t/is periodic. 

Example. The substitution defined by 0 ~ 010, 1 ~ 201, 2-* 102 has height 2. 
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Lemma 10. h(O) = m a x { n >  1: (n, l) = 1 and 7(n) =n}. 

Proof Let X=X(O)=Orb(w)  and d=gcd{a :  wa=w0}. 

1. If n divides d then y(n)=n. 

Let Y= ~ T r~d [Wo] c~ X. Then T ~ Y= Y and T" Yc~ T ~ Y=~ if 0 < u < v < d by 
meZ d -  1 

the definition of d. Since U Tu Y= X, Y is closed. Hence (T" y~d-~u= 01 is a cyclic T d- 
t t = O  

invariant partition. Since it has maximal cardinality it is a cyclic Td-minimal 
partition, so 7(d)--d. Therefore 7(n)= n if n divides d (Lemma 3 (iii)). 

2. If ~(n) = n and (n, l) = 1 then n divides d. 
Let 2=exp(2~zi/n). Then 2 is an eigenvalue corresponding to a continuous 

f . - i  eigenfunct ion-we call\ such a 2 a continuous eigenvalue for s h o r t -  ---~=o 1 r~xo, 

Xo a T"-minimal set/. By Lemma 11 (ii) n divides any a such that w, = w 0. Hence n 
/ 

divides gcd {a: % = w0} = d. 

In the proof of the preceding lemma we needed the second part of the following 
lemma. 

Lemma l l .  Let (X(O), T) be a substitution flow of constant length I. Then 

(i) (X (O), T) has no continuous irrational eigenvaIues. 
(ii) I f  for some positive n with (n, l) = 1 exp(27ci/n) is a continuous eigenvaIue and 

if a is an integer such that w~ = Wo then n divides a. 

Proof (Cf. [9, 4.08].) (i) Take any continuous f 4= 0 such that f (Tx )  = exp (2 rcic 0 f (x )  
for all xeX(O). 

Fix an a4=0 such that W~_lW~=W lw o. Since OkW=W for all k > l  we have 
lira T"" l"w = w and therefore 

k ~ G o  

f ( w ) =  lira f ( T  ~" Z~w)= lira exp(2~iaIke)f(w). 
k ~ o o  k ~ c o  

Therefore alkc~=0(mod 1) for k large enough. Hence c~ is rational. 
(ii) We proceed as in (i), but now we can only conclude that lira T" z~' w = w for 

k ' ~ o o  

some subsequence (k') of the integers and an x such that x m = w m for all m > 0. The 
latter implies that f ( x )=f (w) ,  so as in (i) we have alk'/n=O(mod 1) for k' large 
enough. Since (n, U) = 1 n has to divide a. 

Theorem 12. Let (X(0), T) be a substitution flow, where 0 is a non-periodic 
substitution of constant length l and height h = h(O). Let A be the trace relation of 
(X(O), T). Then 

A =  ~ A I , ~ A  h. 
n > l  

Proof According to Lemma 5 A =  ~ A, and thus by Lemma 7 and 10 
n: n = ,~(n) 

A-=- ~ Al, c~A h. Let n he any other integer such that v(n)=n. Decompose n=ms 
n>__l 

with (m, 0=1  and s divides I k for some k > l .  By Lemma 3(iv) A~ =A~c~A~. Since s 
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divides I k we have by Lemma 3 (iii) that As ~ A lk. We finish the proof by showing 
that m divides h=h(O) and hence Am=A h. 

Let m' be any factor of m such that (m', h)= 1. Then 7(m'h)=7(m' ) 7(h)=m'7(h) 
(by Lemma 3 (iv) and (iii)). Hence by Lemma 10 m'= 1. So m and h have the same 
prime factors. But a similar argument shows that any prime factor of m cannot 
appear with a higher exponent in m than in h. Therefore m divides h. 

Let /g(/) be the topological group of l-adic numbers and let z be the 
homeomorphism of/g(l) corresponding to addition of the unit element. Then 
(/g (1), ~) is a minimal flow. Similarly we define the minimal flow (77, ~,) where/g, is 
the cyclic group of order n. If (n,/)---1 the product flow (/g (i) x /g,, ~ x ~,) is a 
minimal flow. 

Theorem 13. Let (X(O), T) be a substitution flow, where 0 is a non-periodic 
substitution of constant length l. Then 

(X/A, TA)~(~(I ) X 7Zh(O) , "C X "Oh(O) ). 

Proof Theorem 13 is an immediate consequence of Theorem 12, Lemma 7 and 
Lemma 10. 

