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1. Introduction and Summary 

This paper concerns rates of convergence in the central limit theorem which 
are, in a sense, the fastest possible. Our results generatise earlier ones due to 
Rozovskii [23, 24] and the author [6], but a crucial difference is that here we 
derive the leading term in an asymptotic expansion of the error from nor- 
mality. The leading term may be obtained under very general conditions on 
the summands, and this approach makes possible a more informative account 
of rates of convergence. 

The leading term approach to rates of convergence may be applied very 
generally. For example, it can be used to derive upper and lower bounds to the 
rate of convergence in the Lindeberg-Feller theorem, the only requisite as- 
sumption being Lindeberg's condition. However, a general account of the 
leading term method is well beyond the scope of this paper. A more expansive 
development of this technique will be published elsewhere [8]. 

As in the earlier papers [23 and 6], we confine our attention to sums of 
independent and identically distributed random variables. The literature con- 
tains a variety of approaches to rates of convergence in this context; see Chap. 
V of Petrov [22] for an excellent introduction to such problems. Probably the 
best known are the inequalities of Berry and Ess6en [1, 4], which admit many 
refinements and sharpenings. An approach of a very different nature may be 
found in the characterisations given by Ibragimov [14] and Heyde [9]. These 
provide simple descriptions of the influence of moment conditions and order- 
of-magnitude conditions on rates of convergence. They have been generalised 
and extended by many authors [6, 7, 10-12, 15, 17-19, 23]. Closely related to 
the Heyde-Ibragimov characterisations are the upper and lower bounds de- 
rived by Osipov [20, 21], Rozovskii [23, 24] and Hall [6, 7]. Most of the 
characterisations may be derived from these bounds, and on the other hand, 
the characterisations are strongly suggestive of upper and lower bounds. The 
technique of deriving characterisations from upper and lower bounds is illus- 
trated in the proofs of Corollaries 1 and 2 of [6]. 

A very different way of describing the rate of convergence is to derive the 
first term in an asymptotic expansion; see for example the results of Cram6r 
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[2, 3] and H6glund [13]. Such results usually hold only under stringent 
additional assumptions, such as moment and smoothness conditions (for 
Cram6r's expansion) or regular variation of the distribution tails (for 
H/Sglund's expansion). One advantage of our leading term approach to rates of 
convergence is that it enables the theorems of Cram6r and H6glund to be 
viewed as special cases of more general results. It also leads to many of the 
results described in the previous paragraph, and so provides a unified account 
of rates of convergence. 

In the next section we derive a lower bound to the fastest rate of con- 
vergence which can be achieved in the central limit theorem. We also examine 
the rate of convergence for a specific sequence of norming constants, designed 
to achieve the order of magnitude of the lower bound. The latter result 
describes the rate of approximation to the normal error by the leading term in 
a series expansion. Properties of the leading term are discussed in Sect. 3, 
where we show that under appropriate conditions, this term is asymptotically 
equivalent to the first term in Cram6r's expansion, or to the first term in 
H6glund's expansion. In Sect. 4 we outline extensions of our results to rates of 
convergence in local limit theorems. All proofs are deferred until Sect. 5. 

We close this section with some notation. Throughout this paper we let 
X, X1,X2,... denote a sequence of independent and identically distributed 
random variables from the domain of attraction of the normal law; that is, 
such that for suitable constants a, and b,, 

P Xj<=a,x+b, --*q~(x),-oe<x<oe, 
J 

where ~ denotes the standard normal distribution function. Set S, = ~ Xj. A 
j=l 

necessary and sufficient condition for the distribution of X to belong to the 
domain of attraction of the normal law is that the function 

V(x)=E{X21(IXI<x)}, x>0, 

be slowly varying at infinity; see page 83 of Ibragimov and Linnik [14]. (We 
use the notation I(E) to denote the indicator function of an event E.) This 
implies that all moments below the second are finite, and so there is no loss of 
generality in supposing that E(X)--0. We make this assumption throughout. 

Since x-ZV(x)~O as x ~ o e ,  the function 

a(x) = sup { a:a- z V(a) > x-1 } 

is well defined for all large x. For  such values of x we have x{a(x)}-2V{a(x)} 
=1, even for discontinuous distributions. Let c,=a(n), for large n, and #, 
= E { x I ( I x  I _-< c,)}. 

If the variance of X is finite then c,~n+(varX) ~ as n--,oe, while if the 
variance is infinite, c, = n ~ U(n), where U is a slowly varying function diverging 
to infinity. 
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2. Rates of Convergence 

Before tackling the problem of rates of convergence for specific sequences of 
norming constants, it is desirable to determine the "fastest" rate of con- 
vergence, using optimal constants. This allows us to set a benchmark by means 
of which rates of convergence using specific constants may be compared. To 
this end, define 

D,(c,d)= sup IP(S <ex+d)-{b(x)[ 
- o o < x < o o  

for arbitrary constants c>O and d. For the special sequence of constants {c,} 
defined in Sect. 1, set 

6,=nP(IXI >c,)+nc2~E{XH(IXI <c,)} +nc 2 3IE{X3I([XI < c,)} I. 

