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w 1. Introduction 

The entropy of a point process on a finite interval of the real line was introduced 
by Rudemo [15] and McFadden [101 and later generalised by Fritz [4, 6] to 
point processes defined on finite measure spaces. McFadden calculated, under 
certain differentiability conditions involving infinitesimal birth equations, the 
rate of change of the entropy as a function of time in terms of the "conditional 
birth rate" (i.e. the conditional intensity). A notion of "long-term entropy rate" 
for a stationary point process defined on the whole real line is implicit in Fritz's 
generalisation of McMillan's theorem [5]. As is to be expected this is the 

infimum (over all T>0)  o f - ~ H  T, where H r is the entropy of the point process 
over [0, T]. 

In the present paper we develop a direct approach to the assymptotic 
entropy rate of a stationary point process on the real line as "conditional 
entropy given the past". This is done under the assumption t h a t  the Palm 
probability P0 of the process is absolutely continuous with respect to the 
conventional probability P on the a-field if0 of events occurring in ( -  o% 0). If 

dP0 denotes the corresponding Radon-Nikodym density and 2 the intensity of 
dP 
the point process then, as will be seen, it is natural to define the entropy rate as 

dP o 
2-E(AologAo) ,  where A o = ) ~ -  ~ .  It turns out that this is equal to the product 

of L and the entropy rate of the discrete-parameter process of interpoint 
distances under the Palm probability (Theorems 3, 3 a). 

The paper's main results concern the local approximation of the conditional 
information function. For each e>0  and n=0,  +1,_+2 . . . .  let the random 
variable ~ be 1 or 0 according as the point process has points in the interval 
[he, (n+ 1)e) or not, and define 

P~(il~o)=P({~o=ilJ~o), P~(i[~%l, C~-z . . . .  ) = P ( ~ = i I ~ L 1 ,  ~%2 . . . .  ) 
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192 F. P a p a n g e l o u  

(i = 0, 1). Then, by Theorem 1 (which summarises certain auxiliary results proved 

in [11]) -lp~(l[~-0)--*A o in L l - m e a n  as e ~ 0 ,  i.e. A 0 is the conditional 

intensity at 0 (and therefore Aodt can be interpreted as the conditional 
probability of a point in (0, 0 + dr) given the past ~o), and it is natural to seek to 
establish the behaviour of log p~(il~o), log p~(ilff_ 1, f f - ;  . . . .  ) and other related 
functions as e--+ 0. This is done in Theorems 4, 5 and 6 and their corollaries, 
which are proved under a minimum of hypotheses. The justification and focal 
point of these results is Theorem 6 which asserts that 

17 2~ " '"  

in L 1 as e---~0, where h is the first nonnegative point of the process and A, 
denotes for each t the conditional intensity at t. 

In the last section we show the connexion between the above results and the 
notion of entropy over a finite interval. Using the likelihood function of the 
given point process with respect to the Poisson process ([14, 9]) one can 
calculate the entropy and the resulting formula generalises the one given by 
McFadden under his more restrictive conditions. It becomes apparent that the 
above results are the natural extensions to the whole real line of corresponding 
statements valid for finite intervals. As a by-product we obtain a direct proof of 
McMillan's theorem for point processes ([51). 

The author was prompted to do this work by an informal but stimulating 
discussion he had with P.M. Lee and D. Vere-Jones. He is especially indebted to 
the former for drawing his attention to the early literature on the subject. 

w Notation and Basic Facts 

The framework adopted here is mostly that of [11], with minor notational 
changes. The probability space on which our point processes are defined will be 
identified with the space of realisations; thus, for a point process on the whole 
real line R, (2 will be taken as the space of all subsets of R which have + c~ and 
- o o  as their only accumulation points. For  any coef2 and any Borel set Q o R ,  
N(co, Q) will denote the number of elements of c0c~Q. The basic a-field Y in f2 is 
defined as the minimal a-field such that N(co, Q) is an J -measurab le  function of 
~o for every bounded Borel set Q. If in this definition we restrict Q to range over 
the bounded Borel subsets of ( - o %  t), we obtain the ~-field ~ of events 
occurring "before time t" ( -  oe < t <  oe). 

A point process on R is a probability measure P on (f2, @) such that the 
expectation E(N(Q)) is finite for every bounded Borel set Q. Stationarity of a 
point process will be understood in the usual sense, i.e. as the invariance of P 
under the action of any translation on the elements of g2. All point processes 
considered in the present paper, which are defined on the whole real line, will be 
assumed to be stationary. 

The notion of Palm probability Pt (i.e. of the conditional probability measure 
given that the process has a point at t) will be assumed known. See [16] for 
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instance. The intensity of a stationary point process is defined as 2 = E(N [0, 1]). 
To prevent confusion we will denote expectations with respect to Po by E o. We 
can and will throughout choose regular (i.e. a-additive) versions of conditional 
probabilities. 

We label the points of each co~f2 

"'" < ~ -  1(co) < ~0(co) < zdco) < ' - -  

in such a way that Zo(co)<0<rl(co), and define 

~(co) = z, + 1 ( c o ) -  z~(co), 0(co) = - Co(co). 

The palm probability Po of a stationary P is carried by the set f2 o = {coef2: 0eco} 
and for coe@ o it is convenient to introduce 

~(co) = ~ +  ~(co), 

especially when we consider the distribution of these random variables under Po- 
It is well-known (see [16]) that under Po the sequence .... ~/-z, t/o,//1,--- is 

1 
stationary and that Eot/i= ~. 