Remark. Let Z be the least closed invariant equivalence relation such that (X/Z, Tx) 
is equicontinuous ([4]). This flow is called the structure system of (X, T). For any 
minimal flow, s  iff all continuous eigenvalues of T are rational. It follows 
therefore from Lemma 11 (i) and Theorem 13 that the structure system of a non- 
periodic substitution of constant length l is (~ (1) x/gh(O), Z X *h(O))" This result has 
been obtained in [9, Theorem 5.09] with the restriction that 0 be one-to-one. 

We shall now dwell for a moment on the opposite case 7(n)= 1. 

Theorem 14. Let (X(O), T) be a substitution flow of constant length, and let n> 1. I f  
X (O) is Tn-minimal then there exists a substitution f low (X (tl), T) such that 

(x(o), T") ~-(X(~), ?). 

Proof Let 0 be a substitution of constant length l, w such that Ow=w and X(O) 

= Orb(w). Let J be the collection of all blocks of length n appearing in w. Let qS: 
/'--* J be a bijection between a finite set / 'and J. We extend q~ to f* and/z  by defining 

~b(7o ... ~)= q~(i'o)... 0(~) for To... i~I"*, 

0(Y) . . . .  O(Y- 1) 4;(Yo) q~(Y0.., for y ~ .  

Define a substitution t/: 1"--, P by 

t/(~)=qS- 10(q~(/~) for all i~I". 

Let i6=qb-l(w_,..,  w 0, c~=th-l(Wo.., w,_ 1). Then 

~(~) = 4 ' -  l(O(wo ... w, ,)) = q~- l (w0  . . .  w , , _  1 ) = 4  . . . .  

Analogously t/(/3) ends with/3. Hence i6c~ is a cyclic pair. Let v~ be the sequence 
generated by/%~ under r/. Then v~ = ~b- ~(w) so that v~ is almost periodic since w is T"- 
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ahnost periodic. (Note that w is T"- almost per iodic-  by the T-almost periodicity of 
w-whe the r  T" is minimal or not.) Since ,9 is almost periodic and contains all 
symbols of [ (by  the T"-almost periodicity of w), ~/is a primitive substitution. Let 
(X(t/), 5?) be the substitition flow generated by r/, where T denotes the shift on/~.  
The map qS: X(r/)--* qS(X(r/)) is bijective, open and satisfies qS~= T"~b. Since both 
qS(X(t/)) and X(O) are T"-minimal sets with at least w in their intersection q5 is an 
isomorphism qS: (X(t/), ~) ~ (X(O), T"). 

Example. Let 0 be defined by 0 ---, 011, 1 ~ 101. Then l = 3 and h(O) = 1, so by Lemma 
10 T 2 is minimal. J =  {01, 11, 10} and if we take I =  {a, b, c}, q5 with qS(a)-- 01, q~(b) 
=11, qS(c)=10 then t/is defined by 

a--*aba, b--+cba, c-*ccb. 

Theorem 15. Let (X (O), T, t~) be a substitution system of constant length and let n > 1. 
Then T ~ is minimal iff T" is ergodic (w.r.t. #). 

Proof Since T is minimal and the results at the beginning of this section apply 
ergodicity of T" implies minimality of T". Let T" be minimal. Apply Theorem 14 to 
obtain a (measure) isomorphism ~b: (X(t/), T,,/2) ---, (X(O), T", 02). Since fi is uniquely 
ergodic so is 4~/~. Hence qbfi=/~ by the T"-invariance of/~. 

In the last part of this section we take a closer look at those substitutions with a 
height greater than 1. 

Definition 16. Let (X, T) be an arbitrary flow and n>  1. By the stack of height n over 
(X, T) we mean the flow ( X x ~ , , a )  where a is defined by a ( x , k ) = ( x , k + l )  if 
0 < k < n - 1 and a(x, n - 1) = (Tx, 0). The flow (X, T) is called the base of(X x 7/n, a). 

Lemma 17. Let ( X ( O), T) be a substitution flow of constant length and n >= 1 such that 
7(n) = n. Let X o be a Tn-minimal subset of X(O). Then there exists a finite set [and a 
primitive substitution t 1 of length I on [such that (Xo, T " ) " ( X  (tl) , T) and therefore 
(x(o), T)~-(X(~) x g . ,  G). 

Proof Let X(O)=Orb(w). We shall prove the lemma for the Tn-minimal set X 0 
which contains w. Copy the proof of Theorem 14 with J being the collection of all 
blocks of length n appearing at places kn ( k ~ )  in w. This yields an isomorphism: ~b: 
(X(t/), T) ~ (X0, T"). (q~ and t/ are defined as in the proof of Theorem 14.) Let 
be the transformation of the stack with height n and base (X(r/), T). Define 
~: X(O) ~ X(q) x Z,, by ~ (x) = (q~ - 1 (T -k x), k) if x ~ TkXo . Then it is easily shown 
that ~ is an isomorphism between (X(O), T) and (X(t/)x ~ , ,  a). 