Note that c~,~O as n~oo ,  provided X is in the domain of attraction of the 
normal law. This fact may be verified by routine analytic methods, but it is 
also a corollary of the following theorem. 

Theorem 1. I f  the distribution of X is in the domain of attraction of the normal 
law, then 

liminf[{ inf D,(c,d)+n ~}/c5,] >0. 
/ I~OO c > O , d  

That is, up to terms of order n -~ the rate of convergence in the central 
limit theorem can be no better than the order of ~,. 

This result may also be derived from Theorem 1 of Rozovskii [24]. We 
present a somewhat different argument here, which we use in deriving Theo- 
rem 3 and the local limit theorems of Sect. 4. 

Let us consider the case of infinite variance in more detail. Fix 2 > 0, define 

C(2)=(1 x-~P(IX[ >x)dx , 

and note that 

cn cn 

J xP(IXI >x)dx = j {x3P([X[ >x)}-~{x-Ip(Ix] >x)}�89 
2 2 

<_2 x a >x x 

= C(2) [c~P(IXI > c.) + E {X4I(lXl < c.)}] i 

=< c(,~)(c~, ~,/n?. 

Furthermore, in the case of infinite variance we have 

Cn 

2 ~ xP(IXI >x) dx=c~P(lX[ >c.) - 22p([xI >2) +E{X2I(2< IX[ __<c.)} 

a > E{X 2 I([Xl < c,1}/2 

(2.1) 

(2.2) 
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for all large n. Combining (2.1) and (2.2) we find that 

6, > {1/16 Cz(2)} [E{X2 I(lSl  < c,)}] 2(n/c~) = 1/16nC2(2) 

for large n, and consequently 

lira infn6 n >__ 1/16 C2(2). 

However, it is clear that C(2)-00 as 2 ~ ,  and therefore n6,--oo as n--oo. In 
the case of finite variance, it is obvious that n 6 , - - ~  whenever E(X4)= ~ .  We 
may now deduce from Theorem 1 that 

liminf{ inf D,(c, d)}/6, > 0 (2.3) 
n ~ o o  c > O , d  

for any distribution in the domain of attraction of the normal law and 
satisfying E(X*)= ~ .  

A common example of a distribution in the domain of attraction of the 
normal law, but not necessarily with finite variance, is one which has regularly 
varying tails of exponent - 2 .  Let U be a positive slowly varying function, and 
suppose 

P(IXl>x)=-x-2U(x)  and P ( X > x ) ~ p P ( I X l > x )  

as x - , D ,  where 0__<p< 1. Then it may be proved that 

6. ~ One2 2 u(c.) = CU(c.)/E { x 210x I  < c~ 

as n~oo,  where the constant C depends only on p. Therefore 3 o is a slowly 
varying function of n. 

We now examine rates of convergence in the central limit theorem with 
explicit norming constants c(n) and d(n), with the goal of achieving the order of 
magnitude of the lower bound given by (2.3). Define the leading term function 
L,(x) by 

L,(x) = nE { (b(x - X /c,) - #(x)} 1 , + n(~n/c.) O(X)-- ~ (X), 

where qS(x)= #'(x) is the standard normal density. 

Theorem 2. I f  the distribution of X is in the domain of attraction of the normal 
law, then 

sup IP(S, <-_ c,x + ntz,) - ~b(x) - L,(x) l --- O(6~ z + c 21) (2.4) 
- o o < x < o o  

as n ~  ~ .  I f  in addition the distribution of X is nonlattice, the right hand side of 
(2.4) may be replaced by 0(6 2) + o(c~1). 

It will follow from Theorem 3 below that the quantity 

{ sup IL,(x)]}/6 . 
- o o < x < o o  
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is bounded away from zero and infinity as n~o�9 and so we may deduce the 
following corollary. This is closely related to Lemmas 1 and 2 of Rozovskii 
E23]. 

Corollary 1. I f  the distribution of X is in the domain of attraction of the normal 
law, then the ratio 

sup IP(S .<c.x  + n l z , ) - ~ ( x ) l + c .  ~ 
- o o < x < o c  

c~. + c 21 

is bounded away from zero and infinity as n--, oo. 

Thus, the rate of convergence with the norming constants c, and n/~,, is of 
precise order 6,, up to terms of order c~ -1. If E(X2)< oo then c , ~ n q v a r X )  ~ as 
n~oo,  while if E(X2)=o% c,~n~U(n), where U is a slowly varying function 
diverging to infinity. 

