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Introduction 

Let (f2, ~ ,  P) be a probability space and (~'~),EN an increasing sequence of sub-a- 
fields of Y. The general almost sure convergence theorem for vector-valued 
asymptotic martingales proven in [7] may be stated as follows: 

Theorem I. Let E be a Banach space with the Radon-Nikodym property and a 
separable dual. Let (X,,  ~) ,EN be an E-valued asymptotic martingale of  class (B), that 
is such that 

supy IIX+/I dP < oo. 
vET 

Then there is an E-valued random variable X such that the sequence (X,(co)),E ~ 
converges weakly to X(co) for almost every co e f2. 

The conclusion of this theorem cannot be improved: It is known (see [2]) that 
whenever E is infinite dimensional, one can always construct  an E-valued 
asymptotic martingale of class (B) (in fact even uniformly bounded) for which 
strong convergence fails almost surely. 

Thus while the above theorem is elegant and very general, it has the drawback 
that it is not a proper extension of the Doob almost sure convergence theorem for 
vector-valued martingales. 

The purpose of this paper is to introduce a somewhat smaller class of vector- 
valued asymptotic mar t ingales-  namely the "uniform a m a r t s " - f o r  which strong 
almost sure convergence obtains. This class is wide enough to include: the 
martingales, the quasi-martingales, as well as the dominated (by an Ll-function) 
sequences of random variables which are strongly convergent to a limit almost 
surely. 

I am indebted to Louis Sucheston for several useful comments concerning this 
paper. He also persuaded me to abandon the term "asymptotic martingale" in 
favor of the term "amar t ' ,  as more convenient: thus esoteric considerations of an 
esthetic nature sometimes have to give way to considerations of a more practical 
nature. The principal results of this paper were announced in [4]. 

0044-3719/78/0041/0177/$03.00 
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1. The Uniform Amart; Notation, Definitions and Preliminaries 

We begin by recalling the necessary terminology. Let (~2, .~-, P) be a probability 
space and (~),+N an increasing sequence of sub-a-fields of ~ ;  here N -- { 1, 2, 3,... }. 
A stopping time (with respect to the sequence (~)n~)  is a mapping z: g2 ~ N w {+ m} 
such that { - c=n}e~  for all n sN .  Let T be the set of all bounded stopping 
times. With the definition z__<a if z(~o)<a(co) for all meg2, T is a directed set 
'"filtering to the right". For  z ~ T recall that 

~ = { A ~ l A ~ { z = n } e ~  for all nEN} 

and that z < o- implies ~ c ~ .  
Let E be a Banach space. In this article we shall only consider random variables 

with values in E that are strongly measurable and strongly integrable (in the sense of 
Bochner). 

A sequence ( X , ) ~  of E-valued random variables is called adapted (with respect 
to (~),+~) if X,: g2---,E is (Bochner) Z-measurable  for each h e N .  

Since in what follows we shall only deal with sequences of E-valued random 
variables, we may and shall assume that 

E is a separable Banach space; 

D ~ {x'e g'lllx'H < 1} is a countable set with the property that 

II x]l = sup {](x', x)l] x '~ D}, for each x e E. (1) 

Let now d be an algebra of subsets of g2. If v: d -~ E is a finitely additive set 
function, we denote by Llvkl the total variation ofv  (see I-9], p. 97), that is 

II v II = sup F II v(~)II 
i 

(the supremum being taken over all finite sequences (A~) of disjoint sets in ~r 
whenever this supremum is finite. 

For  any Banach space F, we denote by ~F(O, ~r the set of all g: g2 -+ F of the 
form 

g =-2 Xi 1A+ 
i 

where the sum is finite, the Ai's are disjoint and belong to ~ and x~ ~ F for each i. We 
also write: 

6~e ~ (f2, sO) = {g ~ 6eF(g2, SO') Ill g(co)H ----< 1 for all e) ~ f2}. 