Note that the substitution t/is "essentially" unique. 

Example. Let 0 be a non-periodic substitution of constant length n_> 1. Then ?'(l ") 
---1" by Lemma 7. We see that we can take I =  I and t/= 0. Hence 

( x  (o), T) ~_ (X (O) x g ,~ G). 

Definition 18. A substitution 0 is pure if h(O)= 1. 

Lemma 19. Let (X (O), T) (where X(0)= Orb(w)) be a substitution flow of constant 

length with h = h(O)> 1. Let X o = Orb (w; T h) and let r 1 be the substitution (given by 
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Lemma 17) such that (X o, Th)~(X(r]), "F). Then 
(i) t/ is pure, 

(ii) A r~ =A  r on X o x X o. 

Proof. (i) According to Lemma 17 there exist a substitution t t and an isomorphism 4~ 
between (X07), T) and (X0, Th). Let YocX(o)  and n >  1 be such that (n, l)= 1 and 
such that ( ~ , y ~ , - 1  is a cyclic T"-minimal partition of X(t/). Then O/u= 0 

(T,+~.a y ~ , -  1 h- 1 is a cyclic T"h-minimal partition of X(0), so by Lemma i0 n = 1. ~,"k" Ol lu=Ov=O 

Hence by the same lemma t/is Rure. 
(ii) By (i) and Theorem 12 AT= ~ A~, and therefore 

n > l  

AT"= 0 AT"=- (~ A~l"= (~ AT"c~AT=AT 
n>= 1 n>= 1 n> 1 

on X0 x Xo, using Lemma 3 (iv) and that Xo is an equivalence class of A~'. 

Definition 20. Let (X(O), T) be a substitution flow of constant length with h(O)> 1. 
Then we call the substitution r/(substitution flow (X(r/), T)) given by Lemma 17 the 
pure base of 0(of (X(O), T)). If h(O) = 1 then the pure base of 0 is equal to 0. 

Example. The substitution flow generated by 0 ~ 010, 1 --, 102, 2 ~ 201 is (isomor- 
phic to) a stack of height 2 with a pure base generated by 

a ~ a a b ,  b ~ a b a .  

III. The Spectrum of Substitutions of Constant Length 

Let 0 be a substitution of length I on r symbols. For  each n > 1 and k with 0 < k < l" 
we call the set {0"0(k), 0"1(k) . . . .  , O"(r- 1)(k)} a column of the substitution 0. In this 
section we shall show that the nature of the spectrum of 0 is determined by the 
presence (respectively absence) of a column consisting of one symbol in its pure 
base. 

Definition I. Let 0 be a primitive substitution of length 1 on r symbols. If0 is pure we 
define the column number c(O) of 0 by 

c(0) = rain rain card {0" 0(k), 0" 1 (k), ..., 0 " ( r -  1) (k)}. 
n> 1 0<k< 1 ~ 

If 0 is not pure its column number is defined as the column number of its pure base. 

Remark 2. That c(O) is computable follows from the fact that 

c(O) = min card {0 z . . . .  10(k ) ,  . . . ,  02 . . . .  1 ( r  - 1 ) (k) :  0 ~ k < l 2 . . . .  1 }. 

This is implied by the following observations: 
(i) If {i l , . . . ,  ic} is a column of cardinality c then 

card{Oil(k ) . . . . .  Oic(k)} <c for k=0,  ..., l -  1. 

(ii) A substitution has at most 2 r - r -  1 columns with a cardinality larger than 1. 
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Examples. (i) The substitution 0 defined by 

0 ~ 0 4 ,  1--+01, 2--,34, 3--, 31, 4 ~ 4 2  

is primitive and pure and has only 2 different columns: {0, 3, 4} and {1, 2, 4}. Hence 
c(O) = 3. 

(ii) Let 0 be the '"circulant" substitution defined by 

i - , i ( i+ l ) . . . ( i -2 ) ( i -1 )  for i=0 ,1  . . . .  , r - 1 .  

(The symbols in this definition are to be considered modulo r.) Then 0 is primitive 
(L(O) >0) and pure. The only column appearing is I, so c(O)= r. 

Now let s => 1 and t / a  substitution on r + s - 1  symbols defined by 

rl(i)=isO(i) if O<__i<_r-2 

rl(i)=(r+s--1)...(r+l)rO(r--1 ) if r - - l<_i<r+s-1 .  

Then ~/is primitive (L(~] 2) > 0) and pure. Any column oft/contains all symbols i with 
0 _< i < r - 2 plus one of the symbols r -  1, r . . . .  , r + s - 1 hence c(r/) = r. (This example 
provides a correct proof of Theorem 6 in [7]). 