The leading term L,(x) is related to one of the terms in an expansion 
suggested by Osipov [21, Theorem 1], who considered rates of convergence 
under the additional assumptions of finite variance and Cram6r's continuity 
condition. It is possible to derive longer expansions than (2.4), and indeed we 
shall examine the second term in such expansions in order to prove (2.4). 
However, the leading term contains the great majority of information about 
rates of convergence, and so we have decided to study it in isolation. 

3. Properties of the Leading Term 

Our first result in this section shows that the uniform measure of L. is of 
precise order c~. 

Theorem 3. There exists a universal constant C such that for all n, 

sup Ig.(x)l< C@  (3.1) 
- -  o o  < ; r  

Furthermore, 
liminf{ sup Ig.(x)l}/6.>O. (3.2) 

n ~ ( x 3  - -  o o < x <  o c  

In order to interprete this result, let us suppose that cncS,~oo as n-- ,~.  This 
will be the case if, for example, 

E ( X  2 I(I X[ < x)}/x 3 P(IXI > x)--* 0 

as x-~ oo. Then it follows from Theorems 1, 2 and 3 that 

0 < lira inf{ inf D.(c, d)}/~ <_ lira sup { inf D.(c, d)}/6. < C o < 0% 
n ~ o o  c > O , d  - -  n ~ o c  c > O , d  : 

where C o is a universal constant. 
Next we examine approximations to our leading term by the leading terms 

derived by other authors. We consider first the leading term in a Chebyshev- 
Edgeworth-Cram& expansion. Suppose E(IX] 3) < ~ ,  and (without loss of gene- 
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rality) that E(X)=0 and E(X2)=I.  Let -c=E(X3), and note that c .~n  ~ as 
n ~  o0. The first term in a Chebyshev-Edgeworth-Cram6r expansion is given by 

1 v (l_x2)qS(x)_ 1 z qS"(x). 
P.(x)=~ n~- 6 n } 

Theorem 4. Under the conditions above, 

sup IL.(x)-P~(x)l=o(n -~) (3.3) 
- - o O < x < o o  

a s  n--~ oo.  

An immediate corollary of Theorems 2 and 4 is that when E(IX[3)< oo and 
the distribution is nonlattice, 

P(S. <__ c.x + n#.) = ~b(x) -16 ~n~ 4"(x) + o(n- ~) (3.4) 

uniformly in x as n~oo.  It is easy to see that the same result holds if c. is 
replaced by n ~ and #. by zero. 

Next we examine the leading term derived by H6glund [13], who consid- 
ered the case of distributions with regularly varying tails. For the sake of 
brevity we examine only regular variation of order - 2 .  Let 05 o denote the 
operator defined in relation (4) of [13], and set Q(x)=05oq~(x ). Note that Q 
does not depend on n, but that Q depends on a parameter p where 0<p__< 1. 

Theorem 5. Suppose the function P(IXI> x) is regularly varying at infinity with 
exponent -2 ,  and that 

P(X > x)/P(IXI > x) ~ p  

as x~oo,  where O=<p=<l. Then 

sup IL,(x)- 2nP([Xl>c,)Q(x)l=o{nP(IXl>c,)} 

a s  n - - > ~ .  

The proof of Theorem 5 is straightforward, and uses well known properties 
of regularly varying functions. The proof will not be given here. See Seneta 
[-25] for an account of the theory of regular variation. 

4. Local Limit Theorems 

Our purpose in this section is to show that the results of the earlier sections 
have immediate analogues in the case of convergence in local limit theorems. 
We consider first the local limit theorem for densities. The next result provides 
analogues of Theorems 1, 2 and 3. 

Theorem 6. Suppose that for some n, S n has a bounded density. Let pn(x; c,d) 
denote the density of (S n -d)/c. Then 

l iminf[ inf { sup ]p,(x;c,d)-4(x)l}+n-1]/bn>O, 
n ~ o o  c > O , d  - o o  < x < o o  
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and also 
sup [p~(x ;c , ,n# . ) -@(x) -g ' (x ) l=0(32+n -1) 

- o o < x < o o  

as n ~  oo. Furthermore, there exists a universal constant C such that.for all n, 

sup IL'n(x)l<Cb,, 
- o o < x < o o  

and 
liminf{ sup IL'.(x)l}/3~>O. 

n ~ o o  - o o < x < o o  

Note that the condition that S, have a bounded density is both necessary 
and sufficient for the uniform convergence of densities; see Theorem 7, p. 198 
of Petrov [--22]. 

Now we examine lattice distributions. 