Notice that ~0 is generated by the random variables 0, ~_1, ~-2, ~ -3 , . . . .  
Below we shall denote by ~ the vector ( .... {-3, ~-2, ~-1), by t/ the vector 
( .... t/_ B, t/_ 2, t/_ l) and by x the element ( .... x_3, x _ / , x _ l )  of the space C 
. . . .  x (0, oo) x (0, oo). Product spaces such as C will be furnished with their Borel 
product a-fields. Following (as in [11]) the practice of denoting measures by 
their corresponding differentials we have the following lemmas. 

Lemma 1. The probability measure P(O~dt, ~ d x )  on (0, oo)x C is absolutely 
continuous with respect to dt Po(tlEdx ) and 

P(O~dt, ~ d x )  
dt Po(rledx ) -2Po(r /o>tlr /=x)  

Lemma 2. I f  O<a<b then for P(Oedt, ~'Edx)-almost all (t, x)e(O, oo) x C 

Po(t +a<rlo <t +blrl=x) P(a<=z l <bio=t,  ~ = x ) -  
Po(~0 = t ( ~ / = x )  

Lemma 1 is essentially Lemma 3 in [ i i ] ,  while Lemma 2 is implied by 
Lemma 4 there. It follows from these Lemmas, from Lebesgue's theorem on the 
almost everywhere differentiability of monotone functions and from the assumed 
regularity of conditional probabilities that 

M(t, x) = lira 1_ P(N [0, ~) > 110 = t, r ~ x) (1) 
~-~0 

exists for P(O~dt, ~Edx)-almost all (t, x) in (0, oo) x C and hence: 

Lemma 3. lim 1 P(N [0, e) > l lY0) exists P-almost surely. 
e~O s 
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We let A t = lim 1 P ( N  It, t + e) > 11~). The process At, - oo < t < oo, can (and 
e~0  

will) be chosen to be measurable. Clearly 

Ao =M(O,  ~) (2) 

and it is easy to prove that 

A~ 1 =M(O + h ,  ~). (3) 

The next two theorems will be needed in the sequel. 

Theorem 1. For a stationary point process the following statements are equivalent. 

(i) For some (and then for  all) t~R,  Pt is absolutely continuous with respect 
to P on ~ .  

(ii) For some (and then for  all) t e R ,  1 p ( N [ t ,  t + e)> 1]~)  converges to A t in 
L l -mean  as e--~O, e 

(iii There is a non-negative, stationary and measurable stochastic process Yt, 
- oo < t < o% adapted to the ~-fields o~, - oo < t < co, with E Yo < oo and such that 
for  any a e R  the process 

t 

N[a ,  t ) - ~  Y~ds, t >__a 
a 

J ~  _ i s  an { t, t > a}-martingale. 

(iv) With Po-probability one the conditional distribution under Po of  rio, given t h 
is absolutely continuous with respect to the Lebesgue measure. 

I f  the above statements are true and i f  )~t denotes the Radon-Nikodym 
d~ 

density ~ o f  Pt with respect to P on the ~-field o~ ( -  oo < t < oo), then for  every 
t ~ R  

At = Yt = 2 X t a.s. (4) 

Note that EA~=2.  The random variable A t is the "conditional intensity of 
the point process at t, given the past". 

For  the proof of Theorem 1 see Theorems 9, 10 and 11 in [11]. Notice that 

statement (ii) is equivalent to the Ll-convergence of t -E (N[ t ,  t + e ) l ~ )  to A,, 
4 

1 e 
since - E ( N  It, t + e) - I~uv, t + ~) >= 1}) ~ 0 as e ~ 01. Statement (iii) is somewhat differ- 

e 
ent from the one in [11, Th. 10] but the proof is straightforward. The reader 
who is familiar with Meyer's theorem on the decomposition of submartingales 

will recognise i Ys ds as the "predictable projection" of the point process after a. 

For  futureareference note that (iii) and (4) imply that if Z t, 0 < t <  T, is a 
measurable stochastic process on (~, o~, P), adapted to the ~r-fields ~,~, 0 < t <  T, 

1 I A denotes the indicator function of A 
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and such that 

T 

E(At[Zt[ ) dt < o0 
0 

(5) 

then ~ Z~, is integrable with respect to P and 
O_<_*i< T 

T 

E( ~ Z~)=$E(AtZt)dt. 
O~zi<=T 0 

This is a special case of a theorem in stochastic integration. See Proposition 2 
on p. 89 of [2] (compare with Theorem 5.1 in [3, p. 444]). For the theorem as 
used here see [1] and [9]. 

If statements (i)-(iv) of Theorem 1 are true, we denote by f(ttx) ( t>0,  x~C) 
the conditional probability density (under Po) of t/0 given t /=x,  i.e. 