Theorem 3. Let (X (O), T) be a substitution flow of constant length, A its trace relation 
and xA the equivalence class containing xeX(O). Then 

i) rain card(xA) = c(O). 
xeX(O) 

ii) I f  y, z~xA, y # z  and card(xA)=c(O) then d(y, z)= 1. 

Proof [7, Theorem 5]. Since however our definition of c(O) is slightly different in 
case 0 is not pure we have to show that 

(,) rain card(xAr)= rain card(yAf) 
x~X(O) yeX(q) 

if (X(t/), ~ is the pure base of (X(O), T). 
Let Xo be a Th-minimal subset of X(O). Then (1.19) (Xo, T h) is isomorphic to 

(X(O), 7~, therefore 

min card(yA ~) = rain card(xArh). 
yeX (tt) xEXo 

Now (,) is implied by 1.19 (ii) and the T-invariance of A. 

Theorem 4. Let (X (O), T, #) be a substitution dynamical system of constant length. 
Then 

# {x e X: card (xA) = c(O)} = 1. 

Proof This theorem is a generalisation of a result obtained in the proof of Theorem 
7 in [7] and can be proved analogously. 

Let (X(O), T, p) be a substitution dynamical system of constant length. We write 
X=X(O). Let L2(X)=L2(X, T,g) be the Hilbert space of complex-valued square 
integrable functions on X with inner product ( f  g)=~fgd#.  Let A be the trace 
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relation of (X, T), n: X ~ X / A  the projection homomorphism and L2(X/A) 
= L2(X/A, TA, n#). Let D = {feL2(X): f =  g o n a.e. g~L2(X/A)}. It is not difficult to 
see that 

D={f~U(X): f constant on xA for a.e. xeX} 

For any f~I.?(X) we define a function E f  on X by 

1 
E f ( x ) = c ~  Z f(Y), xeX.  

\ ,' y ~ x A  

It will appear that E f  is a version of the conditional expectation of f w.r.t. A (i.e. 
with respect to the a-algebra generated by xA, x~X). 

Theorem 5. (i) D is a closed T-invariant linear subspace of I}(X). 
(ii) E is the projection on D. 

(iii) If fED•177 ...,fc(~177 then f = 0  a.e. 

Proof By the definition ofD (i) is obviously true. Let c=c(O), Z= {zEX: card(zA)+c}. 
Then #(Z)=0  by Theorem 4. 

1. I f f  is continuous then Ef  is continuous on X \ Z .  
Let x ('1, x ~ X \ Z  be such that x(~)~x if n ~ c o .  It suffices to show that 

Ef(x ('')) ~ Ef(x) for a subsequence (n'), n ' ~  m. 
Let y("' 1)= x(,), y(X)= X. By Theorem 3 (ii) we can choose y("' Z)ex(")A such that 

d(y("'2),y("'l))=l. Let (y(n',2)) be a subsequence of (if ,  z)) such that y(,,,2)__+y(2) 
y(2)sX. Then y(2)exA and d(y (2), y(1))= 1. Continuing in this way we find exactly c 
sequences (y("', m))~= 1 (where we denote any subsequence of (n') again by (n')) and c 
points y(m)~xA such that y(""m)ex("')A, y(,'.,~)~y(m) for m= 1, 2, ..., c. Therefore 

1 2 
c f ( y ) -  

f (y(,',,,)) _ f (ffo) 
m = l  1 

<=1_ ~ if(y(,,,m))_f(y(,,))]" 
Cra= l 

The proof of 1. is finished since f(ff"")) ~ f(y(")) if n'--+ oo by the continuity of f 
Since the continuous functions are dense in U(X) and since f , - - , f  pointwise 

clearly implies Ef, ~ E f  pointwise, we deduce from 1. that E f  is measurable and 
integrable. 

2. ET= TE. 
The relation ET-= TE is implied by the T-invariance of A. 
3. ~Efd#=Sfd # for all f~Lz(X). 
Let #o be defined by #o(f) = ~ Efd#. Then/to(1 ) = 1 and #o is T-invariant by 2. 

The unique ergodicity of # implies #o = #. 
4. If feL2(X), gED then E(fg)=gE(f). 

Indeed E(fg)(x)=~ ~ f(y)g(y)=g(x)Ef(x) for a.e. x~X. 
y e x A  
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5. E 2= E and E is hermitian. 

Taking 1 and E f  in 4. we obtain E 2 = E. Taking g = E f  in 4. and applying 3. we 
obtain ( f  E f ) =  [[Ef][ 2 

6. E is the projection on D. 
By 5. E is a projection. Since range (E) c D c {f: E f = f }  E is the projection on 

D. 
We have yet to prove (iii). 
Let f e I~ (X)  such that f e D  • fZeD• ..., fCeD• Then by 6. 

f k ( y ) = 0  for k = l , 2  . . . .  ,c and x s X \ Z .  
y~xA 

By Lemma 6 this implies that f ( y ) = 0  if y~xA.  Hence f = 0  on X - . Z .  