Theorem 7. Suppose X takes only values of  the form r + Ns  (N=0,  _+1, +2, ...), 
where s > 0 is the maximal span of  the lattice. Then 

l iminf ( in f  [, sup [ s - l c P ( S , = n r + N s ) - @ { ( n r + X s - d ) / c } ] ] + n  -1) 
. . . . .  1 , d  - -  oo  < N <  c o  /(~nl>O, (4.1) 

and also 

sup 
- o o < N < o o  

I s - I  c .P(S.  = nr + Ns) - @ {(nr + Ns  - n#,)/c.} -L'~ {(nr + Ns  - n#.)/c.} I 

=0(62. +n  -~) (4.2) 

as n ~  oo. Furthermore, there exists a universal constant C such that for all n, 

and 

sup ]L',(x)[< C6,, (4.3) 
- ~ o < x < o o  

liminf[- sup ]L ' , { (nr+Ns-n# , ) / c , } ] ] /6 ,>O.  (4.4) 
n ~ o c  - o o < N < o o  

It is appropriate here to mention an improvement of Theorem 2 which can 
be obtained for lattice distributions. Define the "rounding error" function, R, 
by R(x )=  [ -x] -x  + �89 where [,x] denotes the integer part of x, and set 

R.(x)  = R [, {c .x  + n(#. - r)I /s] (~(x)s/c.. 

The techniques used to prove Theorem 7 may be modified to show that under 
the same conditions, 

sup I P ( S . < c . x + n # . ) - 4 ) ( x ) - L . ( x ) - R , ( x ) l = O ( 6 2 ) + o ( c 2 1 )  (4.5) 
- o o < x < o o  

as n-~oo (a sharpening of (2.4)). If E(IX[3)< 0% E(X2)= l and E(X)=0, and the 
distribution is lattice, we may deduce an analogue of (3.4) from (3.3) and (4.5): 

P(S. <__ c. x + n~~ = ~(x) - ~ ~--n~ ~"(x) + R.(x) + o(n- ~) 

uniformly in x as n ~  oo. 
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The results of Theorems 6 and 7 may be applied in the same manner as 
those of Theorems 1-3. For example, they can be used to derive local anal- 
ogues of the result (2.3), Corollary 1 and Theorems 4 and 5. Only minor 
modifications of the earlier techniques are required. 

5. Proofs 

The symbol C denotes a positive generic constant, not depending on n or t, 
and the characteristic function of X is denoted by c~. It follows from the slow 
variation of E{X2I(lXl<x)} as x-+oo that 

g{lXlI(IXl >x)} =o[x- l  E{XZI(IXl < x)}] (5.1) 

as x ~  oo. This result will be used during the proofs. 

Proof of Theorem 1. Choose a, > 0 and b n such that 

Dn(an, bn)<2 inf D,(c,d), 
c>O,d 

and let B~ denote the characteristic function of (S,-b,)/a, .  The techniques used 
to derive the inequality (3.20) of [14] lead to the result 

i (1 - t){fin(tz)e(~Z)2/2 - 1} dt < C(z)D,(a,, bn). (5.2) 
0 

In the next few lines we shall use this inequality to derive more serviceable 
lower bounds. 

Observe that 

log{]?n(t ) e '2/2} = n{~(t/an)- 1} + t2 /2-  itb,/a, + r,a(t ) 

=d.(t)+,~l(t), (5.3) 

say, where Irnl(t)[ < nl~(t/a,)- 11 a whenever Ic~(t/a,)- 1]<�89 But 

Ic~(t)- 11 <3[t2g{xzI( IXl  <cn)} +tE{lXlI(IXl > c,)}] 

for all t>0,  and so l~(t)-l l<C(t2+c21t)E{X2I(lXl<cn)},  using (5.1). Con- 
sequently, 

Ir, l(t)l < Ct2(1 + t2)/n (5.4) 

< 1  when [:~(t/a,)-ll_-x. Since fin(t)et2/2~ 1 uniformly on compact intervals, 

Ilog{fl,(t) e t2/z} - {fin(t) e t2/2- 1}l < C(z)Ifi,(t) e t2/2-112 

uniformly in 0_< t<z. Combining the estimates from (5.3) down we obtain 

Ifin(t)e r2/2-1 -An(t)]_-< C(z){ll3,(t)e '~/2- iI 2 + n-l}, 

which when substituted into (5.2) yields 
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(1- t )A,( tz)  <C~(z) D,(a,,bn)+~l~,(tz)e(tZ~2/2-112dt+n-1 
o o 

< C2(z ){D.(a., b.) + n -1 }, (5.5) 

the last inequality following via Parseval's identity. 
The proof of Theorem 1 may be completed by using techniques from the 

proof of Theorem 1 of [-6]. In particular, by taking real parts in (5.5) for z =  1 
and z = 2, we may deduce that 

nIP(IX] >a.)+a24E{X4I(]X[ < a.)}] < C{D.(a., b.) +n-~}, 

and by taking imaginary parts, that 

a2 31E{X3 I(IXl < a.)}l < C{D,(a,, b,) + n-a}. 

Since a, /cn~l  as n ~  ~ ,  these two inequalities yield Theorem 1. 