Po(r/o ~dt [ r/=x) 
f(tlx) = dt (7) 

Theorem 2. If  statements (i)-(iv) of Theorem 1 are true then 

P(Oedt, ~ d x ) = 2 ( i  f(s[x)ds) dtPo(tledx) (8) 

and for P(Oedt, ~edx)-almost every (t, x)~(O, oo) x C 

P(zleds[O=t, ( = x ) =  f(u[x)du f(t+s[x)ds 

and 

(9) 

(10) 

Proof. (8) and (9) follow from Lemma 2 and (7). Notice that (9) implies 

(T)(T )-' P(N [0, e)> l l 0= t ,  ~ = x ) =  f(slx)ds f(s]x)ds (11) 

and (10) is a consequence of this and (1). 
Another implication of (9) is that if q~(x, t, s) is a Borel function on C x (0, oo) 

x (0, Go) such that the random variable 0(& 0, h)  is integrable, then 

oo 

/~(4'(~, O, zl)lO=t, ~-=x)= j" O(x, t, s) f ( t + s l x )  ds. 
o ~ f(ulx) du 

t 

(12) 
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w Two Preliminary Theorems 

Throughout  the present paper log will denote natural logarithm. The absolute 
continuity of a measure/~ with respect to another v will from now on be denoted 
by/~<v.  

Theorem 3. If  Po "~ P on ~o, then 

E(AologAo)=2 + 2Eo [ i  f(t[tl) logf(t[tl)dt ]. 

Proof By (2), (10), Lemma 1 and (7) 

E(A o log Ao) = E(M(O, ~) log M(O, ~)) 

-- ~ M(t, x) logM(t, x) P(O~dt, ~dx) 
O C  

] 

=)~ S ~ f ( t lx )  log f(ttx) dtPo(rl~dx) 
C 0 

- 2  f S f(tlx)log(! f(s[x)ds dtPo(~l~dx). 
C 0 

By the change of variable u = ~ f(s[x) ds we obtain 
t 

f(t[x)log f(s[x)dx d t=~ logudu=- i  
0 0 

which proves the theorem. 
Of course both sides in Theorem 3 may be oo. As usual we define 0 log 0 = 0. 

In connexion with the hypothesis of the next theorem recall that y log y > - e -  ~ 
for all y > 0. 

Theorem 4. If  Po < P on •o and E(A o log Ao) < oo then, as ~ -~ 0 

1 LI  
- E ( L  o ~,(za) logA t [ ~ o ) - *  Ao log A o (13) I~ t , ) 1 a.s. 

1 ~ 1 Z~ 
~P(~I<~]~'o) Iog(~P(TI<e,J~o)) ~ . ~  AologA o (14) 
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(~1 log P('C l < e  - l o g A  . . . .  ~>0 (I6) 

1 P(m, _>- ~1~o) log P(~l >- e l ~ o ) @  - Ao (17) 

1 L1 
I w __>~) log P(z 1 >= ~1o,~o) �9 ~,.~., - A  o. (18) 

Proof In the proof we shall make use of the following well-known facts. Firstly, 
if V and V,, n = 1, 2 . . . .  are random variables such that V, > c for some constant c 
and all n, V,---,V in probability and limsup EV,<EV<o~, then V,~V  in L~- 

n~oo 
mean. Secondly, if g is a Lebesgue integrable function on [0, oo) then, as ~ 0, 

1 ti~ - I g(s) -  g(0[ ds-, 0 for almost all t > 0, as well as in Ll-mean. 

Recall that 

1 L1 
- P(rl < e ] ~-o) ~ A o  (19) 

and that, by Theorem 3 

2e 1<S f(t]x)logf(tlx)dtPo(q~dx)<oe. 
C 0 

By (3), (10) and (12) we have for P(Osdt, ~edx)-almost all (t, x) 

1 
- E(I~o, ~)(~i) logAn, [0 = t, ~ = x) 
t7 

1 ~+' f(ulx) log oof(ulx ) 

! 7s(,i )ds s s( i )ds 
du 

t t 

= f(slx) ds f f(ulx) logf(u[x) du 
t 

7 ] - ( log  f(slx)ds)- ~ f(ulx) du 
t I~ t 

which converges, for P(Oedt, ~edx)-almost all (t, x) to 

( i  f(slx)ds)-~ [f(tix)logf(tix)-f(tlx)log i f(six)ds] 

= M(t, x) log M(t, x) 

(2o) 

(21) 

by (10). This proves the a.s. convergence in (13). To prove Ll-convergence note 
that the left-hand side of (21) is > - e -  1 (as follows from the middle term of 
(21)) while its expectation is, by (8) and the third term of (21), 
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oo 1 t+e  

, 4 +"! i  f ~176 - '  

dt Po(rl~dx). 
(22) 

The second integral is less than or equal to 

(7)1 2~ ~ f.(tlx) log f~(slx) ds dt Po(tl~dx) (23) 
C 0 

1 t + ~  

whereto we have setco f~(tix)--~ ! f(slx)ds. This inequality follows from the fact 

that ~ f~(six)ds< ~ f(slx)ds, which is in turn a simple consequence of Fubini's 
t t 

theorem. The integral (23) can be calculated by a change of variable (as in the 
proof of Theorem 3) and is seen to be equal to 

2 ~ (a~(x)- a~(x) log a.(x)) Po(tlcdx) (24) 
C 

where a~(x)= 7 f~(tlx)dt" Note that a~(x)__< 1. If we let s-~0, then a~(x)-, 1 and 
0 

(24) converges to 2. It follows that the lim sup of (22) is less than or equal to 
e ~ 0  

2 [. 7 f(tlx)logf(tix) &Po(rledx)+ 2=E(A0 logAo). 
C 0 

This and the remark at the beginning of the proof establish Ll-convergence in 
(13). 