Lemma 6. Let Zl, ..., z c be complex numbers such that 

0 for k = l , 2 , . ,  c. k 
Z m z  . ,  

m = l  

Then z,, = 0 for m = 1, 2, ..., c. 

Proof Consider the zm as indeterminates. Like the elementary symmetrical 

functions the functions ~ z~ (k = i, ..., c) generate all symmetrical functions ([14, 
r n = l  

p. 81]). This immediately implies the lemma. 

Theorem 7. Let (X (O), T, #) be a substitution dynamical system of constant length. 
Then (X (O), T, #) has discrete spectrum if c(O) = 1 and partly continuous spectrum if 
c(O) > 1. 

Proof By Theorem 2.13 (X/A, TA, #) is isomorphic to a rotation on a compact 
topological group. Hence L2(X/A) is spanned by the continuous eigenfunctions of 
T A. This implies that the subspace D is spanned by the continuous eigenfunc- 
tions of T. 

If c(O) = 1, then D = L2(X) by Theorem 4 and (X(O), T, #) has discrete spectrum. 

Let c=c(O)>l. We shall first suppose 0 pure, i.e. A =  ~ A~,. In this case 
n > l  

Theorem 2.13 yields that D is spanned by eigenfunctions with (rational) eigenvalue 
group {eZ~ia/l": n > 0, 0 < a < P}, where 1 is the length of 0. Let T f =  2 f  with [2[ = 1 
and f e U ( X ) ,  f 4=O. 

We shall show that f eD,  i.e. T has continuous spectrum on D • It follows from 
Theorem 5 (iii) (and the orthogonality of eigenfunctions) that at least one of 

f, f 2  . . . . .  fc  belongs to D. Therefore 2 is necessarily rational, say 2 =ex p  (2rciP), 

with (p, q) = 1. Decompose q = q! q2 where (ql, l) = 1 and qz divides l" for an n > 1. If 
ql = 1 then f e D  by the unicity of eigenfunctions. Therefore, suppose ql > 1. Now 
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so that our knowledge of the eigenvalue group on D enables us to conclude that 
fq2~D• Hence fq2 is not constant. But 

Tql fq2 = fq~, 

so T ql is not ergodic, and therefore not minimal by Theorem 2.15. Hence 7(ql)> 1 
(see Lemma 2.2). By Lemma 2.3 (v) there is an m> 1 dividing ql with 7(m) =m. Since 
(m, l)=(q 1, l)= 1 this is a contradiction to the purity of 0 (by Lemma 2.10.). 

We shall now consider the case h=h(O)>l. Let X o be a Th-minimal set, 
.(X(~), 7") the pure base of (X(O), T) i.e. there is an isomorphism 

4: (Xo, Th, go)--,(X(tl), T,,fi), where /~0=h.g[xo. 

Let T f = 2 f  with 12[=1 and fsL2(X), f+O. Let fo=flxo. Then rhfo=2hfo, 
SO 4fo is an eigenfunction of (X(~), T, p). Since t/is pure, qSfo is constant on yAf  
for/~-almost all y~X(tl). Hence f0 is constant on xA T~= xA T (by Lemma 2.19(ii)) 
for go-almost all x~X  o. This implies that f is constant on xA T for g-almost 
all xeX,  i.e. feD.  

Remark. By [5, 1.10] Card xA = 1 iff x is a regularly almost periodic point. In this 
context Theorem 7 can be rephrased as: (X(O), T, #) has discrete spectrum iff X(O) 
contains a regularly almost periodic point. 

IV. Minimality and Ergodicity (Non-Constant Length) 

The aim of this section is to prove the following theorem which has been proved in 
the case of a substitution of constant length (2.15). 

Theorem 1. Let (X (O), T, #) be a substitution dynamical system and n > 1. Then T n is 
minimal iff T" is ergodic (w.r.t. tz). 

The following example shows that we cannot copy the proof of Theorem 2.14. 

Example 2. Let 0 be defined by 0~0011 ,  1 ~001.  Then T 2 is minimal ([10]). If we 
take J = {00, 01, 10, 11} then 0 does not induce a substitution on J as in the proof of 
2.14.: 0(01)=0011 00 1 has odd length. (In particular cases one can get rid of this 
phenomenon by considering higher powers of 0.) 

The following notions are introduced to deal with the problem illustrated by 
Example 2. (We shall only consider the case I = {0, 1} but definitions and lemmas 
are easily generalised to more symbols). 