Proof of Theorem 2. Redefine A,(O=n{~(t /c , ) -  1} +t2 /2 - i t n# , / c , .  Arguing as 
in the proof of Theorem 1, we may write 

log{an(t/c.) exp(t2/2 - i tn#./c.)} = A,~( t) + r~l (t), 

<1 where It. 1 (t) l < n lc~(t/c.) - 112 whenever I:~(t/c.) - 11 = 5- Thus, 

2 
~"(t /c,)exp(tZ/2-i tn#,/c,)= ~ {A,,(t)+r,l(t)}k/k!+r.2(t), (5.6) 

k-O 

where Ir,2(Ol<lA,(O+r~a(Ol3exp{lA,(t)+r,l(t)l}. We shall prove shortly that 
there exist constants e3, C 3 >0  such that 

IA~(0 + r.~(t)l < - C 3 t} + re~2 + t + 2 (5.7) 

for all large n and all O<-t<-e3c., and that 

[A,(t)l 3 < 144t(1 + t~)c~2 6,~. (5.8) 

When these estimates and (5.4) are substituted into (5.6), we may deduce that 

c~"(t/c,) exp( - i tn#,/c,) = { 1 + A ,(t) + A 2(t)/2} e ~/2 + r,3(0, (5.9) 
where 

Ir.3(t)[ < C4t(1 + t**)( ~2 ~,1 + n-a) exp( -  C 3 t -~ + t) (5.10) 

for all large n and O<t<e3c .. The proof of Theorem 2 will be completed by 
applying the smoothing inequality to the estimate (5.9). 

To prove (5.7), observe that by [-16, pp. 90-91], 1-c~(t)=�89 +o(1)} 
as t$0. Therefore there exists e,e(0, 1) such that 

[E(sintX)l<(1/2)E(1-costX) ,  E ( l_cos tX )>(1 /4 ) t2V( t  1) (5.11) 

for 0 < t ~ g  1. Furthermore, l ~ ( t ) - l l < C t 2 V ( t  -~) for all te(0, el]. Choose 
e2~(0, e~] so small that for this C, 
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C[c~(t)- 1[< 1/16 (5.12) 

when te(0, ~2]- An argument based on truncations, using the fact that cos x - 1  
+ xZ/2 is nonnegative for all x, produces the bound 

[A.(t)[ < nE {cos(tX /c.) - 1} + tz/2 + 4nP([X[ > c.) 

+ nlE{sin(tX/c.)}] +[tn#./c.]. 

From (5.11) and the fact that 4riP(IX[ > c . ) +  [tn#./c.[ < 1 + t for all t > 0  and all 
large n, we may now deduce that 

[A.(t)l < - (n/2)E { 1 - cos(tX/c.)} + t2/2 + 1 + t 

< - (t2/8) V(c,/t)/V(c,) + t2/2 + 1 + t 

for all large n and O<t<_e2c .. But with C as in (5.12), 

Ir, l(t)] < nC(t/c,) 2 V(c,/t)Ic~(t/c,) - 11 < (t2/16) V(cJt) /V(c,)  

for O<--t<--~;2Cn, and so 

I A,(t) + r. 1 (t)[ < - (t2/16) V(cJt) /V(c,)  + t2/2 + 1 + t. (5.13) 

Let W ( x ) = x - ~ V ( x ) .  Using an analogue of Proposition 4 ~ pp. 19-20 of [25], 
with 7>0  replaced by 7<0, it follows that {sup W ( x ) } / W ( y ) ~ l  as y~oo ,  

x>y 
whence {sup W(x)} /W(y )<  C1(>1 ) for y=> C2, say. If 1 <t<-c, /C 2 then 

x>y 

W(c. / t ) /W(c.)  > W(c./t)/{ sup W(x)} > 1/C 1, (5.14) 
x >= Cn/t 

and setting e3 =min(e2, 1/C2) and C 3 = 1/16 C 1 we may deduce from (5.13) and 
(5.14) that ] d , ( t ) + r , l ( t ) ] < - - C a t ~ + t 2 / 2 + l + t  for large n and 1 <t<-e3c .. This 
inequality is trivial for 0_<t_<l, provided the term - C 3 t ~  is dropped. Since 
C 3 < 1/16, (5.7) is immediate. 

In order to prove (5.8), we note that several quite simple manipulations and 
truncations produce the bounds ]A,(t)]__<3(l+t4)~, and ]d,(t)[<2t(l+t3)(~,l ,  
for all t__> 0. Therefore 

[A,(t)l 3 _-< {3(1 + t4)bn}2{2t(1 -]- t3) CSn 1 } ~ 144 t(1 + t 11)(~n(~n1.2 

This proves (5.9) and (5.10). Next, define T(x)= ~(2~x) and 

+(n~./Cn) ~ (x)--~7" (x). M.(x) = nE{ 7"(x . X / c . ) -  ~ ( x ) }  , 1 ,, 

The Fourier-Stieltjes transforms of L. and M .2  (the two-fold convolution of 
M.) are given by 

~eU~dL,(x)=A,(t)e ,~/2 and ~eit~dM*2(x)=A2(t)e t~/2. 