We now recall the definition of amart (=asymptot ic  martingale; see [7, 5]): 

Definition 1. An adapted sequence (X,),~N of E-valued random variables is called a 
strong amart, or simply an amart, if X ,  is integrable for each n ~ N and if the net 

(~X~dP)++T 

converges in the strong topology of E. 
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We shall repeatedly make use below of the following useful stability property of 
E-valued amarts (this is Theorem 1 in [3], or see Lemma 2 of [7]): 

Theorem II. Let E be a Banach space. Let ( X.),~N be an E-valued amart. For each ~ ~ T 
s e t  

~dA) = S x~ dP, for A ~ ~ .  
A 

Then the family (#~(A))~ converges to a limit I~(A) in E, for each A ~ Q) ~ = ~J ~ ,  and 
hEN ~:~T 

the convergence is "uniform", in the sense that for each e > 0 there is n o ~ N such that 

rre T, a>_-n o ~ sup II#~(A)-#(A)II <e. (2) 

Throughout this paper we shall make constant use of the notation introduced in 
Theorem II. 

The following observation is now an immediate consequence of Theorem II: 

Remark. Let ( X , ) , ~  be an E-valued amart. Then 

lim [ (g, X~) dP = L(g) 
"~ET ' 

exists for each g s Cj~,(f2, ~ J,). 
nEbq 

This suggests the following: 

Definition 2. The E-valued amart ( X , ) , ~  is called a uniform amart if the previous 
convergence is "uniform", in the sense that for each e > 0  there is no e N  such that 

~ T, a>=n o ~ sup ]y(g, Xr  <e. (3) 

Remark. It is easily seen that the above statement is equivalent with the following: 
For  each e > 0 there is n o E N such that 

~ T ,  ~>no ~ ]rm-(#l~)J /<e .  (3') 

We also give the following definition: 

Definition 3. An adapted sequence (X.).~ N of E-valued random variables is called a 
uniform potential if X .  is integrable for each n ~ N and if 

lim~ rlX~lj dP=O. 
~ T  

Remarks. 1) The general convergence theorem for real-valued amarts [1] (or see 
[10, 3]; see also [6] for a related result) implies that i f (X~)~is  an E-valued uniform 
potential, then l imX,(e))=0 strongly almost surely. 

n ~ N  

2) It is clear that if (X~)~N is an E-valued uniform potential, then (X ~)~  is a 
potential in the sense of [11]. The converse is not true: the asymptotic martingale 
constructed in [2] provides an example in every infinite-dimensional Banach space, 
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of a potential which is even uniformly bounded, but which is not a uniform 
potential. 

Before beginning the study of uniform amarts, we recall an elementary but very 
useful result from [7] (in the Lemma below we denote by @~ the a-field spanned by 
,~N~ , i,e., 

~ = ~( U ~)). 
neIN 

Lemma 1. Let (X~)~, be an E-valued amart such that X* = suplJX~J I e L~. Then 

/~(A) = lira ~ X, dP = lim ~ X, dP (4) 
n~N A z e T  A 

exists in E for each A ~ ~o~, and the set function #: J~ ~ E  is countably additive, 
absolutely continuous with respect to P and of bounded variation. 

For completeness we include the proof: 

Proof. By Theorem II, we know that (4) holds for each A e ~ ~ .  Let now A e f t ,  
ne~! 