Definition 3. A block A is called n-balanced if 

No(A)=NI(A)=O (modulo n). 

An n-balanced block A is called irreducible if 

A =BC 

with B n-balanced and C arbitrary implies B = A. 

Quickly verified is 
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Lemma 4. (i) An n-balanced block has an unique decomposition in irreducible n- 
balanced blocks. 

(ii) I f  0 is a substitution and A an n-balanced block then O A is an n-balanced block. 

Lemma 5. Let  B = A 1A  2 ... An2 , where the A k are arbitrary blocks. Then there exists m 
and k such that 1 <<_m<k<n 2 and such that AmAm+l . . .Ak is n-balanced. 

Proof  Let u k = N O (A1... Ak) (rood n) and v k = N 1 (A1... Ak) (rood n). Consider the pairs 
(u~, v~) for k = 1, 2, . . . ,  n z. If all are different then there is a k such that (uk, v~) = (0, 0). 
Hence A1A2 . . .  Ak is n-balanced. If not all are different then (u~_ 1, vm_ 1) = (Uk, Vk) 
for an m and k with 2<_m<_k<_n 2 and A,,A~+ I . . .Ak is n-balanced. 

Lemma 6. Let  x e I  z be an almost periodic sequence and n>  1. Then 
(i) x has an unique decomposition 

x . . . .  B_~BoB1.. .  (Bo(0)=xo) 

where the Bk are elements o f  a f inite set J o f  irreducible n-balanced blocks. 
(ii) I f  0 is a bijection between a f inite set o f  symbols [ and J then 

... q~- ~ ( B  i) ~b- l(Bo) qS- I ( B 1 )  . . .  

is an almost periodic sequence. 

Proo f  Any block B appearing in x appears with bounded gap. Let s(B) be the least 
upper bound of this gap, and let s (k )=max  {s(B): N ( B ) =  k, B appears in x}. 

Let tl =s(1), t z = s ( l + t l )  , tk=S(tk_2+tk_~) for k=3 ,4 ,  . . . ,n  z. 
We shall prove (i) by showing that x is decomposable in irreducible n-balanced 

blocks (such that one block begins with xo) whose length does not exceed t,2. 
Let A 1 =xo .  Then A I reappears within t 1 steps i.e. XoX 1 . . . .  A 2 A I . . .  with 

N(A2)<=t 1. Now A 2 A  1 reappears within t 2 steps i.e. XoX 1 . . . .  A 3 A 2 A 1 . . .  with 
N ( A a ) < t z .  Continuing in this manner  for k=4 ,  5, ..., n 2 we obtain 

XoXa . . . .  AkAk_~ . . .A1 . . .  with N(Ag)<=tk_ 1 for k = 2  . . . .  ,n 2. 

By Lemma 5 there exist 1 _< m___ k _< n 2 such that AkA k_ 1... A~ is n-balanced. Let A 
be the first irreducible n-balanced block in AkA k_ 1...Am. Then N ( A ) < t , 2  and 
x [0, N ( A )  - 1] = A. Applying the same arguments with A 1 = XN(A) we shall find the 
next irreducible n-balanced block. In this way, we obtain the unique decomposition 
of the positive part  ofx. Essentially the same procedure applies to the negative part  
of x, yielding (i). 

We shall call any place in x where an irreducible n-balanced block of the 
decomposition of x begins a J-place. (Note that 0 is a J-place by definition.) Let A 
be any n-balanced block beginning at a J-place t. To prove (ii) we have to show that 
A reappears with bounded gap at J-places. 

Let A o = A. Then Ao reappears (with a g a p  independent of t) i.e. a block of the 
form A o D o A  o appears at place t in x. Analogously we define for k = 1, 2 . . . .  , n 2 - 1 
the block Ak+ 1 = AkDkAk, where Ak begins at place t in x and D k is defined by the 
first reappearance of Ak in x. 
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Let B1 = D oAo, B k +  l = BkBk- 1".. B1 DkAo for k =  1 .... , n 2 - 1. Then it is easily 
proved by induction that 

A k = A o B k B k _ I . . . B  1 for k = l , . . . , n  2. 

By Lemma 5 there exist l < _ m < k < n  z such that BkBk_I . . .B~ . is n-balanced. 
Therefore the block 

Bk Bk _ 1"" B,, = B~ Bk_ 1... B,~ + 1 Bin_ 1 B,,_ 2 "" B 1 Din_ 1A o 

appearing at J-place t+ N(Ao) in x is n-balanced. But since A o = A  is n-balanced, 
the block B k Bk_ 1... B,, + 1 Bm_ 1..- B 1 Din_ t is n-balanced and therefore A reappears 
at a J-place within N (BkBk_ 1... Bin+ 1 Bin_ 1... B1Dm_ 1) < N (A,2) steps. As in the 
proof of (i) it follows from the almost periodicity of x that this number does not 
depend on t. 