The proof of (14) is similar. The left-hand side is trivially > - e  -1 and 
converges a.s. to A0 logA0 by (19). Its expectation on the other hand is, by (11), 

1 t + ~  

- t f(sfx) ds 
(~ ' i  ~ ) ~ ' - - - -  XdtPo(~dx) 

t 

which is, by Jensen's inequality, less than or equal to (22) and Ll-convergence 
follows as above. 
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Turning to (15) note that by the triangle inequality 

,og  

<~ P(zl <elWo)log (~ P(~I <e]~0)) 

1 
+ -  E ( I t o  ' ~)(zz)Ilog Aq I I&) 

and both terms on the right are uniformly integrable by (13) and (14). On the 
other hand the left-hand side converges to 0 a.s. This follows from the above 
inequality if Ao=0,  while if Ao>0  (i.e. if 0 and ~ take values t, x respectively 
such that f(t[x)>O) it follows from the fact that, by (12), 

1 ,+. 
- ~ f(slx) ds 

l t+el g t log f(ulx) ] f ( u l x )  du 

=7 f log 7f(six)ds 7 f(six) ds 7 f(slx) ds 
t u t 

co 

where we can obviously assume ~ f(slx)ds>O. By the triangle inequality the 

right-hand side is less than or equal to the product of f(sLx) ds and 

1 t + E  

- ~ f(slx) ds 
Iloge t f(tlx) .1 t+~ logT  f(slx)ds ds e j" f(ulx)du 

t t 

+ f(tlx) .1 '+* 
logTf (~]x)d  s ~ ! I f (ulx)- f ( t lx) ldu 

t 

l'+f*a f(tlx)log f(tlx) f(ulx) +-  oo -f(ulx) log co du. 
e t ~ f(s[x) ds ~ f(slx) ds 

t u 

Clearly all three terms converge to 0. This proves (15). 
Almost sure convergence in (16) is trivial while Ll-convergence follows from 

(15). Almost sure convergence in (17) and (18) follows from (19) and the 
inequalities 

Y _ < l o g ( i - y ) <  - y  (25) 
1 - y  
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valid for 0 < y < I, while L 1-convergence follows from the fact that the left-hand 
sides of (17) and (18) are =<0 and both have expectation 
1 
- E(P(z 1 > e ]fro) log P(z~ > e [fro)) which by (25) is 

1 
> - E ( - P ( z ~  <e[~o)) = __1 P(N [0, e) => 1)--> - 2 = E ( - A o ) .  

This completes the proof of the theorem. 
Now define the random rariable ~ to be 1 or 0 according as N [0, 0 > 1 or 

N[O, 5)=0 and for any a-field ~ c f f  define 

p~(ilfr (i=0, 1). 

1\ L1 
Corollary. -_le log p,(r [Y o) + 1 r log A~, - log ~) ~.-Z~. Ao" 

Proof The left-hand side is equal to 

-~o ( log ( !p~ (1]o~o) ) - l ogA~ , ) - l ( l -~o ) logp~(O '~o )  

and the result follows from (16) and (18). 

w The Entropy Rate 

If ~ is a random variable or random vector defined on some probability space 

(f2, ~ ,  P) and taking only countably many distinct values x 1, x 2, ... (so that 

~ P ( ~  =xi) = 1), then the entropy H(O of ~ is defined by 
i = 1  

H(~) = - ~ P(~ =x~)loge(~ =x~). (26) 
i = 1  

If ~ is a non-negative random variable with finite expectation, whose distribu- 
tion has a probability density function f(t), t > O, then its entropy is defined by 

H(~) = - ~ f(t) log f(t)  dr, (27) 
0 

and as is well-known - ~ < H ( ~ ) < l + l o g E ~ .  R6nyi [133 has given an in- 
terpretation of (27) in terms of (26). He proved that if (27) is finite and if for each 

r = 1, 2, ... we define the random variable ~r by setting Cr = k  on {~<  ~ < ~ 1 - } ,  k 
= O, 1 . . . .  , then 

H(~)=logr+H(~)+o(1)  as r--~ ~ .  (28) 
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A similar statement is true for N-dimensional vectors ~ with non-negative 
coordinates having finite means except that the dimension N enters (28) as 
follows 

H(~r)=Nlogr+H(~)+o(1 ) as r -*  oo. (29) 

These facts form the basis for the definition of the entropy of a (not 
necessarily stationary) point process on a finite interval, given independently by 
Rudemo [15] and McFadden [10] and later extended by Fritz [4] to point 
processes on finite measure spaces. (It is clear how the supporting probability 
spaces for such point processes can be introduced along the lines of w To be 
specific let rl < % <  ' "  <rN be the points of such a point process on the interval 
[0, T]  (where N = N[0, T]  is of course random) and assume that EN < oe and 
that the conditional distribution of Z=(Zl,%,...,ZN) given N = k  is absolutely 
continuous for any k > 1. Rudemo and McFadden defined the entropy as 

-- ~ P(N=k) logP(N=k)  
k = 0  

+ ~ P(N = k). (entropy of z given N = k). 
k = 0  

Fritz proved that this entropy is equal to the generalised entropy 

of the probability measure v (in the space of realisations) of the given point 
process with respect to the measure # =  erII, where f / i s  the probability measure 
of the standard Poisson process on [0, T 3. (E~ denotes expectations with respect 
to v). In fact [43 and [63 deal with point processes which are defined on any 
atomless finite measure space (X, 9.1, m) and satisfy E(N(X))< oe. It is shown in 
[63 that if for every partition A={G1, G 2 . . . .  ,Gn} of X with m(Gi)>0 (i 
= 1, 2 . . . . .  n) we set 