= a(Q) ~ ) ;  we show that (6 X,  dP)~T is a Cauchy net in E. Let e > 0. There is then 3 
h e n  A 

= 3(~) > 0 such that: 

Be~oo, P(B)<__6~ yX* dP<_e. 
B 

Choose A o �9 U ~ such that P(A A Ao)<= 3, then choose no �9 N large enough that 
h e n  

Ao �9 ~o  and that 

~reT, ; n  ~ 
~ T ,  ~= o] A0 ao 

Note also that for each,  �9 T 

II~X, dP-~X~dPIl<= ~ IIX~lldp<= ~ X*dP<=a. 
A Ao A A A o  A &Ao 

We deduce 

a~T';~:~ A -- 

This proves the existence of the limit in (4). The countable additivity of/~ follows by 
the Vitali-Hahn-Sacks Theorem (see [9], p. 321); the absolute continuity of#  with 
respect to P and the fact that # is of bounded variation follow from the observation 
that 

LI/I(A)II <~X*dP,  for each A ~ g ~ .  
A 

This completes the proof of the Lemma. 
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We may now state and prove the following: 

Proposition 1. Let (X,),~N be an E-valued amart such that X* --supl[X.[I cg~.  Then 
n e N  

the assertions a) and b) below are equivalent. 
a) There is an E-valued random variable X such that 

lim <x', X,(co)> = <x', X(co)> 
nffN 

almost surely, for each x' ~ D. 
b) There is an E-valued random variable X e L~((2, ~ ,  P) such that (with the 

notation of formula (4) in Lemma 1) 

#(A) = ~ X dP, for all A ~ Yo~, 
A 

d u  
that is, X =  r-. 

dP 
I f  in addition (X,),~ N is a uniform amart, then statements a) and b) above are also 

equivalent to." 
c) There is an E-valued random variable X such that 

lira X,,(co) = X(co) 
hEN 

strongly almost surely. 

Proof We note first that, for each x' ~D, (@', X.}),+~ is an Ll-bounded real amart, 
dominated in fact by the Ll-function X* and hence by [1] (or see [10, 3]) converges 
almost surely to a limit. As D is countable, we can find N(D) c ~ ,  P(N(D)) = 0 such 
that for each co r N(D) and each x 'c  D, 

lim<x', Xn(co)> =~b(x', co) exists 
hEN 

sup[<x',X,(CO)}I<X*(CO ) and 
neN 

�9 (x', co) < x*(co). 

It follows that for each A ~ o ,  

<x', ~ X.  dP = ~ <x', X.> dP ~ ~ q)(x', co) dP(co). 
A A A 

On the other hand, by Lemma 1, we also have, for each A c Y~o 

X,  dP ~ #(A) strongly, 
A 

whence 

<x', ~ X+ dP} ~ <x', #(A)}. 
A 

We deduce 
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(x', #(A)5 = J cl)(x', co) dP(co) for x' ~ D, A ~ ~-~o. (5) 
A 

a) ~ b). By assumption there is a set N'(D)e~, P(N'(D))=O, and we may 
assume N'(D)~ N(D), such that for each co r N'(D) and each x' e D, 

(x' ,  x(co)) = ~(x', co). 

From (5) we deduce 

(x' ,  ~(A)) = ~ (x',  X(co)) de(co) = (x', S X de>  
A A 

for each A s o~  and x' e D; hence 

]~(A) = ~ X dP for every A e ~o~ 
A 

(if X is not ~,~-measurable, we replace X by its conditional expectation E(X lye)). 
b) ~ a). By assumption, there is X e L)(f~, W~, P) such that 

#(A) = ~ X dP for all A e ~-~. 
A 

Using (5) we deduce that for each x'~ D, 

(x', X )  dP = ~ ~b(x', co) dP(co) for all A s Y~; 
A A 

hence there is a set N ( x ' ) ~ ,  P(N(x'))=O such that 

(x', X(03)5 = ~(x', 03) for co r N(x'). 