Proof of  Theorem 1. As remarked before (cf. the proof of 2.15), ergodicity of T" 
implies minimality of T ". 

Let T" be minimal and let X(O)=Orb(w),  where Ow=w. Then w is almost 
periodic. We apply Lemma 6 (i) to w and obtain a set J of irreducible n-balanced 
blocks, such that 

w . . . .  B_ 1BOB1... (BkEJ). 

Let 4: [---' J be a bijection between J and a finite set I. We extend 4 in the usual way 
to I* and U. 

Let T be the shift on/ ' l .  The behaviour of ~b with respect to the homeomor- 
phisms is given by 

Define a substitution ~ : / ' ~  [* by 

t//'= 4 1(0(4F ) for all {eL 

By Lemma 4 t/is well defined. Let i6 = 4)- 1 (B_ 1) and c~ = 4 -  1 (Bo)" T h e n / ~  is a cyclic 
pair for 1/. Let @ = w ~. Then @ = 4-~(w), so @ is almost periodic by Lemma 6 (ii). 
Since all symbols f rom/ 'appear  in v) this implies that ~ is primitive. Hence, if X(t/) 
=Orb(~ ,  T) then (X(t/), T,,/~) is an uniquely ergodic (substitution) dynamical 
system. 

We now form a tower (Y,S,v) on (X(t/),T,,/~) by assigning N ( 4 ~ ) / n - 1  
isomorphic copies to each cylinder [i ']nX(r/); S and v are the corresponding 
transformation and probability measure (cf. [6] and [133). Since (X(t/), T,,/~) is 
uniquely ergodic, so is (Y, S, v). We shall finish the proof by showing that (X(O), T") 
is a factor of (Y, S). 

The base Y0 of Y and X(t/) will not be distinguished in the sequel. Define ~: 
Y ~  X(O) by 

, , f4(Y) if yeYo 
tY)= ).T,k 4 (S -g  y ) 

if yESk(Yo[T]), l < k <  -N(4/), i~[. 
n 

Let us verify that OS= T'O. 
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If y~Sk(Yoc~ I-/']), m=N(4D)/n and if O < k < m -  1 then 

O(Sy)= T"(k+I)O(S k-1Sy)= T" T"kqS(S-ky) = T"O(y), 

if k = m -  1 then 

q, ( s  y) = 4 ( ~ s -  ~ +~ y) = r N ~* ~) ~ ( S -  ~ +1 y) 

= T~"4)(S-'~ ly)= T"~(y). 

The continuity of ~ follows from that of ~b, T and indicator functions of cylinders. 
Since (X(O), T") is minimal and since q5 u) = w, ~b is surjective. Hence (X(O), T", tp v) is 
a factor of (Y, S, v) and as such uniquely ergodic. (See e.g. [-8].) Therefore T" is 
ergodic with respect to #. 

Example 7. Let 0 be as in Example 2. Let w = w t 6. Then w decomposes in 2-balanced 
irreducible blocks from the set J = {00, 11, t001 }, If [ =  {a, b, c} then r/is given by 

a ~ a b a b ,  b ~ a c ,  c ~ a c c c .  

The homomorphism ~/is an isomorphism in this case: (X(O), Y 2,/.t) is isomorphic to 
the tower obtained from (X(r/), T,, fi) by doubling the cylinder [c]. 

We would like to give an example that is independent of the results of this 
section but is constructed in a similar way. 

Example 8. Let 0 be defined by 0-+01, 1 ~ 10. Then w = w  o~ is the Morse-Thue 
sequence. Let Jo = {0, 01,011}. It is not difficult to see that any sequence in X(O) 
= Orb (w) decomposes in a unique way into blocks belonging to J0. Let [ =  {a, b, c} 
and q~ a bijection b e t w e e n / a n d  Jo defined by qS(a)=0, qS(b)=01 and ~b(c)=0ll. 

Then as before 0 induces a substitution ~/on L We find that q is defined by 

a ~ b ,  b ~ c a ,  c--+cba. 

Let A = [0] ~ X (0) = ([00] w [010] w [0110]) ~ X (0). Let (A, TA) be th e flow induced 
on A (TA is the first return time to I-0]). Then it is easy to see that the usual extension 
of q5 is an isomorphism between (X(~), T) and (A, TA). It follows from Theorem 1 of 
the next section that (X(~/), ~) is isomorphic to a substitution flow of constant 
length. Calculations (and 2.13 and 3.7) show that the structure system of(X(q), ~) is 
2~(2) and that (X(t/), T,, 12) has partly continuous spectrum. 