Applying the smoothing inequality (Theorem 2, p. 109 of [22]) with T = e 3 c  ., 
"F(x)"  = P(S, < c, x + nl~.) and "G(x)" = ~(x) + L,(x)  + 1 M* Z~x~ - ~  . t ~, we may deduce 
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from (5.9) and (5.10) that 

sup ]P(S,<c,x)-~(x)-g,(x)- �89 
- o o < x < o o  

2 = o(a .  g.1 +n -1 +c2~)+0((~ +c2~), 
provided 

supl(d/dx){L,(x) 1 .z  + g M ,  (x)}l < oo. (5.15) 
x , n  

Thus, Theorem 2 will follow if (5.15) and 

sup IM*a(x)l=O(62,) (5.16) 
- o o < x < o o  

hold. These estimates may be derived by routine analysis; for the methodology, 
see [8, pp. 105-108]. 

Proof of Theorem 3. The upper bound (3.1) follows easily from the expansion 

1 3 r~ 1 4 ~rt L,(x)=nE[{-g(X/c,)  ~ (x)+~(X/c,)  0 (x.)}I(IXl<c.)] 
+ n E [ { ~ ( x - X / c , ) -  ~(x)} I(IX[ > c,)3, (5.17) 

in which x* denotes a random variable taking values between x - 1  and x + 1. 
To derive the lower bound (3.2), observe that if we replace {fi,(t)e t2/2-1}e -t2/2 
by A,(t)e -t~/2 (equal to the Fourier-Stieltjes transform of L,), we may use a 
somewhat simpler argument than that in the proof of Theorem 1 to deduce 
instead of (5.5) that 

1 

! (1-t)A,(tz)dt < C(z)_~<x<~sup [g.(x)l, 

for z > 0. The left hand side of this inequality is equal to the left hand side of 
(5.5), provided we make the substitution an=C n and b,=n#,. The argument 
following (5.5) may now be used to prove (3.2). 

Proof of Theorem 4. From the expansion (5.17) we may deduce that if 
E(IXl 3) < oo, 

sup IL,(x)+~ncy3E(X3)~)"(x)l < Chic 2 3E{lXl3l(lX I >c,)} +P(IXl >c,) 
- o o  < x < o o  

+ c24E{X4I(IX[ __< c.)}]. (5.18) 

Note that c,~n~var(X), P(IX[>c,)<c23E{lXI5I(IXl>c,)}=o(n-~), and for 
each ee(0, 1), 

x -~ g{X4l(IXl < x)) < ~E(IXI~) + x-~ E{X4I(ex < IX l < x)} 

< eE(IXl3) + E {IXl3 I (lXl > ex) }--,eE(IXl 3) 

as x~oo.  Therefore x-*E{gr as x~oo ,  and so the right hand 
side of (5.18) equals o(n-~) as n ~  oo. Theorem 4 follows immediately. 

The proof of Theorem 6 closely resembles the proofs of Theorems 1, 2 and 
3, and will not be given here. We prove instead Theorem 7. 
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Proof of Theorem 7. We shall derive the results in the order (4.2), (4.3), (4.1) and 
(4.4). Set 

x.N=(nr+Ns--n#.) /c . ,  p .N=P{(S . -n# . ) /G=x.u}  

and K.(x)=M*Z(x), where M. is as defined during the proof of Theorem 2. 
The argument leading to (5.16) may be used to prove that 

sup IK.(x)[' =0(6.),2 
oo < x <  oo 

and so (4.2) will follow if we prove that 

sup Is-lc.P(S. = nr+Ns)--O(x.N)--L'.(X.N)--K'(x,,s)l= 0(6.2 6.1 + n -1) (5.19) 
c ~ < N <  oo 

as n ~  oo. 
The characteristic function of (S . -n#.) /c .  is given by 

t n ~.( )=c~ ( t /c .)exp(- t tn#. /c .)= 2_. P.~texp(itx.M), (5.20) 
M =  - oo 

and the function r  qS(x)+L'.(x)+K'.(x) has Fourier transform 

G(t) = ~ e' t~r189 -t2/2. (5.21) 
- c o  

We shall derive an analogue of the smoothing inequality, based on these 
transforms. Multiply both sides of (5.20) by e x p ( - i t x . u  ) for an integer N, and 
integrate from -rcc./s to rcc./s; and subtract from this result an inversion of 
the transform (5.21) at x=x.u;  to obtain the formula 