Then B -  (~vN(x'))u N(D)E ~, P(B)= 0, and for each x'~ D and co ~ B we have 

lira (x', X,(co)} = ~(x', co) = (x', X(co)), 
n~IN 

which proves a). Thus a) ~ b). 
Assume now in addition that the amart (X,) .~ is uniform. It is clear that 

c) =~ a). Thus the proof is finished if we show b) ~ c): 
Hence suppose the existence of X e L~(O, ~o,  P) such that 

X =  d# 
dP" 

Then formula (3) in the definition of the uniform amart becomes: 

a~T, a > n o ~  sup [~(g,X~-X)dP[<m 

Now there is a simple function Xo e5~(~2, ~ )  for some m>n o, such that 

~IIX-XoIIdP<r (6) 
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We deduce, for o-__>m and all g ~ Jel,(~2, ~ )  

Ij'(g, X~-Xo}l  <2e,  

whence 

511Xo-Xo] f <2e  for ~r>m. (7) 

From (6) and (7) follows that 

a~ T, a > m ~  ~lpX~-Xll dP<=3~. 

This shows that the net (X,),+ r converges to X in L~. The proof is now completed 
by making use of the equivalence i) ~ ii) of Proposition 3 (Section 2). 

Remark. I fE  has the Radon-Nikodym property, then (in view of Lemma 1) it is 
clear that assertion b) holds. 

2. General Properties of Uniform Amarts; Stability, Structure, Convergence 

We begin by observing that the notion of uniform amart is a natural extension 
of the real-valued amart to the vector-valued case: 

Proposition 2. Every real amart is a uniform amart. 

Proof We recall that ifa real-valued additive set function v defined on an algebra sr 
of subsets off2 is bounded, then it is of bounded variation and (see [-9], p. 97, Lemma 
5): 

][vii <2 sup Iv(A)l. 
A ~  

With the notation of Theorem II, applied to the R-valued amart (Xn),+~, it follows 
immediately for o- e T, o- > no, 

PJ#~-(#[G)II <2 sup J#~(A)-#(A)]__<2g 
AE~.% 

and hence the assertion is proved. 
We next prove the following: 

Proposition 3. Let (X,),~N be an adapted sequence of E-valued random variables such 
that X* = sup IJ X, II~ La~ �9 Consider the following assertions: 

n~N 

i) The net (X~),~ r converges in L~. 

ii) There is X e L~ such that 

l imX.(~)  = x ( ~ )  
n~q 

strongly almost surely. 

iii) (X,)+~ is a uniform amart. 
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Then i) <=> ii) ~ iii). 

Proof. ii) ~ i). Clearly (X~)~ T converges to X in L);  this is just an application of the 
Lebesgue Dominated Convergence. 

i) ~ ii). Choose a strictly increasing sequence of positive integers (G)k_>_ ~ such 
that 

1 
acT, a>=nk ~ S l l X ~ - X ,  kll dP<=~2 k. 

Let u(k)=~(_, __, --~__,~ for n >n  k . _  The sequence (U(,k)),>=,~ is adapted with respect to 
(Y,)~ >,~ and 

U} k) = X, - X,,~ for all z ~ T, z > n k. 

By the Maximal Lemma given in [7] we have: 

P sup IIu.(k)jl> =<2~(sup~lfV~lCdP)<~;. 
\ ( n  ~ nk ~r e T 

G~nk 

Let now 

1} 
Ak=Isup  II U~(k)H > ~  , 

kn _-> nk 

and 

Bj = U Ak for each j s N. 
k>__j 

1 
Then P(Bj)<2W~_ ~ and it is easily seen that for co ~ Bj the sequence (Xn(co)),~ is 

Cauchy in E. Thus i)<=> ii) is proved. 
It remains to show i)=> iii). By assumption there is X e L) such that (X~)~T 

converges to X in L~. Thus given e > 0 there is no e N such that 

a ~  T, a > n  o ~ ~[4Xr  d P < e .  

We deduce for a ~ T, a >= no: 

[~(g, X o - X )  dPI <~ IIX~-XII dP<~. sup 

Hence (X,) ,~ is a uniform amart and Proposition 3 is proved. 

Corollary 1. Suppose that the Banach space E has the Radon-Nikodym property. 
Then for an adapted sequence (Xn),~ ~ of E-valued random variables, with 
X*= sup l]X,]leL1R, the assertions i), ii) and iii) of Proposition 3 are equivalent. 