We remark that the sequence u~ = w bc generated by the pair bc under q is non- 
repetitive i.e. if B is any block over/ ' then BB does not appear in ~;e (cf. [5, Ex. 4.11 ]). 

V. Substitutions of Non-Constant Length Isomorphic 
to Substitutions of Constant Length 

Theorem 1. Let 0 be a substitution of non-constant length (lo, ll . . . .  , lr-1)" If  
(l~, 11 .. . .  , l~_ 1) is a right eigenvee~or of the O-matrix, then (X (O), T) is isomorphic to a 
substitution flow generated by a substitution of constant length. 

Proof Let X(O) = Orb (wPq), where Ow l'q = w eq. We shall define an isomorphism from 
(X(O), T) to a flow (X(t/), ~), where q is a substitution on a set/ 'consisting of ~ li 

i ~ l  
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symbols a~j, where O<i<r and 0 < j <  l~. To each block O i we assign the block 
a~oail.., a~,,_ 1. Since any sequence in X(O) has a unique decomposition in blocks 
from the set {00, 01, ..., O(r-1)} ([10]), this assignment extends to a continuous 
map q5 from X(O) to U. Since Oi and 4)(00 have the same length ch is a 
homomorphism. Define a substitution on [ by 

tl(a~j)=(o(oi* ) if Oi(j)=i*. 

(For example: rl(aqo ) = aqoaql.., aq l~- 1). 
The substitution r/is primitive (we may assume that the 0-matrix L(O) is strictly 

positive and this implies L(t/2) strictly positive). If we take/~=ap ~p_ 1 and c~= aqo 
then/~c~ is a cyclic pair for t/. Let u) = w ~;~ and X(t/) = Orb(~; T). Since ~b is obviously 
injective, and surjective by the T-minimality of X(t/) and the fact that 4~w = ~, q5 is 
an isomomorphism between (X(O), T) and (X(t/), ~). 

So far we apparently gained nothing since t/ is still a substitution of non- 
constant length. We shall exhibit however a substitution t/' of constant length 2 
(where 2 is the maximal eigenvalue of L(O)) on [which generates the same sequence 
v~ and hence the same flow. 

Let Bi=rl(aioail ...aih_l)=~)(OZi) for all i~I. We claim that N(Bi)=)~li (i 
= 0  . . . . .  r -1 ) .  To verify this note that N(B~)= N(O 2 i)= 1~ 2) and that 112) =2li  since 

(l(. 2)) = L(I. ) = ;c(1. ). 

(An irreducible positive matrix has only one independent positive eigenvector. 
Therefore the eigenvalue corresponding to (l o, 11, ..., l r_ 1) has to be 2.) 

Decompose each Bi in B~=BioB~I ... Bi h_ 1, where N(Bij)=)L for j = 0 ,  1, ..., l~ 
- 1. Define a substitution t/' on/"  b y  

rf (aij) = Bij. 

Then r/' has constant length 2 and the same cyclic pair/3c~ generates the same & as t/ 
since 

rl(aio ... aiz,_ 1)=Bi=-Bio ... Bih_l = t/'(aio ... ait~_ 1) 

and similarly rlk(aio v" ail~_ 1)=t/'k(aio ... ail~_ 1) for all k >  1, ieI. 

Example 2. See Example 4.8. 

Example 3 ([12]). Let r = 2  and 0 defined by 0 ~ 0 1 ,  1 ~ 1100. Then 

L(0)= (12 12) and (12 12)(24)=3 (24), 

so that the condition of Theorem 1 is fulfilled. Here 

f={aoo, aol,alo, all,  a12, a t3}={a ,b ,c ,d ,e , f } ,  
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t / and  t/' are  defined by  

a--* ab a-* abc 

b ~ c d e f  b - -*de f  

c --* cde f c --* cde  
tl': 

~: d ~ c d e f  d--* f c d  

e--, a b e -* e f a 

f -* ab f -* b ab 

and  (X(O), T) is i somorph ic  to (X(t/'), 2~). 

Remark  4. We cons ider  the case r = 2  i.e. I = {0, 1}. Let  21 > 2  2 be the eigenvalues of  

t h e O - m a t r i x L ( O ) . I t f o l l o w s f r o m t h e C a y l e y - H a m i l t o n t h e o r e m t h a t ( l ~  
eigenvector  co r r e spond ing  to the e igenvalue  21. This implies  that  1 1 - 2 2  

g ( /~ =21  ( / ~  11 iff 2 2 = 0 .  

A c c o r d i n g  to T h e o r e m  1 (X(O), T) is t opo log ica l ly  i somorph ic  to a subs t i tu t ion  
flow of  cons tan t  length i f2  2 = 0. W e  conjec ture  tha t  this cond i t ion  is also necessary.  
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