~ = (N(G1) ... .  , N(G,)) 

and 

~A = (I{N (GI) > 1}' " '"  ' I{N (~n) => 1}) (31) 

then 

( "u E~ - log dv'~ = inf {H(~a) + E(N(X)). log ( max m(Gi))} (32) 
d#] a 1<-i<,, 

=inf  H(~a)+ 2 P(N(G~)> 1)logm(G~) . 
i=1  
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(In this case v is again the probability measure of the given point process and/~ 
=e"(X)H, where/-/is the Poisson process on (X, ~,  m). Note that if v,~/~ then all 
three expressions are equal to -oe) .  

In the present paper we are concerned with the entropy "rate" of a 
stationary point process on the real line. Recall that if .... ~- i ,  ~0, 4~ . . . .  is a 
stationary stochastic process such that each 4, takes only finitely many values 

1 
then, as n-~ oo , -  H(4o, 4, . . . .  , ~,-1) converges to 

/7 

H(4o[4-1, 4-2 . . . .  ) 
(33) 

= E [  - ~  P(4o =xl  4-1, 4-2, ...) log P(4o =xf  4-1, 4-z,  ...)] 
x 

and that if we let 

P,(Xo, . . . ,  x , - 1 ) =  P(4o= Xo, . . . ,  ~ , -1  = x , -  1), 

then 
1 

- - l o g p , ( 4 o ,  ..., 4,_1) 

converges a.s. and in Ll-mean to a random variable whose expectation is equal 
to (33). 

For the rest of the paper we shall assume that P is a stationary point process 
on ( -  0% oo) with intensity 2 and satisfying the following hypotheses. 

( (I) Po~P on ~%. As in w we set Ao=2  dP]"  

(II) E ( A o l o g A o ) <  oo. 

/ /  will denote the standard Poisson process on ( - ~ ,  oe) and H o its Palm 
probability. E will always denote expectations with respect to P. 

Employing the notation of w we see from Theorem 3 that 

[ i  ] E o - f ( t [ t / ) logf ( t l t / )d t  exists and is finite. We denote this expectation by 

H(t/o]tl_l, t/_2, ...) or /-/(tlolt/), since it is the analogue of (33) for the discrete- 
parameter process 

.... t/_ 1, t/o, t/1 . . . .  (34) 

In fact we are in exactly the sort of situation investigated by Perez [12], since 
the distribution of (34) under H o is the product measure . . - | 174174  in 
-.. x (0, co)x (0, oe)x ..-, where ~ is the measure in (0, oe) with density e- ' ,  t>0 ,  
with respect to the Lebesgue measure. Using Perez' generalisation of McMillan's 

theorem we see that 1 log dPo dHTo (t/o, t/1 . . . . .  t / n - l )  converges in Ll-mean to a 
~ J  

random variable with expectation 

Eo [-~o P~176 Edt ] t/) " ~  ,og ~ P~176 ~dt ] t/)~o(dt)J (35) 

= ~ ( t / o  I t / -  1, ~-~,...)- E(t/o) .  
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(dPo 
~ - ( ~ 0  . . . . .  t / n - l )  denotes the Radon-Nikodym density on the a-field 

) f f ( t /o , t /1 , . . . , t / ,_0  generated by t/o,t/1 . . . . .  t/n_ 1 We call H(t/olt/_l,t/_2,. . .)  

the entropy rate of (34) under Po. Note that if we replace the measure /7o, 
n 

restricted to g(t/o,  t/I, ..., t/n- 1), by the measure e-ZH o we can eliminate the 
term E(t/o ) in the right-hand side of (35). 

Let us return to the point process under P. We treat such a process as the 
message from some source but assume that for technical reasons the receiver has 
only z-accuracy, i.e. cannot distinguish between two points arriving within 
time e of each other. To simplify matters further we subdivide the real line into the 
intervals [ne, (n+ 1) e), n=0,  _+ 1, +2, ... and assume that the receiver can only 
distinguish between the events {Nine, (n+ 1) e)> 1} and {N[ne, (n+ 1) ~)=0}. 
The message then becomes discrete with a two-letter alphabet and Shannon's 
classical theory applies. Let ~,=I{N~,~,(,+1)~)_>_1/, n=0,  +1, +2  . . . .  (cf. (31)) and 
set p~(il~l, if-2 . . . .  ) = p j i [ ~ o  ~) (i=0, 1), where ~-0 ~ is the a-field generated by 

~ 1, ~-2  . . . . .  

Lemma 4. I f  Y and Y~, ~>0, are integrable random variables such that Y ~  Y in 
Ll-mean as e--~O, then E(Y~]~L1, ~L 2, ...)---~ E(YI~o) in Ll-means as ~--+0. 

Proof If Ae~- o and 5 > 0  then there is ao>0 such that for every e with 0 < e < %  
there exists A~Wo ~ satisfying P(AAA~)<6. If for instance A is of the form 
{N(J) <c} for some interval d ~ ( - o %  0) and if we take A~= {Na(d)<c} where 
N~(J) is the number of intervals [ne,(n+l)e)~d such that f t ,= l ,  then 
P(AAA~) <P(N(J)+ N~U))--+ 0 as e-+ 0, and one can use standard arguments to 
extend this to arbitrary A ~ o .  Now P(AAA~)< 6 implies E[P(A [~o ~)-IA[ <2 6 
and it follows easily that if Y is an integrable, random variable, then 
E(Y]~,~j)-+E(YIWo) in La-mean as a-+0. The lemma follows from this and the 
triangle inequality. 