The next theorem generalizes to the vector-valued case a result that is well 
known for the real amarts (this goes back to Lemma 2 of [1]; see also [10, 3]): 
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Theorem 1. Let (Xn)n~ ~ be an E-valued uniform amart which is Ll-bounded, that is 

sup~ HX, I[ dP= A < oo. 
rtr 

T h e n  ." 

1) (X, ) ,~  is an amart of class (B), that is 

sup j"/IX~N dP < oo 
~eT 

2) ([IX.H).~ is a real-valued Li-bounded amart. 

Proof 1) Choose n i ~ N  such that 

0.~ T, ~ > n l  ~ I Im-(~  r ~)lr __<1 (8) 

(we use the notation of Theorem I1). Now for n>nl  we have 

I IImH - I1~ I ~111 < I r ~ . -  (~t I ~.)lr =< 1; 

m particular, for all n > n, 

[1~ 1 4Jl < FI~,II +1 =~ IIX,[I dP+I<__A+I. 

Since the total variation of a measure increases with the o--field, we deduce 

]r#l~ll < A + I  for all o-er .  (9) 

From (8) and (9) it follows that 

or equivalently, 

0-~ T, o.>n 1 ~ ~ IIS~ll dP<=A+2. (10) 

A standard argument now completes the proof of 1): For arbitrary o. ~ T note that 

X~ + X,~ = X,,v,,~ + X~ . . . .  

whence by (10): 

~ I[X~l[ dP<~  IIX~,~ll dP+yllX~^.~]l dP+SllX, , l ldP 

< ( A + 2 ) + 2 { 5  ( sup IIXA)de}=C<oo. 
1 < "<hi  = J =  

Thus 1) is proved. 

2) Since the net ( l l#l~l l )~T is bounded above (see (9)) and is increasing, it 
converges in R. Now given g > 0 there is n o e N such that 

o'eT, o-=>n o ~ IIm--(/~ I ~)11 < <  
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whence for cre T, a > no 

IJ'llX~ll dr -I1~ I Gi l l  = I llmll -LI~ I Gi l l  _-<~. 

This shows that the net (y H Xr dP)~r converges in R and hence completes the proof 
of Theorem 1. 

We next prove an "'optional sampling theorem" for uniform amarts; this was 
suggested by the optional sampling theorem for real-valued amarts given in [10]: 

T h e o r e m  2. Let (X,),~N be an E-valued uniform amart for ( ~ ) , ~ .  Let ('Ck)k~ ~ be a non- 
decreasing sequence of bounded stopping times for ( ~ ) , ~  and define 

~ k = ~  = { A e ~ [ A c ~ { z k = n } ~ J b r  all n~N}  

and 

gk=x~,  for k e N .  

Then ( Yk)k~ is a uniform amart with respect to the sequence of e-fields ( ~k)k~N" Further 
if (X,) ,~ is LLbounded, then (Y~)a~ is LLbounded. 

Proof We begin by observing that ifr  is a stopping time for (~k) then % is a stopping 
time for (~ )  and 

~ G o .  
By the definition of the uniform amart, given ~ > 0 c h o o s e  m e N such that 

r, z' ~ T } 
re<z<_( , ~ IS (g ,X , }dP-5 (g ,X , , )dP l<s .  (11) 
geyl(a, ~) 

Let z~ =lira T rk; then v~ is a (possibly infinite) stopping time for (~) .  Now for 
k 

each co ~ f2 

ILX~^m(CO)[I < sup IIXj(co)]l, for each k e n  
l ~=j<_m 

and 

lira X . . . .  (@ = X . . . .  (~) strongly, 

also X~k ̂  m is ~k-measurable for each k e N. By Proposition 3, (X~^ m)k~N is then a 
uniform amart for (~k)" Choose now K e N so that if ~, cr' are bounded stopping 
times for (~0, 

h e 5~,(f2, ~r ~ 15 (h, X . . . .  } d P - 5  (h, X~, ,,.,} dPL <= ~. (12) 