~Cn/S 

2~z{s- lGp.u-~.(x .u)}= ~ {~(t)-G(t)} exp( - i t x .u )d t  
~ZCn/S 

- j t/.(t) exp( - itx.N ) tit. (5.22) 
I tl > ~nls 

Since c n = n ~ U(n) where U is slowly varying at infinity, then for any ~ > O, 

]G(t)ldt<=Cn 2 ~ t4e-t2/2dt=O(n -p) 

for all p > 0. Therefore it follows from (5.22) that if 0 < e < re~s, 

sup 
e o < N < ~  

gcn 

IS-IGP.N--~/.(X.N)I~ ~-a S I~.(t)-G(t)ldt 
0 

rtCn/S 

gCn 

(5.23) 
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as n o o o ,  for all p > 0 .  In  view of the est imates (5.9) and (5.10), we may  choose 
ee(0,~/s]  such that  for positive constants  C 1 and  C2, all large n and all t in 
the range O<t<ec,, 

i i  2 l~,(t) - r/,(t)[ < C ~ t(1 + t )(~, 6,~ + n x) exp( - C 2 t ~ + t). 

For  such a choice of  e, 

~cn 

]~,(t)-q,(t)ldt=O(b~b,1 +n ~) (5.24) 
o 

as n ~  ~ .  Since the underlying dis tr ibut ion is lattice with minimal  span  s then 
is per iodic  of per iod 2~/s, and I~(t)[ < 1 for O< ]tl <2n/s. Consequent ly  there 

exists c > 0 such that  [~(t)[ < e -c for e < [t[ < ~/s, whence 

~c,,/s ~/s 
t{.(t)ldt=c. ~ [~"(t)ldt<c.e-"C=/s=O(n P) (5.25) 

gcn 

for all p > 0 .  On subst i tut ing (5.24) and (5.25) into (5.23) we may  deduce (5.19), 
thereby complet ing the p roo f  of  (4.2) in Theo rem 7. 

The result (4.3) may  be derived in the same manne r  as (3.1). We m a y  now 
deduce that  

sup P(S,=nr+Ns)=O(c21) (5.26) 
oo < N < o c  

as n ~ o o .  This result puts us in a posi t ion to prove  (4.1). Choose  a . > l  and b~ 
such that  

Since 

plies 

sup Is-la, P(S,=nr+Ns)-O{(nr+Ns-b,)/a,}l 

< 2  inf [ sup Is-lcP(S,,=nr+Ns)-O{(nr+Ns-d)/c}]. (5.27) 
c > l , d  o o < N <  oo 

sup ~{(nr+Ns-bn)a,}>O(-s/a,)>~(-s)>O, and since (5.27) im- 
oo < N < cx~ 

we may  deduce that  
l iminf{a ,  sup P(S. =nr +Ns)} >0.  (5.29) 

n ~  -~c<N<cc 

Condi t ions  (5.26) and (5.29) together  imply that  cn/a . is bounded  as n ~  0% and 
thence that  a ~ c ~ .  Hence  sup ~{(nr+Ns-b.)/a.}~4(O) as n ~ o %  and so 
in view of (5.28), oo<N<o~ 

a.~sO(O)/{ sup P(S.=nr+Ns)}. (5.30) 
c ~ < N <  cr 

It follows f rom (4.2) and (4.3) that  the same asympto t ic  relat ion holds with a.  
replaced by c., and therefore a./c.--+l as n-+ oo. 

s-lan sup P(S =nr+Ns) -  sup (o{(nr+Ns-b.)/a.}~O, (5.28) 
- - c x ~ < N < ~  - - ~ < N < ~  
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Let us write X = r + s Y  and X j = r + s Y j ,  j >  1, where the random variables Y 

r and gj take only integer values. Set b, = ( b , - n  )/s and T n = ~ Yj. In the work 
j = l  

which follows we shall drop the subscripts n from a,, b, and b',. Observe first 
that 

s -  1 aP(S,  = n r + Ns)  - 0 {(n r + N s  - b)/a} = s -  1 a P ( T  n = N)  - 0 {(N - b')/s- 1 a} (5.31) 

~ ) { ( N - b ' ) / s - l a } = ( a / 2 ~ s )  i e x p { i t b ' - t 2 ( a / s ) 2 / 2 - i t N } d t  +r,x,  
- -  Tg 

where 

]r, Nl_<~z-1 ~ e-t2/2dt, - o e < N < o o .  (5.32) 
g a / s  

Therefore in view of (5.31), with fl denoting the characteristic function of Y, 

s-1 aP(S,  = n r + Ns)  - (a {(n r + N s  - b)/a} (5.33) 

=(a/2~s)  i [ f l " ( t ) - exp{ i tb ' - t 2 (a / s )2 /2}]e - i tNd t - rnN �9 

Suppose 0 < w __< n, and define the function fw on ( -  ~, ~] by 

fwj .  ( t ( w - t ) e x p { - i t b ' + t 2 ( a / s ) 2 / 2 }  for O<_t<_w, 
(t)=~O otherwise. 