Lemma 5. Let Y,, Y, (n= 1, 2 . . . .  ) be non-negative integrable random variables and 
~,  (n= l ,  2, ...) a-fields of events in a probability space, and set Z,=E(YnlN,). I f  
Y~--, Y, Z,-+ Y and Y, log Y,-+ Ylog Y in Ll-mean , then Z,  logZ~--~ Ylog Y and 
Y, logZ, -+  Ylog Y in Ll-mean. 

Proof We can easily prove that Z,  log Z,  and Y, log Z,  converge to Y log Y in 
probability by considering a.s. convergent subsequences of {Y,} and {Z,}. Now 
Z,  log Z,  > - e- ~ while by Jensen's inequality 

E(Z, log Z,) = E(E(Yo 1%) log E(V, 1%)) (36) 

<E(E(Y. log Y. I f#.))=E(Y, log Y.) 

which converges to E(YlogY). It follows from the remark made at the be- 
ginning of the proof of Theorem 4 that Z.  logZ. -+  Y log Y in Ll-mean. The L~- 
convergence of Y. logZ.  will follow if we show that ( Y . - Z . ) l o g Z . ~ O  in L,-  
mean. To this end note that, for any c > 0, {]log Z.] > c} eft .  hence 



204 F. Papangelou  

E(IY.-Z. l f logZ. l )~cE[Y.-Z. l+ ~ (Y.+Z.)llogZ.fdP 
(llogZ,,I >c} 

=cEJY.-Z.J+2 ~ Z.JlogZ.ldP 
{llog z,,] >c} 

=eEIY.-Z. I+ ~ IZ. logZ.ldP+ ~ Z. logZ.dP 
{Zn < e c} {Zn log Zn > c} 

since {log Z.  > c} c {Z. log Z.  > c}. The uniform integrability of Z.  log Z.  (n 
= 1, 2 . . . .  ) now implies that we can make the right-hand side arbitrarily small by 
first choosing c sufficiently large and then n sufficiently large. 

Theorem 5. Under (I) and (II) ,  as e--~ 0 

1 ~ ~ . . . .  ) - - - ~ A o  (37) 

1 L1 
- p~(01~_ 1 . . . .  ) logp~(0I~_ 1, ...) , - A  o (39) 

1 L1 
- ( 1 -  ~)logp~(0[~_ 1, ...) , - A o  (40) 

1 P(*I < ~ I~o) .  Proof (37) follows from (19) and Lemma 4 if we take Y=A o, Y~ =~ 

(38) follows from (14) and Lemma 5, while (39) follows from (37) and (25). Again 
(37) and (25) imply that there is convergence in probability in (40). On the other 
hand the left-hand side of (40) is < 0, while its expectation is 

1 
- E[E((1  - ~0)  log  p~(0l@~)l~g)]  

1 
= -  E(E(1 - ~; I fie) log p,(O Igo~)) 

1 
=- E(p~(Ol~o ~) log p~(0 [ Yo~)) 

s 

which converges to E(-Ao) by (39). 

T h e o r e m  6. [~t l  . . . .  ) + _ 1  l o g A ~ - l o g  , A o. (41) 
8 

Proof The left-hand side is 

By the corollary to Theorem 4 and (40) it is sufficient to show that 
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But clearly 

E~4~o(log(~p~(ll@o))-log(!-P~(l[~'~))) 

= E  [E(I~ 4~ log (~ P~(1 ] ~-o)) - log (~ P~(I [~o0) ] [Yo)] 

=E lp~( l lgo) log( lp~( l l~o) ) -~P~( l[~o) log(}p~(1 ,~) )  

and the result follows from Lemma 5. 
We now derive a number of corollaries from these theorems. Let 

1 

Z(~l~C~, 4%2, . .-)~ - ~ p~(il~L ~ 1' 4 -2 , - - . )  logp~(i[~% 1, ~-2,--.). 
i=0 

Clearly E(Z(4~I~t 1 .. . .  )) :H(4 ; [~_  1 . . . .  ). 

Corollary 1. Under (I) and (II), as e---~O 

1-Z(4~l~t ...)-(~log~)p~(l]~% L1 e 1' 1 . . . .  ) , A o - A o log A o. 

This follows from (37) and (39). 

Corollary 2. Let n(e) be the greatest integer such that n(e) e <= 1. Under (I) and (II), 
as e-~O. 

n(e)-I xa e ( ! )  n(a)-i 
)~(~kl~k-1 . . . .  )-- log ~ P ( ~ = l [ ~ _ l , . . .  ) 

k=O k = O  

1 L1 
, ~ ( A , -  A t log At) dt. 

0 

In fact, by stationarity, the expectation of the absolute value of the difference 
between the two sides is 

1 ! (At_A~logA,)d t +o(1) 

and this converges to 0 by Corollary 1. 