I fG  o" and h are as in (12), then % v m, z~, v m are bounded stopping times for (~),  
that is % v m, %, v m e T and we have 

m < % v m < % , v m  
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whence by (11), 

I~ (h, X . . . .  ) dP-~  (h, X~, v,,) dPI <=r (13) 

Now 

Y ~ - Y ~ , = X ~ - X ~ , ;  

but 

{ x ~ = x ~ o v m + x  . . . .  - x m  
(14) 

X,~, =X~o, vm+X . . . . .  -X~"  

F'rom (12), (13) and (14) it follows that if a, a' are bounded stopping times for (Nk) 

K<~_<a' ] 
h;  5~,(O, N~); ~ ly (h, Yr d P - y  Kh, Yr dPI <=2r 

and the theorem is proved. 
The following theorem (and in fact to a large degree the notion of uniform amart 

itself) was motivated by the "Riesz decomposition" for vector-valued amarts given 
in [13 : 

Theorem 3. For a sequence (X~)~ N of E-valued random variables the following 
two assertions are equivalent: 

i) (X. ) .~  is a uniform amart. 
ii) (X.).~N admits a unique decomposition, X. = Y. + Z., for n ~ N, where ( Y~).~N is 

an E-valued martingale and (Z . ) .~  is an E-valued uniform potential. 

Proof i) ~ ii). We note first (with the notation of TheoremII) that for each p s N  
we have, if n > p 

II(~IG)-(#IG)Ir  < II#,,-(~l~)fl 

and that the right-hand side tends to 0 when n- roe ;  since for re>p, n>p, 

H(#mlG)-(~AG)II =.f HE(XmIJ~)-E(X. IG)IJ dP 

it follows that the sequence (E(X.I~)).__>p is Cauchy in L~. If we denote its limit 
in LtE by Yp, then we have 

r _d(~lG) d(PIJ~) for each p e N .  

We let now Z e = X  p -  Yp for each p~N.  
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It is clear that (Y,),~ is a martingale and thus 

d(Pl~) 
for each z ~ T. 

On the other hand 

~IIZ.IIdP---~ IIX.-  YdldP-= sup {y (g, X , -  Y~) dPI 

_-< JJ~,-(~l~) l l  

and 

lira It/2,-(# I ~)ll =0;  
rET 

thus (Z , ) ,~  is a uniform potential. 
The uniqueness of the decomposition follows by a standard argument; if 

x.=Y.+z.=Y;+z'., 

where (Y,[).~ is a martingale and (Z'.).~ a uniform potential, then (JI u - I1' I)).~ is a 
submartingale and hence 

.f fl r , -  Y~'[[ dP ~f[I Y,+ 1-Y;+I[I dP. 

On the other hand 

f tl V V P I I  . j I2)  ~ II , 7  [I - ~  . i, . . -  . .  Li ~,. = j , ,Z.--  ~.l~ . .  as n~oo .  0 

It follows that 

~l] Y , -  Ydrl dP=O for all n e N ,  

whence Y, = Y,' almost surely for each n s N. 
ii) ~ i) is trivial, since every martingale is a uniform amart and every uniform 

potential is a uniform amart. This completes the proof of Theorem 3. 
I n  view of the characterization of Banach spaces with the Radon-Nikodym 

property in terms of convergence of martingales (see [8], or see the elegant 
treatment of vector-valued martingales given in [15]; for the earlier historical 
development of the subject see [13, 14]), the following is an immediate consequence 
of Theorem 3. We assume below that the probability space is not purely atomic: 

Corollary 2. For a Banach space E the following assertions are equivalent when 
holding for all E-valued uniform amarts (Xn, - ~ ) ~ :  

(1) I f  (X,)~q is Ll-bounded, that is if 

sup~lIX, I I dP< oo, 
neN 

then there is an E-valued random variable X such that 
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lira X,(co) = X(co) 
ne~q 

strongly almost surely. 
(2) The space E has the Radon-Nikodym property. 