Extend fw from ( - n ,  re] to ( -  o% oe) by periodicity, and let 

aN(W)=(1/2~) i f~(t) eitNdt" 
- lr 

Then from (5.32), (5.33) and Parseval's identity for finite Fourier transforms, 

[s-  1 a P ( S , = n r  + N s ) - 4 { ( n r  + N s - b ) / a } ]  aN(W ) 
N ~  - o 0  

1 

= ( w 3 a / 2 r c s ) ~ [ f l n ( t w ) e x p { - i t w b ' + t Z w Z ( a / s ) 2 / 2 } - l ]  t ( 1 - t ) d t + r , ,  (5.34) 
0 

where Ir.l< laN(w) I n-1 e-t2/2dt. Let z = w a / s .  We shall take z to be 
N oe ~ a / s  

a fixed positive number, which entails w--*0 as n--.oo. Two integrations by 
parts in the formula for aN(w ) enable us to prove that 

las(zs/a)} < C(z) (s/a)3 min { 1, (a/s) z (N - b')- 2}, 

from which we may deduce that ~ laN(zs/a)l=O(a -2) as n--,oc. Using the 
N = - - o c  

and 
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estimates from (5.34) down, and making the substitution w=zs/a in (5.34), we 
find that 

sup Is -1 aP(S =nr+Ns) -~{ (nr+Ns-b ) /a}[  
- o c < N < c o  

>Cl(z) a 2 N ~=~ [s l aP(S =nr+Ns)_O{(nr+Ns_b) /a}]  a N ( W )  

1 - t ) d t  + C2(z ) ![~n(tz /a)exp{-i tzb/a+(tz)2/2}-l]  t(1 O(n-P), (5.35) 

for all p > 0. A slight modification of the argument leading to (5.5) may now be 
used to derive the following estimate: 

it(1 - - (tz)2/2- itzb/a] dt t) [n{~(tz/a) 1} + 

<C(z) [ sup ]s l aP(S ,=nr+Ns)- (~{(nr+Ns-b) /a}  
L - -  o o < N < c o  

1 + ~ Icd(tz/a) exp{ - i tzb/a + (tz)2/2} - 112 dt + n-  1 . (5.36) 
o 

In view of (5.33) and Parseval's identity, the integral on the right equals 

z s /a  

(a/zs) ~ [fin(t) exp{-i tb '+t2(a/s)2/2}-112 dt 
0 

< C(z) a-1 ~ is- 1 aP(Sn=nr+Ns)_dp{(nr+Ns_b)/a} +rnu[ 2 
N =  oo 

<2 C(z) sup Is -1 aP(S =nr+Ns)-O{(nr+Ns-b) /a}]  
- - o o < N < c c  

N =  - c o  N =  - c o  

An integral approximation shows that a-1 ~ ~{(nr+Ns-b) /a}  is bounded 
N -  - (x) 

as n-~ ~ .  To estimate the second series on the right in (5.37), observe that 

rnN =(a/~s) ~ cos{t(b'-N)} exp { -  t2(a/s)2/2} dt. 

Following an integration by parts and an estimation like (5.32), we may deduce 
that [rnN[ < C(p) n-P min(1, [b ' -N[-  1) for all p >0. Therefore 

tr, NI2=O(n -v) 
N = -- cx~ 

as n ~ ,  for all p>0.  Combining the results from (5.36) down, we obtain the 
following analogue of (5.5): 
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it(1 - t )  [n{c~(tz/a.)- 1} + itzb./a.] (tz) 2/2 dt 

< C(z) [ sup [s-~a.P(S.=nr+Ns)-O{(nr+Ns-b. ) /a .}  
o o < N <  oo 

+n-Z]. 

The proof of (4.1) may be completed using the argument following (5.5). 
Finally we prove (4.4). By inverting the Fourier transform 

A.(t) e -t2/2 = ~ e itx En(X) dx, 
- o o  

we may deduce that 

E.(XnN)=(Cn/27cs) i An(tcJs) exp{itb'.-itN-t2(cn/s)2/2} dt +r~N, (5.38) 
- rr 

where on this occasion we have set b'. = n(l~.- r)/s, and where 

, < Ir.Nl= Cn ~ t 2 e -t2/2 dt. 
~ C n / S  

Let the function fw(t) and the constants aN(w), - o o < N < o o ,  have the mean- 
ings ascribed to them during the proof of (4.1), with the substitution a-=c.. 
From (5.38) we may deduce an analogue of (5.34), with the left hand side 
replaced by 

r~.(x.N) aN(w). 
N ~  - -  o o  

This leads ultimately to an analogue of (5.35), and thence to an analogue of 
(5.36). Note that on this occasion, the term n-1 on the right in (5.36) may be 
replaced by n -p, for any p>0, and that if p > l ,  n-P=o(a,). The proof of (4.4) is 
now easily completed. 
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