Corollary 3. Under (I) and (II), as ~---, 0 

1 H(r [ ~t ~ ' e  4t2 . . . .  ) = (I-log ~ )P (N[O,e )> l )+2-E(AologAo)+O(1  ). 
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From this we see that if n(e) is as in Corollary 2, then 

H ( ~ ) ,  ~1,  " " ,  ~.(~)-1 [ ~ - 1 '  4 -  2 . . . .  ) 

=n(e)H(ffolff_ if_ .. 1, 2, .) (42) 

=(l log~) P(N[O,e)>-_l)+ 2-E(AologAo)+O(1) 

as e--* 0. We comment on the connexion between this and (32) at the end of the 
paper. 

Corollary 4. If in addition to (I) and (II) we assume 

(III) (iEo[f(tltl)]dt)log~--~O ase-~O 

then 

1 H(~I~L 1, ~ -2 , . - . )=~  l o g - l + 2 - E ( A o  l~ +~ 
g g 

To prove this we make use of the following lemma. 

Lemma 6. P(N[O,~)>=I)=2e-2Eo( i (e-t)f(t,rl)dt ). 

Proof By (8) and (11) 

P(N[-0, e)_>l)--~ ~ P(N[0, el> l l0= t ,  ~=x)P(O~dt, ~dx) 
C 0 

o0 t+~ 

=~ ~ f f(s[x)ds2dtPo(tledx) 
C 0 t 

=2Eo ( i  ti~f(sltl)dsdt ) �9 

By Fubini's theorem this is equal to 

2E~ ( i (max(s~. o) dt) f (s'tl) ds ) 

=2 Eo ( i S f (s'rl) ds + ! e f (s'tl) ds ) 

=2Eo (i Sf(s[tl)ds+~ [l-i  f(s'tl)ds]) 

which implies the lemma. 

F. Papangelou 
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This shows that 

12 l o g ! - !  P(N[O, e)> 1) l o g !  

- ~  o dt] ]loge[ 

< 2Eo ( i  f(tl~l) dt ) [loge[ 

which, combined with Corollary 3 and (III) establishes Corollary 4. 
Condition (III) is relatively mild and ensures that f ( t  [~) does not "explode" 

too fast as t-~0. It is satisfied for instance if Eo( sup f ( t l~))< Go for some ~>0. 
O<t_<_~ 

The function 

{O 1 (log t) -2 if O < t < e  -~ 
f ( t l x )=  if t>e  -1 

is an example (renewal process) for which the conclusion of Corollary 4 is not 
true. 

A glance at (29) justifies the following definition. 

Definition. We call 2 - E ( A o l o g A o ) = E ( A o - A o l o g A o )  the entropy rate of the 
given point process and denote it by H. 

We can now reformulate Theorem 3 as follows. 

Theorem 3a. I f  Po ~ P on Yo, then 

H =2H(~/01~/-1, ~-2 . . . .  ) 

where the conditional entropy on the right is taken with respect to the Palm 
probability Po. 

By Fubini's theorem and Jensen's inequality 

H = - 2  ~ Eo(f(tt~l ) logf(tlr/)) dt 
0 

c~3 

<= - )~ ~ Eo(f(tlq))log Eo(f(t[r/)) dr. 
0 

Setting F(t) = E o ( f  (tl~l) ) we have 

Corollary 5. H ~ - 2  S F(t) log F(t) dr. I f  F(t) log F(t) dt < c~, then there is equa- 
0 0 

lity if and only if for almost every t~O f(t]77)=F(t)Po-a.s. , i.e. if and only if the 
point process is an equilibrium renewal process. 

Thus amongst the point processes with a given F(t) the entropy rate is 
maximal for the renewal process. It is easy to prove that the entropy rate of the 
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superposition of two independent point processes is less than or equal to the 
sum of their entropy rates. 

Note that Corollaries 1-4 followed from Theorem 5. We now turn to Theo- 
rem 6 and look at one important consequence. First define 

P,(io, il, " " ,  i,l~C 1, ~-e,  . . .)=P(~o=io, ..., ~=i ,1~-1 ,  ~C2 . . . .  ). 

Corollary 6. Let n(e) be the greatest integer such that n(e) e <= 1. Under (I) and (II), 
as e-~O 

" ' '  1' 2, " " ) -  log ~k 
k = O  

1 

LI ~ A ~ d t -  ~ logAn. 
0 O<=zi<--i 

~ , . .  ( ]  ~ . .  Proof Since G( o,..- ~ l~ - l ,  .)= P~(~kl~k-~, ") we deduce by stationarity 
k = O  

that the expectation of the absolute value of the difference between the two sides 
is less than or equal to 

1 
~L . . . ) - ( l l o g - l t  4o n(~)eE - - l o g G ( ~ [  l, 

\ e  U 

1 ~ + 1  
dt Z logA  I+o(1) 

O__<~<e 

and the result will follow from Theorem 6 if we show that 

1 ~ logAn. 1 ~ L~ e o__<~<~ ~ ~ ~ol~ ~0. 

Again by stationarity 

E lo__<~,<~ ~ logA~,--el~;logA~l 

1 ( ) 
< n(e)E I~Nto,~)>_-2} ~ [logA~,~[ 
=n(~)c o_-<~i<~ 

< E I~:vtk~, (k+ 1)~)~ e} ~ ]logA,,] 
= 1 - ~  \ k=O k~<-_zi<(k+l)~ 

and the last expectation converges to 0 since the integrand converges to 0 a.s. 
and is dominated by ~ I logAt, I which is integrable by (6). 