189 

3. Examples of Uniform Amarts 

1) The Martingale. We recall that an adapted sequence (X . ) . ~  of E-valued random 
variables is a martingale (with respect to ( ~ ) . ~ )  if X. ~ L~ for each n e N and if 

E(Xm ] 4 )  = X.  for all n < m. 

It follows easily that 

E(X~ J ~ )  = X~ for all a < % a, ~ c T. 

But then - with the notation of Theorem I I -  we have for every A e ~ and z ~ T, 

g,(A) = ~ Xr dP = ~ E(Xr [ ~ ) d P  = ~ X~ dP =/z~(A); 
A A A 

whence 

/t(A) =/I~(A) for every A ~ ~ .  

Thus/~ I ~ = / ~ ,  for each a ~ T and hence (X,).o~ is a uniform amart. 

2) Uniform Potentials. Let (X~),~N be an E-valued uniform potential. Again with the 
notation of Theorem II  we have 

/z(A) = 0 for every A ~ U ~.~, 

whence # 1 ~  = 0 for each a ~ T. On the other hand 

IIm-(~[~)[I --Ilmll =S [IX~Pl de ,~r -~ 0 

and hence (X~).~ is a uniform amart. 

3) Dominated, Almost Surely Convergent Sequences. Let (X . ) . ~  be an adapted 
sequence of E-valued random variables such that: a) X* = sup I[ X,,[I ~ L~; b) There is 

hEN 

an E-valued random variable X such that 

limX,(co) = X(c~) 

strongly almost surely. It follows from Proposition 3 that ( X . ) . ~  is a uniform 
amart. 

4) The Quasi-Martingale. We recall that an adapted sequence (X,,).~N of E-valued 
random variables is a quasi-martingale (with respect to (~ . ) .~ ;  see [12, 16, 17]) if 
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X, e L~ for each n e N and if 

~ [IX.-E(X,+~ IG)ll dP < c~. 

It  was shown in [10] for the case E = R  that a quasi-martingale is an amart. The 
proof  carries over verbatim to the Banach space case. We shall now show that an E- 
valued quasi-martingale is a uniform amart. 

Proof. Let (X,),~N be an E-valued quasi-martingale. Let e > 0  and choose n 0 ~ N  
such that 

n ~ n o 

Let ze T, z>no and let p be any integer such that p > z .  For any g e @(f2, ~ )  note 
that g-l{~=k} is ~-measurab le ,  for each k with no<k<__p; hence we have 

P 

5(g,X,)dP-~(g, Xp>dP= Z ~ (g, Xk--Xv> dP 
k= no {z= k} 

p p - 1  

= Y Y <g, Xj-X. >dP 
k=no j = k  {z=k} 

p p - -1  

= E Y', ~ (g, Xj-E(Xj+I[~.~)>dP 
k=n o j = k  {z=k} 

p - 1  j 

= ~ 2 ~ (g, Xj-E(Xj§ 
j=  no k= no {r:= k} 

We deduce 
p- -1  j 

I~(g,X~>dP-~<g, Xp>dPl< ~ ~ ~ I<g,X~-E(Xj+~I~)>IdP 
j= no k= no {z= k} 

p - -1  j 

j = n o  k=no {:=k} 

p - 1  

<= ~ ~]IXj-E(Xj+~ [~)1[ dP<e. 
j = no 

Letting p ~  in the above inequality we deduce: 

zeT, z>no~ sup ]~(g,X~)dP-L(g)]<8. 
g e J  1, (f2, ,~) 

Hence (see Definition 2), (X , ) ,~  is a uniform amart. 
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Note added in proof. I am indebted to Louis Sucheston for pointing out that the Radon-Nikodym 
property of the Banach space E was not needed in Theorem 3. 