0<~<1 

w Connexion with the Likelihood Function 

Let us now consider the entropy of our stationary point process over a finite 
interval, say [-0, T]. We assume hypotheses (I) and (II). By Theorem 1, for any 
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asR and any t>a 

1- p(N[t, t +a)> l [ ~ , t )  ) L~ E(At]~,t))" (43) 

Set At~,o =E(A~]~[,,o ). It is known that the existence of the above limit in L~ for 
a = 0  and every te(0, T] implies P ~ F /  on ~0 ,  TJ and that the corresponding 
Radon-Nikodym density (likelihood function) is 

hT= 1--[ A[o,~ 0 - exp (1-Ato, t))dr . 
0<~<T 

(See [14, 17, 1, 9]; cf. also [8] for the case of marked point processes.) If instead 
of the restriction o f / /  to "~0,_TI we consider as in (30) the measure eTH, we 
obtain the modified density hT=e-ThT, and the corresponding information 
function is 

T 

-lOghT= ~ Aro, t)dt-  ~ logAt0,~). (44) 
0 O<-~:i<-T 

If we denote by H T the entropy of the point process in [0, T] as defined by Fritz, 
then 

T 

HT=E(--IOghT)= ~ EAto, t )dt-E( ~ logA[o,~)). (45) 
0 O < ~ i ~ T  

One can prove as in (36) that E(AEo,~)logA[o,o)<E(A~logAt)<oe. Since 
E(At log Ato;t)) = E(Aro,t ) log A~o,o ) it follows from (6) that 

T 

E( ~ logA[o,~,))= S E(A[o,t) logA~o,o)dt. (46) 
O<~:i<=T 0 

From this and (45) we obtain 
T 

Propos i t ion .  H T = S E(A[o, t)( 1 - l~ t))) dt. 
0 

The reader is invited to check that the proof of this proposition goes through 
without the assumption of stationarity; we shall not go into this here. Under 
stricter assumptions involving the infinitesimal birth equations the above pro- 
position follows from (3.6) in [10]. Similar calculations have been given by 
Br6maud [1] and Grigelionis [8] in connexion with the mutual information 
between two point processes. Cf. also [7]. 

Now notice that by Lemma 5 

El 
At-,, o)l~ o ) - - *  Ao logAo (47) 

L1 
A o logA~_~, o) -----' Ao log A o (48) 

T 

as t--~ oe. Since, by stationarity we have H T = S E(Ar-t, o)( 1 - logAr- t ,  o))) dr, we 
obtain: o 
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1 
Corollary. H = lim - - H  r 

Tooo T 

This corollary shows that the entropy rate H as defined above agrees with 
the one which is implicit in Fritz's generalisation of McMillan's theorem 
(see [5]). In fact in the present case we can obtain this theorem directly from (44) 
and identify the limit as follows. Let J be the a-field of shift invariant events in 
f2. 

Theorem 7. Under hypotheses (I) and (II) 

lim(-lloghr)=E(Ao-AologAo[J)inLl-mean. 

In fact, if we set 

~r = I-[ A~,.exp - A t d t  
O<=~:iNT 

then, by (6), 

_-<IE( ~ , IogALo.~0-1ogA~I)+liE,AL0.0-A }dt 
O<=zi<=T 

1 r 
=~ ! E(At[logA~o,t)-logAtl)dt + l  i ElAto,o-A,[dt 

1 r ! r 

=T ! E]A~176176176176176 +T fo E]At - t' ~176 

which converges to 0 as T--~ o% by (48). To conclude the proof one then follows 
the standard step of applying the discrete ergodic theorem to the random 

variable - log ~t to deduce that - } log ~r converges in L 1. The limit is clearly 

shift invariant and its integral over any shift invariant event A agrees with that 
of A o - A  o log A o. (Apply (6) with Z t =I A logAn, bearing in mind that A differs by 
a null set from a set in 0 ~'~; see [3, p. 459]). 

t~R 

We conclude with some remarks on (42) and Corollary 6. It is easy to see 
that (32) implies 

H(~o .... , ~(~)- l)=(~ log ~) P(N[O, e)>= l)+ Hl +o(1) . 

1 

Since H 1 =SE(AEo, o(1--1ogAEo, t)))dt we see that the analogue of (42) for the 
o 

"unconditional" entropy follows from Fritz's result and the above Proposition. 
On the other hand if we let d ,  (n=1 ,2  . . . .  ) be the a-field generated by 
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1 1 
~ . . . . .  ~ - 1 ,  then by Theorem 4 in [5] (applied to the measure eli on ~o ,  11) 

[ dP sd.~ L---~--loghl. (49) -l~ \d(ell) l ] 
(This generalises a result of Perez. What is involved here is a submartingale with 
a directed parameter set). (49) and (44) easily imply 

- logp•  . . . . .  ~ _  t) - (log n) ~ ~k- -~ .  AEo, odt- ~ logA~o,~,) 
n k ~ O  0 O~--zi~l 

1 1 
�9 - -  n n 

w h e r e  w e  h a v e  p u t  Ps . . . . .  ~ , -  1) - P ( ~  o = io,  . - - ,  ~ n -  1 = i n -  1)' T h i s  is  t h e  a n a l -  
n 

ogue of Corollary 6 for the "unconditional" information function. This state- 
ment is true without the assumption of stationarity, provided we replace (II) by 
1 

E(A~o ' ~)(1 - log A[o ' t))) d t < 0o. 
0 
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